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In the first paper of this series a formal theory of atomic scattering of electrons in the presence of an intense

electromagnetic field was given. Cross sections, near the forward direction, between atomic states (modified by
the laser) were obtained. However, it was assumed that the atom could not emit spontaneous radiation. In this

paper the effect of spontaneous radiation is included, and it is shown that in most cases the measured cross
section will be a weighted average of the two different cross sections starting from the two different initial

states which are those atomic states resonantly linked by the laser. The Born approximation for the scattering
is obtained, and it is shown that for the simplest description of the spontaneous radiation field the effect of
the laser on the cross sections is simply to multiply them by a factor which depends upon the laser detuning.

I. INTRODUCTION

The phenomenon of electron scattering by atoms
in the presence of an intense electromagnetic field
is complicated in detail by the occurrence of a
number of parameters. These may be summarized
by a set of time parameters which are as follows:

(1) The collision time

t, =x/V=2x10-"(x/a, )($/E, )' ' sec,

where x is some relevant distance in the collision
and E, is the kinetic energy of the electron (a,
being the Bohr radius and (R the Rydberg constant).

(2) The period of the laser or of the atom.
These are essentially equal, since the laser is as-
sumed to resonantly excite the atom,

T= 2 s/~ 3 x 10 "(dt/hE } sec . (1.2}

where I is the laser intensity and E is the as-
sociated electric field.

(4) The natural decay time

t~=-10 '-10 ' sec. (1.4)

(5) The time interval T between the instant that
the laser first illuminates the atom and the time
of the collision.

It is assumed that the laser is turned on adiabati-
cally on the time scale of the atom 7, since it
would be difficult to do otherwise. In most cases
T is by far the longest of these times, so that the
atom emits many spontaneously radiated photons
(SRP's) under the influence of the laser before

(3) The time for a laser-induced transition in
the atom,

ji » 2x10" W/cm'
= 5x10-i7 sec,

[eEaJ
(1.3)

the collision takes place. In a previous paper, '
the opposite condition, where no SRP's are
emitted, was treated. This may apply to situa-
tions such as plasmas illuminated by a laser, but
not to the usual collision experiment. ' However,
the formalism introduced there will be of use
here.

For electrons with an energy above a rydberg
or so, the collision time t, is likely to be the
shortest by far of the five times. In that case
there are no SRP's emitted during the collision,
so that this interaction may be neglected in. de-
scribing the collision proper. It is also tempting
to argue that since the laser period is long com-
pared to the collision time, the effect of the laser
can also be neglected in describing the collision.
This would not be correct, since the laser period
is comparable to the period of the atom. Hence
the straightforward use of time-independent scat-
tering theory would be wrong, since a time of the
order of a few atomic periods must elapse for the
atom to settle into a stationary state. During that
time the laser varies in intensity and can transfer
energy to or from the atom. Then, instead of us-
ing the bare atomic states to describe the target
(appropriate to time-independent scattering
theory), it is more appropriate to use the states
of the atom interacting with the laser and to cal-
culate the transitions among those states. This
was the procedure followed in Ref. 1. We extend
that work by including the SRP.

In Sec. II we obtain the cross section for elec-
tron scattering for a definite final atomic (plus
laser) state. If no observation is made of the
SRP's, the result is given in terms of cross sec-
tions calculated in the absence of the SRP's. In
Sec. III the details of electron-hydrogen scattering
in the Born approximation are given. The ex-
change part of the cross sections requires some
d&s cuss Ion.
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II. KINEMATICS OF THE SPONTANEOUS

RADIATION FIELD n, t:a]„

-sE+t g -n) t

The first task is to calculate the state of the
atom-laser system at the time of collision. The
laser is idealized as a single highly occupied
mode of the electromagnetic field which is de-
scribed separately from all of the other modes.
The atom is idealized as a two-state system;
thus the atom plus laser states are denoted by
)jjO, N) or (1,N'), where 0 is the ground state and
N (»1) is the occupation number of the laser
mode. The state of the remaining modes of the

electromagnetic field are described by the set of
numbers [q]„, which is an infinite set of non-nega-
tive integers, one for each mode, with the con-
straint

q;=n, (2.1)

which says that there are exactly n SRP's in the
state described by [q]„.

Obtaining the states of the atom plus laser is a
formidable task, even in the two-state approxima-
tion, ' which we shall not attempt here. Instead,
we will be satisfied with a rotating-wave approxi-
mation, 4 which is a good one when the laser is
sufficiently near resonance and not too intense.
In that case, the states are given by

Q, (N)= ~ I + — ~O, N)

-&tt'21+—
g i1,N —1)

and the energies are given by

E, (N) = 2(EO+E, —g))+Nids ie,

g =(]Aj /( —'x) )~&2

x = id —(Eg —Eo) = id —6E

(2.2)

(2.3)

where the E, , are the energies of the bare atomic
states and A is the coupling matrix element in
the dipole approximation linking the states:

A= Po ' (N —1 =2
(2.4)

Here P» is the momentum matrix element, e the
polarization vector of the laser, and V the quanti-
zation volume. The last step defines the amplitude
E of the equivalent classical electric field. This
classical approximation is well known to be a good
one when N»1 and the laser mode is never sig-
nificantly depleted. This is the situation described
here.

The wave function for the system, including the
SRP, is taken to be

+b ([q]„,t)y (N —n)e 'e

x] [q] )e- 'ii'(I~1, I& (2.5)

where

(2.6)

is the energy of the SRP. It should be noted that
Eq. (2.5) is not the most general form of the wave
function of the SRP. Instead, a "super-rotating-
wave approximation" has been made for the wave
function in that only terms which approximately
conserve energy are kept. This is so since each
of the SRP's will have very nearly the laser pho-
ton energy. (It is known' that the fluorescent
spectrum will be centered about the atomic tran-
sition frequency and will be very narrow on the
scale of the laser frequency. ) Further, the Rabi
frequency is assumed to be very small compared
to +. The initial condition, where A =0, is 4'

=}0,N), which implies that

b, ([q]„)=5([qJ„, [0]), b ([q]„)=0, for x&0,

(2.'la)

or

b, ([qJ„)= 0, 5 ([q]„)= 5([q]„,0), for x& 0 .
(2.Vb)

which has been normalized so that

b, ([q]„,T) = b, ([q]„,T)(] b, ([q]„,T)p+[ b ([q]„,T)p)-'~'.

(2.9)

Now suppose that we can calculate the scattering
amplitudes for the problem of electron plus atom plus
laser with these initial atomic states. The ampli-
tudes will be calculated into some (as yet unspecif-
ied) set of final states, g, . The cross sections
for each different initial state, X", add incoherent-
ly, since it is, in principle, possible to observe

If Eq. (2.5) is now substituted into the Schrodinger
equation an equation is obtained for the set
b, ([q]„,t) which can be solved subject to one of
the above initial conditions; then the wave function
will be known (at least in principle) after an
elapsed time T. This serves as the initial con-
dition for the scattering event. For each differ-
ent state of the SRP we have a different initial
wave function, which we write

y" =b,([q]„,T) p,(N —n)+5 ([q]„,T)e'~ p (N —n),

(2.8)
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d 0'~

df) (5 n'Py P') (2.10)

the state of the SRP. We call these differential
cross sections

where P, is the probability that the atom plus
laser will be in the (+) or (-) state sector of the
total wave function (2.5) with no observation of
the SRP:

p';/2m =pz jm —v&o. (2.11)

The index n describes the state of the SRP during
the collision and the index g denotes the final state
of the atom plus laser. The state of the SRP will
usually not be measured; therefore we sum over
all possible states weighted with the probability
that each will occur:

l(x AQ
"(F„P~,P';) =

d
"($,n; P~, P;)

n[c]„

(2.12)

This depends upon the interval T which is, in gen-
eral, not observed; therefore we must average
over it. For example, if the electrons arrive in a
pulse of duration &T-10 ' sec, then this is the
interval over which T must be averaged. Return-
ing to Eq. (2.8) we note that T enters through b,
and through the phase factor e'~~. We anticipate
that the dependence of b, upon T will be slow and

for the numbers considered here e'~ will aver-
age to zero.

It is clear that the n dependence of P, (N —n) is
negligible because of the approximation that the

laser state is undepleted, i.e., that the number

of SRP's is much less that the number of laser
photons. The initial states then simplify to

where p; and pf are the initial and final momenta
of the electron and v is an integer which describes'
the inelasticity of the electron, ' n[qjn

(2.15)

The average is the average over T described
above. The cross sections appearing on the right-
hand side in Eq. (2.14) are those calculated with
initial states given by Q„Eq. (2.2), with no men-
tion of the SRP. These are the ones obtained ap-
proximately in Ref. 1. Thus our result is that the
effect of the SRP is to give a cross section which
is a weighted average of those from initial states
(t), or P . The weighting is simply the probability
that the electron will encounter the system in P,
or P at the instant of collision and there is
no interference.

An additional word about this averaging is in
order here, since it provides the central result
of this paper, Eq. (2.14). The essential'assump-
tion made has been that the experiment does not
observe the phase of the Rabi cycle at which the
collision occurs. That is, the frequency at which
the atom is pumped between the states u, and u„
which is 2$, is high, so that the observation of
the scattered electrons cannot determine the in-
stant in the cycle at which the electron is scat-
tered. In that case the interference in the P,
basis vanishes. If this condition is not met the
interference is present and the P, are no longer
a useful basis in which to work.

The appropriate set of atom plus laser states
for describing the situation after collision are
again the eigenstates of the combined system. In
the same approximation as the one describing the
initial states, these are the set (II), and the bare
states

0 0' do'
(5j Pfy Pg) I + dg ((t + i Pft Pi)

658

GRT
+&

d ) (5i —i Pyi P|) i (2.14)

(2.12)

in which the state of the SRP now appears only in
the b, . The scattering amplitudes to any final
state will be a linear functional of these initial
states and the cross sections on the right-hand
side of Eq. (2.12) will be a bilinear functional of
them. The average over T will then eliminate the
cross terms between the b, and b, due to the
fact that e'~r averages to zero. Hence Eq. (2.12)
will become

(2.16)

That is, it is a good approximation to neglect the
effect of the laser on the atomic states which are
not almost resonantly coupled together. The cross
section to final states of Eq. (2.16}are individual-
ly observable. For example, if )0) is an S state
and

~ 1) is a P, m =0 state coupled by a linearly
polarized laser, then the scattering can create
a P, m = 1 final state which can be observed by
its circularly polarized decay photon. On the
other hand, final states P, or P are not indivi-
dually observable, since they are coupled together
by the laser after the collision event. The only
observable then is the elastic cross section a.i,
which is the sum of the two:
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cf 0'

( d) r Pfd Pi)

dOv
(+tpfrPi)+ d ( dpf~Pi)

P, /P =u /u), =e

where

—,'x =(A~ sinhp,

(2.21)

(2.22)

dV„ dQ„=P+ (+ d +d Pi~ Pi)+ ( «+d Pfd Pi)
d$? cA, ?

or

P, = —,
' e""/cosh2ti, . (2.23)

x/2[Ai = (co —AE)/i A[«1, (2.18)

the equations are symmetric and after many
SRP's are emitted the probabilities P, will be
equal. Coupled with the normalization, this yields

P =P 1
2 ~ (2.19)

We shall not attempt to pursue these equations
here but shall rely on a crude evaluation based on

the equation

P+/P =u) /u), , (2.20)

where u) (u)+) is the total transition rate out of
the P ()t), ) manifold into the P, (P ) manifold.
zo is made up of two terms, the emission rate
of a SRP from a state 4) to a state P, plus the
absorption rate of a SRP with a change of state
from P to Q, . As a crude approximation we
shall neglect the absorption rate. This is the
approximation that once a SRP photon is emitted
it escapes. That is, virtual transitions are ne-
glected. In that case the ratio in Eq. (2.20) can
be calculated by a simple application of the "gold-
en rule" as an expansion in ~A~/8,

do' do+P "(+,—;Py, P;)+ '(-, —;Pt, P;) . (2.17)
dQ

The calculation of the weighting factors P „Eq.
(2.15), requires a knowledge of the dynamics of
the SRp. That is, the coefficients

~ b, ([q].)l must
be explicitly known. Their equations of motion
can be obtained from the wave function (2.5) and
the Schrodinger equation. We shall not write them
in detail here but merely note that the time deriva-
tive of b,([q]„) is driven by four terms. The first
two contain b+([q]„+1,) and b+([q]„—1,), respective-
ly. These describe transitions within the P, mani-
fold due to absorption or emission of the photon k.
They are not important for our purposes, since
they describe only a spreading of the distribution
of SRP's within the manifold and do not contribute
to changes in P, . The last two terms in the equa-
tion for b+([q]„) contain terms b ([q)„+1,) and
b ([q]„—1,). These represent transitions from
the P manifold to the P, manifold due to photon
absorption or emission, respectively. They drive
changes in P, . A similar equation can be written
for b ([q]„).

A result that emerges from these equations with-
out explicit solution is that near resonance, when

The inclusion of the absorption processes which
were neglected in obtaining Eq. (2.23) complicates
the results by inclusion of details of the fluores-
cent spectrum. These may actually be directly
obtainable from experiments on the spectra, but
we shall not pursue this here.

III. BORN APPROXIMATION FOR A HYDROGEN TARGET

The development above treated the laser as a
single highly occupied mode of the electromag-
netic field. It is well known' that the limits N»n,
N»1 allow an equivalent development in which
the laser is treated as a classical electromagnetic
field whose amplitude, in terms of N, can be ob-
tained from Eq. (2.4). It is simpler to describe
the electron scattering with this latter method;
thus we now make that transition. It is accom-
plished by going to the interaction representation
of the laser and then "replacing" the potentials
by their classical value. In that case it can be
shown that the rotating-wave-approximation wave
functions (2.2) correspond to the time-dependent
wave functions

)t), - p, =(2coshp) ' '[e "t'u, e

+ (A*/I Al)e -"t'u

x i(el xe/ +)t] 2-et u(3 la)

—)t), =(2coshp, )
' '[e " 'u, e ' o * '"

—(A*/( A))e "t'u,

(el+*t2)
] e ~ (3 lh)

where the detuning parameter p. is defined by Eq.
(2.22).

The 5 matrix has a direct and an exchange part.
In the Born approximation' the direct part is given
by

d (f, P~;i, P, ) —)fdtd'r, d', d't „= t)d"i „t)
x V(r„r,)g;(r„t) )t);(r„t),

(3 2)

where the functions g), describe the electron inter-
acting only with the laser,

g), (r, t) =expi(p~ ~ [r —a(t)] —i(p'„/2m)tj, (3.3)
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with e,-, e Ef.

a(t) = — dt' A(t') = ——,sin(dpt .
m p m u'

The atomic states are given by Eqs. (3.1) and

(tp„(r, t)=u„(r)e ' "', n=2, 3+.

If the small energy shifts due to the laser are
neglected compared to the energy of the bare
atom, then S may be rewritten

(3.4)

(3.5)

5 (f, pz,
. i, p, ) = —2ni g 5(P&-P'; —v&o) T, (f; i;q),

(3.6)

where q =pz -p; is the momentum transfer of the
electron and v is the integer describing the in-
elasticity of the electron in units of laser photon
energies. The values of the direct T matrix for
initial states Pp or Py and final states Pp and Q„
where 2=2S, 3+=2P, m =+1, are listed here:

T, (0, 0)=(-1)'p'[J„(e"(p&0IVI p;0)+e "(pf1IVlp;1&)-J„,(A*/[At)(pf0]V] p;1)-J„„(A/]A))(p~l[V]p. 0)]

T, (1, 0) =(-1)')3'[J,((Pt0I VIP(0&-(py1I Vlp; 1)) —J, ,e "(A*/tA()(p&0] V) p, 1) +J„+,e "(A/]A))(p&1( V]p, 0)],

T„(n, 0) = (- 1)'p[ J e " '(A */( A()( p nf) V( p; 1)-J„„e" '( pf n[ V[ p; 0)], (3. t)

T, (0, 1) = (-1)'P'[J„((p~0[V) p; 0)-(p& lj V[ p; 1)) +J„,e "(Ad'/[A[)(p&0[ V)p; 1)-J, ,e "(A/]Al)(p&1( V) p(0)],

T, (1, 1) =(-1) P'[J (e "(pt0lV) p;0&+e"(pf1IVI p;1))+J, ,(A'/IAI)(pt0IVIp;1)+J. „(A/IAI)(p, 1(Vip(0&],

T, (n, 1) =(-1)'ii'[-J,e" '(A*/[A])(pzn[ Vfp(0)- J„„e " '(pzn) V)p;0)],

where

P =(2coshg) 't'. (3.7a)

(p, IV(p, '&= fd'e, d' . e "e' ' .'(, I

The reason for limiting the calculation to these
states is that &S and 2P, are coupled by the laser
and the states 2S and 2P» are degenerate with

2P, and are therefore strongly coupled by the
scattering. The matrix elements appearing in
these T matrices are defined by

of the lack of orthogonality of the states y~ and (II)„.

There are several forms which are known' to give
the same results at sufficiently high collision en-
ergy but which give very different results at inter-
mediate energy. We shall use the simplest form
here, even though it is not the best:

p*(e*, p, ; ', p(= — feed'e, d'. xe( „e(p ( e)'.,

x V( r„r,) (tp; ( r„ t }&t; ( r„ t ) .

(3.10)

—2 2x +—e'('( ' ' xu„,( r, ),
+1 +12

(3.8)

It may also be written

(f, pz,
. i, p;) = —2@i +5(tp', -p', —v(d)

and the Bessel functions all have arguments

a, ~ q = (e/2m)( E/(d') ~ q . (3.9) (3.11)

The exchange S matrix cannot be written unam-
biguously even in the Born approximation because

where the various exchange T matrices are given
by
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T„(0,pz,
' 0, p; ) = (- 1)"P'[J„(e"(pz 0I VI 0 p, ) + e "(pz 1 I VI 1 p; )) —J, ,(A*/I Al)( pf 0I VI 1 p; )

—J„„(A/I A I)& p& ol VI 0 p; & ],

T„(l,pf;0, p;) =(-I)"tl'[J„((p,olVlop;)-(pp 1IVllp, )) —J„,e "(A*/IAI)(p~OI Vl1p, )

+J„„e
"(A/IAI)(phyll

VIOp;)],

T, (n, p&, 0, p;) = (-1)"I3[J„e "~'(A*/I Al)( p& nl VI 1 p; ) J„—,e" ~'( pf nl Vl 0 p; )],
T„"(0,pf; I, p, ) =(- I)"P'[J„(&p,01 VI0p, )-(p, ll Vl 1 p;&)+J, ,e (A*/IAI)&p, 01 Vl lp(&

—(A/IAI)e "J.

„&phyll

VI0p(&],

T„"(1,pf,. 1, p, ) =- (- I)"P'[J„(e "(p&OI VIOp;)+e

"(phyll

VI 1 p;))+J, , (A*/IAI)(p~OIVI 1 p;)

+J„„(A/IAI)&

phyll

vlop, )],

T„"(n,pz, l, p;) =(- I)"p[-J„e"~'(A~/IAI)(p, nl VI I'()-J,+Je "~'&pJnl VI0p()].

(3.12)

Again the arguments of the Bessel functions are
given by Eq. (3.9), and the matrix elements are

(p~ IVI 'p;)= Jd', d',
—2 2

&& + —u„(r()e' » ' '2
+&2

(3.13)

The cross sections (in units of a2O) are obtained
from the expression

d0„'(n, n'; p~, p;)

2

x —
[ T (n, p~; n', p;) s T„"(n,p&; n', p;)]

27r

(3.14)

where the plus (minus) sign gives the singlet
(triplet} cross sections.

We shall not continue with the cataloging of the
various cross sections here. We note instead that
if no observation is made on the final state of the
target then the unpolarized cross section is given
by

d0 d0'„
"(p~;p;)= P, '(n, 0;p&, p;)

n

~V+ a ~V, -~ &
(3.16)

so that the T matrices of Eqs. (3.7) and (3.12} can
be greatly simplified. The result for the observed
cross sections still depends on the dynamics of
the SRP through the factors P, in Eq. (3.15). If
we are content with the approximation for these
factors given in (2.23), then the cross sections
simplify. After some algebra the result is

d0~'~
y pf, 0 V 1 +X„p;,0)

pl(p, , Iv(( x„)lp, , (&l*), (p.(v&
m

-(a)

dQ
' =O"(I+~/f';)" i(P„0lv(i~~„)lp;, 1)i', (3.16)

da~') X/2
= p", 1 ——, g I ( pf, ml V(1 +X„)Ip, , 0)I2

S m

can be evaluated analytically. Explicit inclusion
of the result here would be prohibitively compli-
cated, but numerical evaluation for a particular
experiment is not difficult.

Instead we note that the argument of the Bessel
functions is a small number, except for very-high-
intensity lasers, and hence an expansion can be
made. Keeping only the leading term we get

+P '(n, 1;pz, p;}, (3.15)
where

(3.19)

where the sum runs over the final states n = 0,
1, 2, 3+ and the weighted average of the singlet
and triplet cross sections. All of these final
states yield final electron energies given by Eq.
(2.11). Other final target states will not. Equa-
tion (3.15) can be evaluated by substitution of the
T matrices and the matrix elements, all of which

P' = (2cosh2IJ)

Here the (J) now indicate spin symmetry: the
(+) is associated with the singlet and the (-) with
the triplet states; X» is the electron exchange op-
erator. The subscript on cr is the index v defining
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the inelasticity of the electron by Eq. (2.11}. The
m sums in Eqs. (3.1'I} and (3.19) now run over the
entire n =2 manifold of hydrogen, the 2S and all
three 2P states treated symmetrically. The mag-
nitude of the final momentum occurring in each of
these equations is determined by Eq. (2.11), but
we note that for &=0 only elastic matrix elements
occur. For v=1 (superelastic scattering) only the
one possible superelastic matrix element enters,
and for v = -1 (inelastic scattering) all possible in-
elastic matrix elements enter symmetrically. We
see from these results that the only remaining
mention of the laser is through the overall factor

P' . Then, to the extent that Eq. (2.23) is to be
believed and the Born approximation is to be
trusted, the effect of the laser on the cross sec-
tions is minimal.

Finally, we should point out that some of the
cross sections for v=0 (elastic scattering) in the
forward direction have a weak divergence due to
the neglect of the energy shifts in the wave func-
tions given in Eq. (3.1). This neglect can be rem-
edied. It removes the divergence but no longer
allows us to write the S matrices [Eqs. (3.6) and
(3.11)J with a. single energy 6 function. This was
discussed more fully in Ref. 1.
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