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Parity nonconservation in Tl and Bi atoms~
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In connection with experiments which have been carried out and are planned, we have calculated the violation
of parity conservation due to neutral weak currents for transitions to the first excited states of ' 'Tl and Bi.
A Green's-function technique is used to evaluate the parity-nonconserving transition matrix. The dependence
of the results on various input data (e.g., the %'einberg angle} is discussed.

I. INTRODUCTION

Although the existence of weak neutral currents
has been established fx om muon-neutrino-induced
reactions, ' it is not yet known whether these cur-
rents produce an interaction between charged lep-
tons (p', e') and hadrons. Furthermore, the space-
time properties of the neutral currents remain to
be determined'; for instance, are these neutral
currents purely vector, ' purely axial, or are they
mixed V-A as required by theories such as that of
Weinberg?' Suggested methods for determining
the parity-nonconserving (PN) nature of the neu-
tral currents include tests in muonic and electron-
ic atoms. '

Atomic tests have several advantages. Weak-
current effects are coherent and can thus be en-
hanced. Measured effects often involve an inter-
ference of the weak force with the well-known
electromagnetic force. Furthermore, atomic
wave functions are reasonably well known. Hence,
an experimental observation can yield the sign as
well as the magnitude and perhaps the space-time
character (e.g. , V-A) of the interaction. In addi-
tion, by varying the atom it is possible to estab-
lish the isospin dependence of the weak force due
to neutral currents. These quantities are crucial
ingredients of any theory.

Early papers by Bouchiat and Bouchiat' and by
others' demonstrated the feasibility of parity-non-
conservation searches in heavy electronic atoms.
Such tests have been undertaken in various labora-
tories. More careful theoretical evaluations are
therefore required. While the current work was
in progress, a method for doing so was outlined
by Bouchiat and Bouchiat' and a calculation for
atomic '"Bi was carried out by Brimicombe, Lov-
ing, and Sandars. '

Qur method differs somewhat from both of these,
although the basic tool remains a Green's-function
technique. We present numerical results for two
atoms which are being examined and actively con-
sidered at the University of Washington by Fort-

son and co-workers. ' Qur method is adaptable to
other cases.

II. THEORY

The main assumptions we shall make are that
the weak semileptonic e-nucleon interaction arises
from both V and A currents and that the e-e PN
force can be neglected '(T.he parity-conservation
violation due to the weak forces between electrons
is small, but not primarily due to the Coulomb re-
pulsion. ') The PN part is then proportional to
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where G=89.6 eV fm' is the usual weak-coupling
constant and f„g, and f„g, are the isoscalar and
isovector contributions, respectively. In the Wein-
berg theory

f0=0, go= —2sln egg,

f, =(1 —4sin'6~)g„, g, =l —2sin'8~,

where g„ is the axial-vector renormalization con-
stant =1.25, and 8~ is the Weinberg angle with
Sln eg —3.

For the case of heavy atoms, which we are con-
sidering, the contribution of the first term in Eq.
(1) is negligible because it is proportional to the
nuclear spin, which is of order unity, whereas
the second term gives rise to a coherent nuclear
contribution roughly proportional to A, the atomic
number. For the same reason the dominant part
of the second term comes from the time compo-
nent, so that for heavy atoms and nonrelativistic
nucleons Eq. (1) can be approximated by
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Q —Q~ = Z(1 —4 sin'6~) -N, (4b)

where Z and N are the nuclear charge and neutron
number. In a nonrelativistic approximation for
the electron, we can neglect the nuclear size and
obtain

where p is the momentum operator.
This nonrelativistic approximation is valid for

light atoms. For heavy atoms relativistic effects
become important, since the PN force acts in a
region of space where the Coulomb potential Ze2)r
is large compared to the electron rest mass. Re-
lativistic corrections to Eq. (5) have been dis-
cussed at length by Bouchiat and Bouchiat. ' We
shall employ Eq. (3) and not Eq. (5).

We consider the case of a parity-allowed transi-
tion which is purely magnetic dipole (Ml), and a
PN one which is purely electric of the same order,
E1. We neglect electric quadrupole effects be-
cause they are small for cases of interest to us.
By perturbation theory, which is certainly appli-
cable for the weak interactions in lowest order,
we find

p„(r) is the nuclear density and p, is the relativis-
tic electron wave function. In the Weinberg model

with H the atomic parity-conserving Hamiltonian.
A similar equation holds for (EI.

In the calculation presented here we assume an
independent particle (Hartree-Fock) model for the
electronic wave functions. No correlations are in-
cluded for the core electrons. Tl has only one
valence electron; Bi has three. In the case of Bi,
some correlations of the valence electrons are in-
cluded through the use of intermediate coupling.

Electron wave functions and effective potentials
were kindly provided by R. D. Cowan. ' The radial
wave functions are solutions of a Schrodinger-like
equation,

f
d' i(i+ 1)

v„.„.(;,t . . I.),„,t I=a,
dr2 r2
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where atomic units (fi =m = e = 1) are used, except
that the energy is measured in rydbergs, —,me'/)22.
The effective potential contains the "principal" ex-
change and relativistic effects, but no spin-orbit
coupling. It is cast in the form

+2
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It is the evaluation of these matrix elements
which is our primary concern here. For (fIE1I i),
we use a Green's function technique. ' We define

p I»)(»IE1I i) g (fIE1I»)(»I
EP —E„' „E;—E„

(8)

where ) I) satisfies the equation

(H —EP)I I)= -ElI 2), (9)

g &f IE1I»')&»'IIIPNI 2&

2 E; -E„~

The first term is due to PN admixing in the final
state, whereas the second one arises from PN in
the initial one. The PN signals we shall consider,
e.g. , photon circular polarization and optical ro-
tation, are proportional to the ratio of the inter-
ference term between M1 and E1 and the sum of
the squar ed matrix eleme nts:

where V(r; », i) is computed self-consistently by
the method described by Cowan. '

The solutions to Eqs. (10) have the correct re
lativistic behavior at short distances for electrons
in s states of a Coulomb field:

{r)~2& y=(] -Z o )
I

However, the P-state functions behave like

g (/) c r 8
P 1 + (~ Z2~2)1/2

whereas P should be j dependent; that is, for the
states (j, i ),

)i) = [(j+-')' —Z'~'1'",

independent of L. Thus, the sy/2 and p,~, states
should have the same radial behavior close to the
nucleus. Therefore, we do not rely on the small-
r behavior of the solutions to Eqs. (9) and (10).

Because the inhomogeneous term of Eq. (9) is
weighted by the radial distance r, we can use the
solutions of Eqs. (10) (rI i) for the inhomogeneous
term in Eq. (9). We also use the quasirelativistic
V,ff Eq. (10b), to find (r I I). However, we need
the wave functions (r I I) and (r I i) (as well as
(EIr) and (fIr)) at small distances, in order to
evaluate the electric dipole matrix element:
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=V(r;n, l), r~R. (12)

The integration is carried out outwards with regu-
lar boundary conditions at the origin. For ~I) and
(F[ the energy could be chosen to be zero or the
correct eigenvalue with little effect. For these
states which in our case have s-wave electrons,
the normalization constant N is found by matching
the density of the Dirac wave function with the
quasirelativistic wave function close to the edge
of the nucleus, r ~R, e.g. ,

G'„}R)~ Ii '„8}= f I( R
I
l}l' dD . (13)

For the atoms that we consider here, the states
I i) and (fI correspond to P waves. The density of
the Dirac solution was scaled to match the quasi-
relativistic one at radii large compared with the
nucleus, but still small compared with the atomic
size. In practice, the two densities could be
matched over the first four or five maxima with
a variation in the ratios

I (f I r ) I' do/(G ~, + F~p) = X~,

and

I ( r I I) I' &0/(G';~ + F ';, ) =X,p

of less than 5%.
In terms of Eqs. (3), (8), and (11), we can write

the ratio (fIEII i)/(fIMII i), which is required to
compute PN effects in the atoms we treat, as

(fIEII i)=(fI HpNI I)+(F IHpNI i) .

The small-r behaviors of (rI I), (FI r), (r(i), and

(fI r) are obtained by solving the homogeneous
Dirac equation in the field of the nucleus, with the
potential given by

r' 1V= V(R;n, l)+Z —,——,r &R,

= (&}}R') ', where R is the nuclear radius, in or-
der to carry out the integration in Eq. (15a).

(Ml}= —(6p', I,'IL, +o,I6ptI,')=-,'v2 . (16)

This value agrees with the transition rate given by
Gars tang. "

In the solution of Eq. (9), or rather ( F I (H —E;)
=-(fIE1, which is required to find (El}, we have
not used the single-particle energy computed by
Cowan (-0.361) but rather the separation energy
of -0.449. Cowan's value is an average of the
6P ]/2 and 6p, /, separation ener gie s, w here as we
need the energy of the 6py/2 level. It is the separa-
tion of the latter state from nsg/2 states which is
required in Eq. (8). However, we have checked
the sensitivity and found that it is small. The
shift from —0.449 to —0.361 (20%) produces a
change in (El} of -3%. We find for (El}evalu-
ated with R = (1.35 x 10-")A'I' cm = 1.5 x 10~a„
(El}= i4090. The value of (El}is a slowly vary-
ing function of R. By means of Eq. (14) we readily
obtain the PN ratio (fI E 1 ( i) /( f I M I I i), with Q = Qv
for sin'ev =0.33, R/u, =1.5x10~..

0.449

( So Limit)

III. APPLICATIONS

A. 205 TI (g = ]P 83$ A)

The low-lying level structure of Tl is shown in
Fig. 1." The transition of interest is that to the
first excited state at 0.071 Ry, which is primarily
M1 with a small admixture of El. The latter ma-
trix comes about through the PN mixture of Ins, I,)
states in the —,

' ground state, as shown in Fig. 1.
The first excited state is essentially parity pure.
We neglect electron-electron correlations, core
polarization, and hyperfine structure effects.

The matrix Ml(z) required in Eq. (15b) is readily
evaluated to be, for the state with j,= &,

(f[EII i) G Q n 1 (El}
(f~MII i) 72 2 4}}%3 (Ml}

' (14)

Since only the ratio of (fI El)i) and (fIMII i) is
required, we have chosen to evaluate E1 and M1
for the operator El(z) and Ml(z). The quantities
(El} and {Ml}for a single-electron orbital then
are given by

}El}=—i) '}G„Ey —F„Gp}P„4 'd

—i r '(Gr, F;p —Fr,G;(~)p„4vr' dr, (15a)

7s

6p

6p
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I/2 +F I/2+

(Ml}=—(fIL, +o,I i) .

We assume a uniform nuclear density, p„(r)

(15b)
FIG. 1. Low-lying level structure of Tl r and series

limit. The PN transition is shown explicitly.
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FIG. 2. Dependence of PN ratio 8 on Weinberg angle
0~ for Tl and Bi.

6p

6p

0. I 97

0. I40

0. I 04

0
BiI

l/2

2
05/2

03/2 + F'6P a
Il

I

4 2S3/2+F 6»

Im( flEll i)
(fli}f1[i)

(17)

FIG. 3. Partial level structure of BiI and Bi u.
PN transition is shown explicitly.

In Fig. 2 we plot the ratio (R as a function of 6~,
the Weinberg angle, for R/a, =1.5x10 . The
value obtained in Eq. (17) agrees in order of
magnitude with estimates made by methods de-
veloped by Bouchiat and Bouchiat. '

8. 'Psi p. =sV57A~

The case of Bi is more complex than that of Tl
because there are (at least) three active (valence)
electrons to consider, and the effects of the resi-
dual interactions among these electrons are im-
portant. The low-lying level structure of Bi I and
some other levels of concern to our computation
are shown in Fig. 3. We are particularly inter-
ested in the transition between ground and first
excited states, for which a PN signal is being
sought at the University of Washington. ' We shall
use this transition to illustrate our method. Since
the PN interaction is a single-electron one, we
reduce the problem and associated Green's func-
tion to this case. However, because the splitting
of the 6p'7s states (see Fig. 3) is large compared
to their excitation energies, we treat these states
more accurately.

In order to carry out the reduction to a one-
electron problem, we require the configuration
of the ground and first excited states. This de-
composition has been considered by Condon
and Shortley, "by Landman and Lurio, "and by
others. We use the decomposition of Landman
and Lurio in L-S coupling, which differs slightly
from that of Condon and Shortley,

lo, g, ~&= Q o,gllS~)

= P b...y;(I}y,.(2)y, (3),
j,j,A

where the sum Q~~ is over the three states 'S,&„
'I', i» 'D, i» and Q;,.~ is over single-particle
states. In the sums Q„and g„. required for Eq.
(6b), only the electron affected by the single-par-
ticle operators B» and E1 is excited. Thus, the
overlap integral for the other two electrons can
readily be carried out. The problem which arises
is that the energies in the denominator are not
single-particle energies. For all but the 6P Vs

states we neglect the energy splittings of the vari-
ous 6p'ns states, for a fixed n. Consistent with
this neglect, we assume that the corrections to
the single-particle energies 2e'(6P)+e(ns) are the
same for all n and can be obtained from those for
the 6P'Vs states. For these states we use a
weighted [by (2 j+I)] average, corresponding to
an excitation of 0.437. That is, we write

Z(6p'7s ) = 2e '(6p) + e (7s) + n ' = 0.43 7,

E;(6p') = 3m~+ n; =0,

E; -F„=3ep-2e'p+ b; —4' —ea =0.43'jp'.

From the calculated value e~ —e„=—0.525+0.227
= —0.298, we find

5 2(e~p E'p) + 4( —4 = —0.437+f 7~ ep

= —0.437+0.298 = —0.139,
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E; -E„,= c~ —c + 5; = -0.525 —0.139-c„,

=e, (eff) —s~ = —0.664 —e

(El'4= —4 i 0.0559 f (G, E, —EG, lp;d„
+ 1.537 Gis Eyp —FgsG fp)p~ ~, 19

This is close to the weighted [by (2 j+ I)] average
separation energy of the 6P electron, -0.734 eV.
Although we use the latter value, we shall consider
the dependence of the results on s;(eff). We take
into account the actual splitting between the 'D3/2
and 'S,

~G levels of 0.104; that is, we take s&(eff)
= e; (eff) + 0.104.

We are now in a position to evaluate (f[El~ i).
In the case of the transition in Bi which we are
studying, parity mixing occurs in both initial and
final states (see Fig. 3), since 6P'ns states can
admix with both 'D3&, and 'S3~, states. When in-
tegrated over the nuclear density, we find

The multiplicative constants arise from the decom-
position of the three electron states into single-
particle ones. PN mixing in the ground and ex-
cited states thus reinforce each other, but the
E1 matrix due to mixing in the excited state is
negligible (s5%).

Because the splitting of 6P'7s states due to non-
central and spin-orbit effects is large compared
to their separation energies from the ground
state (see Fig. 3), we apply a correction for these
terms. We treat the 6P'7s terms by considering
their experimental energies and evaluating the di-
pole matrix elements directly. We write (f ~

El
~
i) as

(flEII i)=(6pl & I»}+(Fs'I I,' I6 )
(6pl &ENI Vs)(Vs~lEII 6p} (6PIEII Vs}(Vsl &ENI6P)

Ef -E E;-E,
+ (fl &ENI (6P)'Vs; n, —,') ((6P)'Vs; n, —,

' (El[i) (f(E1[ (6P)'Vs; n, 2)((6P)'7s;n, 2 [ V EN[ i)+ 52 5 52 PN (20)
n Ef —E„3f lt

where the sum n is over the three j =-', states
located at excitation energies E„=0.409, 0.451,
and 0.612. For the configuration of the
[(6P)'Vs; n, —,') states, we solve the secular equa-
tions on the basis of matrix elements given by
Condon and Shortley, " to obtain

( high}= ) (6ppVs; 'D,&g

= —0.169( n)+ 0.910( J3}—0.379( y),

[ med)=[ (6p)'Vs; 'P,&, }
=0.162[n}+0.405( P)+0.9001 y),

(low}=((6P)'Vs; 'P,&, }
= 0.972I n)+ 0 091I iI }+0 2151 y')

(21a)

These values do not (quite) agree with those
found by Breit and Wills, "with the phase conven-
tion of Condon and Shortley,

[high)=0 347ln}+0 825[P} 0446[y}—,

( med) = 0.283( cz)+ 0.362j P)+ 0.889) y),
[ low) = 0.894i n)- 0.436i P}—0.1 ill y) .

(21b)

Here u, p, y are pure 'P3&„'P3&„and 'D3&, states,
respectively.

The 7s state correction was evaluated for both
solutions. It is very small; it increases the IE1]
matrix by -1% for the Breit-Wills case and by

2% for our solution. One reason that the correc-
tion is so small is that the contribution of the
6p'7s excited states to the dipole sum in Eq. (6b)
is only —

20%%u&.
" Furthermore, the splitting is tak-

en into account in a reasonable manner by the
Green's function. Indeed, the smallness of the
correction gives us confidence in the result ob-
tained with the single-particle Green's function.

For R/aG=1. 51x10» or R =8 fm=1. 354'~' and
the Weinberg model with sin'8„=0.33 [with a —,'%
correction for the (6p)'7s states]

]El)= i7630.

The magnetic dipole matrix element, Eq. (15b),
can be evaluated in a straightforward manner;
for the wave function of Landman and Lurio, "we
obtain

(Mlj =0.669.

Substitution into Eq. (17) gives

S = 3.46x 10-'.
The dependence of the ratio on R and 8~ are

shown in Figs. 4 and 2, respectively. The depen-
dence on the choice e, (eff) is shown in Fig. 5. We
used s, (eff) = —0.734 eV.

Our result for R jaG = 1.51x10» and sin'8~ =0.33
(Qv = —153) can be compared with the results ob-
tained by Brimicombe, Loving, and Sandars. '
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where + =0 =X ', N is the number density of
atoms, ~0 is the resonance circular frequency,
and I' is the resonance width. The absorption co-
efficient is

l i l

0.4 0.6 0.8 I.O
(eff)

F&G. 5. Dependence of PN ratio S. in Bi on the effective
single-particle energy e; {eff),

FIG. 4. Dependence of PN ratio &8, on nuclear radius R
for Tl and Bi.

They find R =3.0&10 ' by a method which differs
from ours, as indicated earlier. They solve the
relativistic versions of Eqs. (9}and (10} in an

analytic potential with parameters that are ad-
justed to give a best fit to the energies of the 6p
and Vs shells. The agreement is good and indi-
cates that the approximation schemes used to com-
pute the parity nonconserving E1 matrix are rea-
sonable. Since neither of us includes core excita-
tion or core polarization effects, the comparison
does not touch on these aspects. However, we ex-
pect these effects to be small. It thus appears to
us that the theoretical estimate is accurate to
better than about 20/~, and that good tests of the
neutral current theories are feasible in atoms.
Our calculations can readily be extended to other
atoms.

IV. EXPERIMENTS

The experiment being carried out at the Univer-
sity of Washington consists of a search for the
optical rotation of laser light tuned to frequencies
close to the resonant one, 8755 A, in Bi. The
angle of rotation for a given length I of vapor
traversed by the beam is given by

P = ~ ki Re(n~ —ns}

= 2h'i &m(&f IE lI i)&fIMil i) *)

so that the angle of rotation in one mean free path
is (with (f[ M 1[ i) real)

lm& f[zl[i) ~—~,
&fl M 1l i) I'»

For the %'einberg theory we predict that Q is positive
for ~ &~„for both Biand Tl if G & 0. The precision that
the group at the University of Washington' expects to
be able to achieve is better than 10 ' for y so that a
signal should be observed if the Weinberg theory is
correct.

One can also measure the circular polarization
of light emitted in the transitions which we have
investigated. The circular polarization of the
electromagnetic radiation is given by

Im&f[El( i)
(f[Mli ')
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