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Using the results of an analytic perturbation theory for screened Coulomb wave functions, closed-form
expressions are given for screened K- and L-shell photoeffect total cross sections in the nonrelativistic dipole
approximation. The analytic results agree very well with numerical dipole calculations for the same potential.
These nonrelativistic dipole results are then compared with the full relativistic (including retardation) screened
calculations of Scofield. Because of strong cancellations between relativistic and multipole effects, the
nonrelativistic dipole results can be shown to yield accurate predictions for the photoeffect for photon
energies ranging from threshold to nearly 100 keV.

I. INTRODUCTION

An analytic perturbation theory has been de-
veloped recently to obtain nonrelativistic radial
wave functions in a screened Coulomb potential. "
The method is based on the expansion of the poten-
tial inside an atom as a series in Ar having the
form

V(r)= (-a/r)[1+ V, Xr+ V2(Ar)'+ V, (Xr)'+. j. (1)

In Eq. (1), a = aZ, where n is the fine-structure
constant and Z is the nuclear cha. rge. X is a small
(=aZ'~') parameter characterizing the screening,
and the coefficients V„areof order unity. We
note that these coefficients are not fitted to the
potential shape at small distances but, rather,
over the entire interior of the atom for realistic
potentials. In general, the V„alternate in sign
and decrease with increasing k so that form (1)
converges rapidly in this region (Xr(1).

With expansion (1), wave-function shapes for
both bound and continuum states can be simply
expressed as series in A, and are likewise accurate
in the interior region. For inner-shell bound
states and continuum states of not too low energy,
the wave functions will rea, ch their asymptotic
forms within the region of validity of these ex-
pansions. Hence, in these circumstances, bound

and continuum normalizations are also obtained
as series in X as well as bound-state energy ei-
genvalues. ' The results thus obtained for non-
relativistic screened Coulomb radial wave func-
tions are in good agreement with exact numerical
calculations. Further work is now in progress on
an extension to the relativistic case' as well as on

improving the basic technique.
In order to demonstrate the power of the theory

in its present form, it seems appropriate at this
time to apply it to specific calculations. This will
also serve to provide guidance for further im-
provements. Accordingly, in the present work

we use the wave functions of this perturbation
theory to obtain analytic expressions for screened
K- and L-shell photoeffect total cross sections in
nonrelativistic dipole approximation. We find that
our results are very good in the energy range in
which the major contribution to the dipole photo-
effect matrix element arises within the interior
of the atom. This implies that our perturbation
theory should be useful for any process; e.g.,
internal conversion, threshold pair production,
and tip bremsstrahlung, for which the matrix
element is determined largely in the interior
region.

We note that our approach is complementary
to other analytic methods used in photoeffect; for
example, the quantum-defect theory' and its gen-
eralizations. In the quantum-defect theory one
uses the fact that at large distances the potential
seen by an electron is essentially Coulombic. The
effect of inner-electron screening, then, is only
to change the normaliza, tion and phase of the ex-
terior Coulomb wave function. Moreover, at low
energies the phase shift can be determined semi-
empirically by analytically continuing the quantum-
defect parameter to positive energies. In this
way one obtains analytic expressions for screened
photoeffect cross sections which are valid for
transitions of outer electrons at photon energies
near threshold. ' In a related approach, McGuire'
introduces a modified Coulomb potential for which
analytic solutions of the Schrodinger equation can
be found. Although in general numerical methods
are required, he is able to give an analytic ex-
pression for the dipole photoeffect cross section
in two cases. By neglecting the interior region in
the dipole matrix element integral and considering
transitions of outer electrons he obtains an ex-
pression which is simila, r to that obtained from
quantum-defect theory and which valid over a
somewhat wider range of energies. In the other
case, the outer region is neglected. However,
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because of the inadequacy of the potential model
employed, the resulting expression can only be
used for transitions in which the angular momen-
tum quantum numbers are large. In any case,
these methods are not appropriate for the discus-
sion of inner (K- and L )sh-ell transitions or for
photon energies significantly above threshold
(keV region). On the other hand, because of our
expansion (1) of the potential, we can construct
analytic screened wave functions which are accurate
in the interior region. In this way we can ade-
quately determine screening effects in atomic
photoeffect inner- shell transitions.

In Sec. II we briefly discuss the particular bound
and continuum screened wave functions which are
needed. The integrals which define the dipole ma-
trix elements are then evaluated analytically and
we obtain closed-form expressions for the total
cross sections. In Sec. III we compare these
analytic expressions for cross sections with nu-
merical evaluations of nonrelativistic dipole cross
sections using the Herman- Skillman potential. '
In general, the agreement is excellent, for all
but very low Z, over the entire range of photon
energies excluding a small region near threshold.
We then compare these results with the full rela-
tivistic (single-electron) screened calculations of
Scofield. ' Both the analytic and numerical evalua-
tions of the nonrelativistic dipole total cross sec-
tions for photoeffect agree very well with the full
relativistic screened results. This agreement is
found not only at low energies, but also for photon
energies approaching 100 keV. Since this is well
beyond the expected range of validity of the non-
relativistic dipole approximation, the agreement
indicates a strong cancellation between relativistic
and higher multipole contributions. Hence, our
analytic expressions for screened photoeffect
cross sections should be of considerable utility
over a wide range of energy.

—= (2zz) n&u jM&; j', (2)

where co is the incident photon energy and the ma-
trix element M&,. is given by"

Mf,. = |I)&r &|I),. d7. (3)

In Ezt. (3), $,. is the initial bound-state wave func-
tion normalized such that J j g, j' dv = 1, and gz is
the final continuum electron wave function corre-

II. CALCULATION OF ANALYTIC CROSS SECTIONS

The differential cross section for photoeffect in
nonrelativistic dipole approximation can be writ-
ten in the form (we choose units such that k =c
=zn, = 1)

sponding to an incoming spherical plus outgoing
plane wave normalized on the energy scale so that

g~~, g~ d7'= 6 E —E' 5 0 —k' .

7, is the photonpolarization vector, where j= 1, 2,
corresponding to the two possible photon polariza-
tions.

If the bound-state wave function is written in
the form

q,. =R„,(r)r,.(e, y), (4)

and the continuum wave function is expanded in a
partial wave series

g, =g(2l' +I) z' e"~ R, .(kr)f', .(k r)

where the radial matrix elements for l' = l +1 are
def ined by

(k, I' jrjn, I) = t r'drRf (kr)rR„,(r)
~o

(7)

Thus, in order to evaluate the dipole photoeffect
total cross section we need only calculate the
screened radial matrix elements (k, l + 1

j
r jn, ».

The radial wave functions which we need for the
evaluation of the matrix elements, (7), are dis-
cussed in Hefs. 1 and 2. First, we consider the
bound state. We write

R„,(r) =X„,r' e '"~"s„,(r),

where the radial function s„,(r), to any finite order
in X, is a polynomial in r. For the 1S, 2$, and 2P
states, in particular, we have, through third or-
der in A,

sM(r) = 1+ z A, (ar)'+ A, (ar)z(1+ zar),

szo(r) = 1 —2ar+ 2Az(ar)'(1 —,'ar)—
+ 2A, (ar)'(7 —', ar —', (ar)'),— —

s»(r) = 1+ A, (ar)'+ 2A3(ar)'(3+ ,'ar), —

(9)

where A~= V, (A/a)~—= V~(1.13Z '~')'. We note that
the zero-order terms in (9) are precisely the
point Coulomb radial functions s„',(r). The corre-
sponding normalizations N„,and energy eigen-
values T„,are given by

then the total photoeffect cross section for the sub-
shell labeled n and l, o„„is given by

~., =(z)* J g
jz &

= (2zz)'tzur-', (4zz)'[(I+ I) j(k, I+ 1 jr jn, I) j'

+ Ij&k, I- Ilrln» j']
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Nio = Ni'o(1 & A2 VA2))

N„=N;, (1 —24A, —328A, ),

N„=¹,(1 —30A, —320A ),

2+sio 1 (n+ ~)( 2/2

(2!+()!(2n( —l —()!)
is the point Coulomb normalization, and

T„=——,'a'(1+ 2A, + 3A, + 6A, ),

T»=--()a'(1+8 A, + 48A, +336A,),

T» ———(')a'(1+ 8A, + 40A, + 240A2),

(12)

where the point Coulomb energy is just T'„,= -a'/2n'.
In the continuum case, we write the screened

radial wave function R, , (kr) in the form

N '(k, f')R, , (kr) =r' e ' "s,, (k,r), (13)

where the radial function s, , (k,r) reduces to the
point Coulomb result s', , (k,r) in the limit X-O.
We note, however, that the parameter k„which
appears on the right-band side of Eq. (13), is not
necessarily equal to k, the magnitude of the as-
ymptotic momentum for the screened wave func-
tion. Instead, we define k, by means of the equa-
tion

2k —~k, = T —T = 5T, (14)

where, in general, 6T may assume any finite val-
ue. The formalism then allows us to relate the
screened radial wave function of energy T to a
point Coulomb wave function of shifted energy T,
plus small correction terms. Our next considera-
tion, then, is the choice of 5T.

It has previously been noted that for a variety
of physical processes one can most simply com-
pare screened and point Coulomb results corre-
sponding to the same photon energy. " In general,
this impl. ies that continuum electron (positron)
energies must be shifted in order to satisfy the
appropriate ene rgy-conservation relations. One
can understand this in part by noting that, at ener-
gies not too near threshold, the dominant con-
tribution to the matrix elements of these pro-
cesses is determined at relatively small dis-
tances, 2nd that the shape of screened 2nd point
Coulomb wave functions near the origin will be
closest when compared for shifted energy. " For
a process like photoeffect it therefore seems
most sensible to choose 6T in Eq. (14) to a.ccom-
modate this observation. In this case, comparing
screened 2nd point Coulomb results at the same
photon energy implies that the energy of the
ejected continuum electron must be shifted an
amount

(15)

where 5T~ is the shift in the bound-state energy
due to screening.

In the following we will assume that for photo-
effect from each subshell the continuum wave-
function energy shift is given by Eq. (15). Then,
using the exact (screened) energy conservation
relation with Eq. (14), we find

—,'k', = (d —a'/2n',

so that k, is just the usual Stobbe parameter
which appears in the nonrelativistic point Coulomb
dipole cross section. In this way, we will find
that our analytic expression for the screened pho-
toeffect cross section can be written in terms of
the appropriate point Coulomb result, multiplied
by a screening correction which can be expressed
in terms of simple elementary functions of the
photon energy.

We note thai according to the normalization
screening theory of photoeffect" it is reasonable
to expect that screening corrections can be given
in terms of a simple factor multiplying the point
Coulomb results. At energies sufficiently above
threshold it is known that the only effect of atomic
electron screening is due to the change in the
bound state nor'malization. Hence, in this case,
screening may be ignored except as an external
multiplieative factor given by the square of the
ratio of screened to point Coulomb bound-state
normalizations. Even at relatively low energies
this normalization factor will give a major part
of the screening corrections. The energy depen-
dence of ihe screened cross section will be essen-
tially that of the point Coulomb ease with only
small additional correction terms so that a per-
turbation theory is appropriate. We will thus
find that our formalism considerably simplifies
the description of screening effects in atomic
photoeff ect.

The Bctual form of the screened continuum radial
function s,, (k,r) for arbitrary energy shift is given
in Ref. 2. We have

s,.(k,r) = s', , (k,r) + X'A, (l', k,r)

+ X2A2(f', k,r)+ ~ ~ ~,
where

S 2, (k r) = M(l + 1+ 2v, 2l + 2) 22ko1')

is the usual point Coulomb radial function corre-
sponding to an electron energy T, =-,'k'„and

A, (l', k,r) = Q (2,'(-iv, l') M(f'+ 1+ i v —s, 2f'+ 2,2ik, r)
s=-k

+ P~~( iv, 1') —M-(l'+ 1+i v, 2f'+ 2, 2ik,r).
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TA)3LE i. Coefficients n~( i—v,l') and po( i-v, l') which appear in our expansion of the wave function, Eq. (19). These
depend on the bound state quantum numbers n andi since our choice for the energy shift [Eq. (15)] depends on the par-
ticular bound state from which the electron is ejected. Values of u~ for s & 0 a~e determined by i. plptiov ( O).

0.,(—i v, l')
r~V ~W

Z

3v (2l'+3) —4(l'+1)d2

(l'+1 —iv) [2i v(2 iv —1) +2d2]

2 i v(l ' + 2 —i v) (l ' + 1 —i v)

pot( iv, —l') =4v(vPVQ4at) {z[3vt+l'(l' +1)]—dt)

n~( —iv, l')
v VQ4o~

-[10'-' (~'+2) -'
-„.'{l' + l)(gl' +13k' —6) —hat, l' +1)d3/t'v ]

2(l' + 1 —l v) [15iv(1 —i v) + 3l'(1' +1) —6 +4adgv2]

~(1 —iv)(l' +2 —i v)(l'+1 —iv)

—
6

(l'+3 —iv)(l'+2 —i v)(l'+1 —i v)

po( —i lv') =2v(v VV 4a ) {[—5v +1 —3l'(l'+1)] —2adt/v )

d2=2[-3n +l (l +1)), d)=(-n/2a)[5n +1 —3l (l +1)], l' =l +1

[c.,'(-i v, I')]~ = o.',(-iv, l'), (20)

In these equations, M(a, b, x) is a regular conflu-
ent hypergeometric function'3 and v = a/k, . We
note that Po is real and that the coefficients a,"
satisfy the relation

so that the screened radial wave function is real.
The explicit forms of P,' and n", for k = 2, 3, using
the particular energy shifts (15), are given in
Table I.

The screened continuum normalization N(k, l')
can also be given as a series in A. . Explicitly,
through third order, we have

N(k, l') = N, (k„l')[1+ ~Aav {I'(l'+ 1)(2l'+ 1) —[3v + l'(l'+ 1) + 3n —l(l+ 1)1[2l'+ 1 —pg, ]}
—4A, v (a5 l'(l'+ 1)(2l'+ 1)—(5v' —1+ 3l'(l'+ 1) —(n'/v )[5n + 1 —3l(l+ 1)]}[2l'+1 —p, , ])],

(21)

where

k', ~'(2k, )v [I'(l'+ 1+ iv) l,„g,
(2x)34 I'(21 + 2)

is the point Coulomb normalization and

p, , =vN, (k„l') —N, (k„l')=p, , , +,2 2, pc=l—I / 2V 27TV
(23)

Our expression (21) for the continuum normalization, like that for the shape, depends on the bound state
quantum numbers n and l since our choice for the energy shift (15) depends on the particular bound state
from which the electron is ejected.

Using these analytic expressions for the screened wave functions the matrix elements (k, l' jr ~n, l) can
be evaluated immediately in terms of the basic integral

I(v;n, l; m, s)= drr '"' e '" " ' "M(l'+1+iv —s, 21'+2, 2ik, r)
0

a r 1+CP
= I'(2l'+ 2+ m) —+ ik, ——ik

n n

m-1' -1-iv+s 2'kF -m, l'+ 1+iv —s, 2l'+ 2;, '. , (24)' a/n+ ik,

where l'=l+ 1, m is an integer ~0, and I (a, b; c; z)
is a Gaussian hypergeometric function. We note
that I(m, s) can be written in terms of elementary
functions since, for integer m, the series which
defines I'( m, b; c; z) terminate-s. Moreover,

I~(m, s) = I(m, -s),

so that the radial matrix elements will be real.
The necessary algebra is straightforward but
rather tedious and we simply present below the
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(26)

where the square of this matrix element for the
screened potential can be written in the form

final results for the screened K- and J -shell
photoeffect cross sections.

For the K shell, only one radial matrix element
contributes. From E(I. (6), we have

(»)'~~-:(4v)'
I &I, 1 lrl 1, 0&

(27)

(28)

is the point Coulomb result" (Stobbe formula) and

go(v) is given, through third order in X, by

8v'
)&'„(v) = g ) + A, C, (3 *+ 5) — , (2 ~ v') + )v')

10

4 v

+

where

Q', =v —2 t3+2v 1 1 gv
1+ v' v e""—1

section can be written in the form

The Stobbe parameter, k„in this case has the
value, k, =(2&d —a')'I' and, we recall, v=a/0, . In
E(I. (29) we have written explicitly the factor
(X»/¹»), which gives the screening corrections
to the Stobbe formula due to the change in the
bound state normalization. This factor, for the
K shell, can be obtained directly from our analytic
expression (10) and, for a wide range of energies,
represents the major part of the screening cor-
rections to K-shell photoeffeet.

At high energy (v«1), the screened cross sec-
tion (26) becomes simply

cr, o
= a,'0(I)t»/¹0)2 f 1+ O(v A )],

where o,p is the point Coulomb cross section. The
screening corrections due to wave function shape
and continuum normalization contributions vanish
for large (d, so that the only effect of screening
in this limit is due to the change in the bound-
state normalization. This is preci. sely the con-
clusion obtained from the normalization screening
theory of photoeffect" and has been verified in-
dependently over a wide range of photon energies
and atomic numbers.

For very low energy (v»1), the screening
corrections (29), although at first sight divergent,
are actually finite due to cancellation between di-
vergent terms. " In this limit the screened cross

310 10274 1 34246 1
21 315 v2 693 v4

(32)

In E(I. (34),

(34)

where we have neglected correction terms of the
form e~'" and higher orders in I/v'. We see
from (32) that at low energies the shape and con-
tinuum normalization corrections are of the same
magnitude as the bound-state normalization con-
tribution so that screening effects are more than
twice that predicted by normalization screening
theory. This expression (32) can also be used for
photon energies below the point Coulomb threshold
(v (0) provided the proper analytic continuation
of 0'10 is employed. "

In a relativistic calculation including spin, the
L shell comprises three subshells L„L~,and

In an entirely nonrelativistic calculation,
however, only the I,(28) and I.~+ I.~(2P) sub-
shells are distinguished. For the 2S subshell, as
for the 18, only one matrix element contributes.
From E(I. (6),

(33)

is the point Coulomb result and X,',(v) is given by
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1+A, Q;,(3v'+14) —,+ (7+ v')+3
N2O 1+ ~v

—A, g2', [5v'(I+ v') -84]+ 1+ 2 56+—v'- —v4 ——v' +5v' [,
2v 40 11 ~ 5

4
(36)

where

+ 2 3+4v i2 gv
Q2'o = v' + —2vtan ' ——

„„20 1+ v2 v e2rv (37)

For the L shell, k, = (2(d ——,'(22)t '. Again, we have
factored out the bound-state normalization screen-
ing corrections (N20/N;2)2. For sufficiently high

Z, this ratio can be taken from the results of our
perturbation theory, Eq. (10). For low Z, how-
ever, this ratio is quite far from unity and the
series in A for N22/N;2 does not converge rapidly,
even though the remainder of the screening cor-
rections, which include all of the energy depen-
dence, are well represented by the term in curly
brackets in (36). In this case, then, one may
insert" a numerical evaluation of the (energy-
independent} ratio of screened to point Coulomb
bound-state normalizations in Eq. (36).

At high energy the screened cross section (33)
approaches the limit expected from normalization
screening theory

In this region the shape and continuum normaliza-
tion screening corrections are about half the
bound-state normalization corrections. Thus, for
low Z especially, the screening corrections will
be large at low energy and our L, perturbation
series does not converge rapidly. For nearly all
Z, however, at photon energies on the order of
the Coulomb L-shell binding energy above thresh-
old and higher, the corrections due to screening
for the 2S case are very well represented by an
analytic expression (36).

For the 2P subshell we have from Eq. (6),

c., = (2.)'o~-.'(4.)'[2 l&k, 2lr l2, I) I'

+
I &k, o Irl2, 1)I'], (40}

where

I &k, 1 *1lr 12, » I'=
I &k., 1+ 1lr 12, ».I'x,', (v).

(41)

o» ——o,', (N,o/N;, )'[1+O(v'A, )]. (38) In Eq. (41),

For very low energy (v» 1), neglecting higher
orders in 1/v',

N2„2 341 4673 1 1825 1

¹ 15 35 v 3 ~v

2 (3 v2)4 e-414 tan 2/0

I &k., I'I I2, ». I'=-, —,„(I',.~).( I,-".}
2(1+ v'} for I'=2

X
—,'(4+ v') for I'=0 (42)

6500 830812 1 151788 1

21 315 v' 99

(39)
are the point Coulomb results and the g2't(v) are
given by

N
g2'1(v) = " 1+ A, Q2't(3v2+ 16) —1,+ (5v'+28)+15v"

21 +

-A, Q;1 lv'(5v'+ 17) —60] ——,,), (25v'+ 210v4+ 200v —432)+ 25v
6 (1+—;v')' (43a.)

and

X., ( )= ." 1+0, 0,, (3 *~ 10) ——,, (8P ~ 40))
2

2 1 v'

2 1+4v

—A, @23[v (5v —1) —60] ——,~ 2 (5v + 27v4 —128v —432)
1 v

3 (1+-,'v' ' (43b)
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2 16+23v'+4v4, 2 mv

(4 ~ 2}((+ 8} e*'" —()
(44a)

high Z this must be evaluated numerically. The
energy dependence, however, is given by the
wave-function shape and continuum normalization
contributions which are well represented, for al-
most all energies, by our expressions" for g'»(v),
Eqs. (43). At high energy we reproduce the re-
sult of normalization screening theory

21. ~ 4 2~ tan, 2p eZffv (7„=o'„(f}t»jf}t;,)'[I+ O(v'A, )], (45)

Essentially the same considerations hold for the
2P case as for the 28 cross section. A major part
of the screening corrections are due to the change
ln the bound state noI'mallzatlon. For all but, very

where o» is the point Coulomb cross section of
shifted energy. At low energy (v»1), neglecting
higher-order terms in I/v', the 2P cross section
can be written in t;he form

~V„'i 16 86644 1 46VI 664 1 128 516932 1 38650544 I" iV,', l. 55 231 v' 2541 v4 1155 3 33 v' 363 v4
(46)

Again, in this region the shape and continuum nor-
malization corrections are about half the bound-
state normalization contribution. Thus, particu-
larly for lorn Z, the screening corrections will
be large at low energy and our perturbation series
does not converge rapidly. On the other hand, for
photon energies on the order of the I.-shell Cou-
lomb binding energy above threshold and higher,
our analytic expressions for g,', (v), Eq. (44), give
results in good agreement with exact numerical
values.

III. DISCUSSION OF RESULTS

In Tables II—IV we compare our analytic pre-
dictions for screened A, I.„andI.~+ I ~ non-
relativistic dipole photoeffect total cross sections
with the results of exact numerical evaluations
of these cross sections in the same (screened) po-
tential. We also compare the nonrelativistic re-
sults with the full relativistic screened calcula-
tions of Scofield. ' Three elements Ca(Z = 20),
Kr(Z= 36), and Au(Z = 79), are considered which
show typical results for low, medium, and high Z.

The screened potential which me have employed
in this work is the Herman-Skillman self-consis-
tent potential. ' In Hef. 1, we have indicated how

to obtain the coefficients V~ which appear in our
expansion of the potential [Eq. (1)]and have also
given some typical values of these potential co-
efficients for neutral atoms in the range Z= 6 —92.

The best results for the screened cross section
are obtained for the K shell [cf. Table II]. This
is due to the fact that, for t;he ground state, all
of the wave function is included in the region in
which our expansion of the potential is valid.

Hence, in this case the wave function is particu-
larly well represented by our perturbation series.
We see that even for relatively low Z at low ener-
gy, our analytic expression for the K-shell photo-
effect total cross section reproduces the numeri-
cal results to better than 1%. Even better agree-
ment could be obtained if the numerical screened
bound-state normalization mere used. When we

20 (T~ =3.99)
(T~ =5.44)

36 (T~ =14.0)
(T~ = 17.6)

79 (T~ =73.4)
(T =84.9)

6
10
20
40
60
80

15
20
40
60
80

100
200

80
90

100
120
150
200

2.223(4)
5.526(3)
7.511(2)
9.252(1)
2.619(1)
1.055(0)

1.416(4)
6.633(3)
9.709(2)
2.987 (2)
1.269 (2)
6.459 (1)
7.543(0)

2.317(3)
1.695(3)
1 277(3)
7.771(2)
4.178(2)
1.843(2)

+nufn

2.217
5.544
7.544
9.293
2.631
1.059

1.394
6.571
9.667
2.979
1.266
6.448
7.538

2.294
1.680
1.267
7.719
4.155
1.835

2.218
5.560
7.583
9.396
2.681
1.091

1.383
6.609
9.793
3.044
1.306
6.728
8.501

1.273

4.416
2.057

TABLE II. Comparison of our analytic results for the
A shell o~, with exact numerical values of theA-shell
nonrelativistic dipole cross section O„„m,and with the
full relativistic results of Scofield 0„~.T~ is the Her-
man-Skillman ground-state binding energy, T = —'~2 be ng
the corresponding point Coulomb energy. All energies
are in keV. Cross sections are in barns.
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TABLE III. Comparison of our analytic results for
the L& subshell 0«, with exact numerical values v„um,
and with the full relativistic results 0;e~. T~ is the exact
screened 2S binding energy and T, = Sa is the point
Coulomb binding energy. Energies are in keV and cross
sections are in barns.

TABLE IV. Comparison of results for the 2P case.
o« is our analytic result, 0'„um is the corresponding
numerical value for the 2P nonrelativistic dipole cross
section, and a,e~ is the result of Scofield. Tz is the 2P
binding energy determined from the Herman-Skillman
potential and Tc=8a . Energies are in keV and cross
sections are in barns.

20 (Tg =0.430)
(T, =1.36)

36 (T~ =1.84)
(Tc =4.41)

79 (T~ =12.3)
(T =21.2)

2
3

6
10
20
40
60

5
8

10
20
40
60
80

100

25
30
40
60
80

100

2.102(4)
7.983{3)
4.003(3)
1.463(3)
3.861(2)
5.630(1)
7.290(0)
2.106(0)

1.300 (4)
4.618(3)
2.768 (3)
5.104(2)
8.108 (1)
2.597 (1)
1.130(1)
5.846(0)

2.845(3)
1.925(3)
1.016(3)
3.931(2)
1.939(2)
1.101(2)

+num

1.913
7.844
4.012
1.484
3.919
5.697
7.332

1.248
4.577
2.758
5.105
8.118
2.603
1.133
5.856

2.813
1.910
1.011
3.920
1.935
1.099

&re]

1.922
7.898
4.044
1.498
3.963
5.781
7.513
2.185

1.260
4.663
2.819
5.270
8.467
2.739
1.204
6.307

1.993
1.084
4.363
2.212
1.286

20 (T~ =0.356)
(T =1.36)

36 (T~ =1.68)
(Tc =4.41

79 (T~ =11.8)
(T, =21.2)

2
5

10
15
20
30
40

5

8
10
15
20
30
40
60
80

25
30
40
50
60
80

100

&an

2.573(4)
1.305(3)
1.144(2)
2.551(1)
8.536(0)
1.757 (0)
5.587(-1)

2.641{4)
6.061(3)
2.942(3)
7.567(2)
2.790(2)
6.527(1)
2.258 (1)
4.857(0)
1.591(0)

6.251(3)
3.546(3)
1.415(3)
6.805(2)
3.695(2)
1.378 (2)
6.294(1)

0'num

2.777
1.387
1.184
2.625
8.741
1.794
5.603

2.662
6.136
2.970
7.604
2.799
6.544
2.265
4.887
1.601

6.233
3.537
1.410
6.787
3.684
1.374
6.276

&re]

2.813
1.424
1.241
2.802
9.528
2.029
6.682

2.766
6.488
3.173
8.313
3.126
7.617
2.742
6.377
2.253

4.545
1.929
9.793
5.590
2.287

11.39

compare our nonrelativistic dipole results with
the full relativistic calculations for the E shell,
we see that the agreement is also very good (with-
in a few percent) for photon energies up to nearly
100 keV. This is well beyond the expected range
of validity of the nonrelativistic dipole approxi-
mation. Since one can show that relativistic or
multipole effects separately become important
above 10 keV, these results imply an effective
cancellation between relativistic and higher mul-
tipole contributions in the total cross section
from S states. "

For the L shell, using bound-state normaliza-
tions obtained numerically, the agreement be-
tween our analytic results and exact numerical
evaluations of the screened dipole cross section
is very good [cf. Tables III and IV]. At inter-
mediate and high energies, for all Z, the analytic
expression is within 1% of the numerical calcula-
tion. It is only at very low photon energies, for
low Z, particularly in the 2P case, that differ-
ences between analytic and numerical results be-
come significant. This is due to the fact that the
principal contribution to the dipole matrix element
in this case comes from a part of configuration

space nearer the edge of the atom. In this region
our expansion of the potential [Eq. (I)j is not con-
verging rapidly and our perturbation scheme
breaks down. When we compare the nonrelativis-
tic dipole results with the full relativistic calcula-
tion, we see that for the L, cross section there is
good agreement up to photon energies approaching
60 keV. Although this range is not as great as for
the K shell, it is still well beyond the expected
range of validity of the dipole approximation. For
the 2P cross section however, there is agreement
between the nonrelativistic dipole and full rela-
tivistic results only for photon energies below
10 keV. Thus, for non-S states there does not
appear any cancellation between higher order rela-
tivistic and multipole contributions in the total
cross section.

We conclude that our analytic perturbation theory
can be used to accurately predict screened non-
relativistic dipole K- and L- shell photoeffect to-
tal cross sections over a wide range of atomic
numbers and photon energies. Hence, it should
also be useful for other processes in which the
major contribution to the matrix element comes
from the region of configuration space within the



1436 SUNG DAHM OH, JAMES McENNAN, AND R. H. PRATT 14

interior of the atom. Moreover, due to cancella-
tion between relativistic and multipole corrections
in total cross sections for S states, our results

also reproduce the full relativistic screened re-
sults of Scofield in these cases for energies rang-
ing up to 100 keV.
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