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Adiabatic approximation and the Jahn-Teller theorem
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An algebraic derivation of the Jahn-Teller theorem is presented within the framework of the adiabatic
approximation. It is shown that two electronic states with nonzero energies cannot be both degenerate and
exhibit vanishing forces for the same set of nuclear coordinates. This, in essence, is the general Jahn-Teller
theorem. The adiabatic approximation is shown to fail completely in regions where electronic states are
degenerate, if at least one of the states possesses nonvanishing forces. The significance of this result is that it
demonstrates that there are regions in the nuclear configuration space which cannot be traversed adiabatically.

I. INTRODUCTION

An algebraic derivation of the general Jahn- Teller
theorem is herein reported. The theorem obtained
by Jahn and Teller, ' extended by Jahn to include
spin, ' and reformulated more recently by Clinton
and Rice, ' asserts that the ground state of a poly-
atomic molecule will be free of degeneracy in orbit
and spin to the greatest extent possible. It also
has been assumed that application of the group-
theoretic arguments of Jahn and Teller to excited
electronic states of the molecule would lead to
conclusions similar to those arrived at in the
ground-state case. We will show that this sup-
position is indeed true. In fact, the theorem ap-
pears to be an inherent feature of the adiabatic
approximation. Since the adiabatic approximation
is invoked, tacitly or explicitly, for most calcu-
lations on molecular systems, it is important to
understand any structure it might impose. It is
in this context that the investigation of the general
behavior of the adiabatic approximation will be
conducted. The consequences of electronic de-
generacy will be analyzed in terms of the forces
acting on the nuclei.

The electronic energies of a molecule, within the
adiabatic approximation, are parametrized with
respect to an independent set of variables, i.e. ,
the nuclear coordinates. The ensuing analysis
relies on the behavior of invariants of a system,
e.g. , the electronic energies, when they are im-
plicit functions of a set of independent variables,
for example, the nuclear coordinates. Section
II is devoted to the algebraic apparatus needed for
the subsequent analysis.

(E x,.)

for a molecular system. The various A, are identi-
fied as the coefficients of the powers of E in the ex-
panded version of the product above, i.e. ,

N N

P (- 1)'A, (E)"-'= II (E- ~,) .
l=o

Here, A, -=1. Henceforth X~(a) will be used with
the understanding that a represents the set of vari-
ables a„a„.. . , a~. Differentiation of the quantities
in Eq. (2.1) with respect to a;, while the remaining
a, m 4 i, are held constant, followed by evaluation
at a,. =c, , yields

Xj BA

BQ; BQ&

BXj BA,
Z, c

j=l l4 j t 0 C t 0 C

(2.2)

treated in the context of that system's invariants.
The sum of the products, i at a time without repet-
itions, of the Xj are formed, and we define

A, = Q XJ, A2= Q Q X~A.q, . . . ,

(2.1)
N

j=l

Only N such sums occur. Now the A.j may be the
roots of the polynomial

II. ALGEBRAIC RELATIONSHIP

This section will sketch the derivation of an
algebraic equality useful to our approach. A sys-
tem of functions A, (a„a„.. . , a ), j= 1, . . . , N, which
depend upon the variables a„a„.. . , a„can oe

Here, the abbreviated notation represents the ex-
panded forms (sX /aa, .) ~, &, ~„.&, &

and X,

{a,= c„.. . , a~= c~j. One has PF equations in the N

unknowns (BXJ/sa,.) ~, , to solve in Eq. (2.2). If B
denotes the N &N matrix of the coefficients of
(sX~/sat, )~, „ it ca. n be shown that an element
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r, , = g( ~,)'~, , ,
k=O

The determinant of 8 is relatively simple to eval-
uate. It i»eadiiy shown that

I
B

I
=

I
v

I
~h~~~

I
V

I
is the order N Vandermonde determinant whose

elements

), „=( ~,.)'-'.

Now if
I VI is nonvanishing, then no pair of A, can

be identical. ' When IV, 40, and thus
I
B fs0, the

set of equations in Eq. (2.2) have the unique solu-
tion

ex,. (Bt,.
18l

(2.3)

k"I
—P d,.A~, , k&l,

a=c

BA,
Bat ac

Here
I
B I, is the determinant formed upon replacing

the jth column of
I
B

I
with the set of (SA,q'Ba, ) I, „

/ = 1, . . . , N, from the right-hand side of Eq. (2.2).
Equation (2.3) results directly from the application
of Gramer's rule. The determinant

I
B I,. also may

be recognized as related to the minor formed by
the deletion of the jth column of the N &&(N+ 1) aug-
mented matrix. ' In turn,

I
B I,. is found to equal

the determinant
I
V(d„) I, This latter determinant

is formed by replacing the jth column of the X x X
Vandermonde determinant, by new elements dk which

are defined through the recursive relation

(2.5)

The determinant in the numerator (right-hand side)
of Eq. (2.5) can 1)e formed from IVI by deletion of
its Xth row and jth column and thus will be denoted

I
V I„, The determinant of the N &&N minor formed

by deletion of the column comprised of powers of
—X& in the augmented matrix M is denoted

I
M I,

As mentioned earlier in this section, one then
finds that

S-1))"E ) ~ )* "-*
) )0) . =+ )M)

s=O
BQq

(2.5)

i.e. , the numerator of the expression on the right-
hand side of Eq. (2.5) is equal to

I
M I,. in magni-

tude.

III. GENERAL JAHN-TELLER THEOREM

The molecule is pictured as confined in an arbi-
trarily large impenetrable box in order to insure
that the set of electronic energy eigenvalues is
denumerable. The nth eigenvector, y„(q, a), is
a function of both the coordinates q of the electrons
and a of the nuclei. Within the framework of the
adiabatic approximation, )1)„(q,a) is given as the
product'

One knows from the theory of alternants' that t'he

order N —1 determinant
I
V I,.&, formed by deletion

of the ith row and jth column of the order N Van-

dermonde determinant, is related to the order N
—1 Vandermonde determinant in the following

fashion;

4„(q, a) = C„(q,a)6,(a),

H, (q, a)C„(q, a) = X„(a)C)„(q,a),

H, (a)e„(a) = z„e,(a) .

(3.la,)

(3.1b)

f
v I,, = p„, , I

v(- ~„.. . , ~,. „x,.„,. . . , x„) I
.

Here fV(-~„. . .i, —~, „—Z,.„,. . . , X„) I
is the

order N- 1 Vandermonde determinant comprised
of the powers of the remaining —A.„ l tj, and

p„, , is the sum of the products N- i at a time,
without repetition, of the —A. „E0j; the coef-
ficient po =-1. After fairly extensive manipulation
one finds that

l&)d)l, =()-))""p(-~)'
s=O a"-c

x
I
v'( x, , . . . , ii. , j , y )f

(2 4)

Equation (2.3), with the use of Eq. (2.4) and the

Here, C„(q, a) is the electronic wave function whose
effective Hamiltonian is H, (q, a), and 6„(a) is the
nuclear wave function whose effective Hamilton-
ian is Jf, (a). The electronic eigenvalue is param-
etrized with respect to the nuclear coordinates
while the nth eigenvalue E„ for the system is not.
Only the i)„(a) will be considered. Now, displace-
ment of the nuclei within the adiabatic approxima-
tion deform the electronic state without causing
transitions. ' %hat is implied and will be assumed
is that one may calculate the electronic energy as
though the nuclei were fixed at each instantaneous
nuclear configuration, but aftevzvard one treats an

electronic energy state as a continuous function of
the nuclear coordinates. This is tacitly assumed
when one writes X„(a). In order that Eqs. (3.1) be
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Since E„ is independent of the a, , this condition re-
duces to

Ba,.
=0

The identification of a particular configuration as
an equilibrium configuration is thus intimately con-
nected, in the adiabatic approximation, with the
criterion for the consistency and solvability of the
energy equations for a molecular system. The en-
suing analysis will consider, in part, the forces
present in the various electronic states l for a
given nuclear configuration. The quantities
—(SX,/Sa, )~, ,.are the components of those forces
evaluated at the particular nuclear configuration
(cj. In turn, this motivates an examination of the
set of equations in Eq. (2.2), since these equations
delineate a relationship among the (SX,/Saj) ~, ,

The elements of the appropriate order N Vander-
monde determinant

~

V
~

are given by

v, , =(- X,(cj)' ', i, 1 = 1, . . . ,N.

Assume that X„=X~„with the remaining X, dis-
tinct. The rank of V~ is then N 1. In order—that
the set of equations in Eq. (2.2) be consistent, the
rank of the augmented matrix cannot exceed that
of the matrix of coefficients; the two ranks must
be equal if the set is solvable. ' The order N- 1
Vandermonde determinant in the numerator of Eq.
(2.5) vanishes when l ok, k+ 1, since it then is com-
prised of X~ and X„„. This is a property of the
Vandermonde determinant, as was noted in Sec.
II. Hence the polynomial

P( ~ )s Ns
Ba,.

must vanish when /=k, k+ i. We are led to con-
sider

(i) x, =x~, =0;
or, for X~ = X~, c 0, when

(
.
)

Ns 0
j Q=c

for all s and j; or, with some (sA„,/sa, .) ~, , w 0,

BX BX
(iii) s = ~s = 0

j QC j QC

which will cause the polynomial to vanish. Aside
from an identity relationship, these three cases ex-

consistent and solvable, there must exist a nuclear
configuration fc(v)j for which g(a) satisfies the

relationship'

BX„t BE„
Ba. Ba.

Q=C l Q=C

haust the alternatives, since the X, are not func-
tions of the (sA„,/sa, .) ~, ,

Case (i) is trivial. It corresponds to states where
the molecule is dissociated, and therefore will
be excluded from further consideration. Case (ii)
transforms the set of inhomogeneous linear equa-
tions in Eq. (2.2) into a homogeneous set. If the
set of values fc) of the nuclear coordinates truly
represents an equilibrium configuration for the
degenerate states k and k+ 1, then the forces must
vanish in these respective states at (c). This re-
quirement directly results in

0
j Q=C 1 Q=C

Ba.

for all j. The set of homogeneous equations can be
solved upon eliminating the Nth equation and trans-
ferring the products with either (SXs/Sa&) ~, , or
(SX~,/Sa, )~, ,. to the right-hand side. Since

Baj Q=c Qj ' Qc

however, the resulting set of N —1 equations is
still homogeneous. The matrix of coefficients of
this set of equations has the rank of N —1, which
follows upon noting that its determinant equals
~V~„s. Here, ~V~„s is formed by deletion of the

Nth row and kth column of
~
V~; this order N —1

Vandermonde determinant cannot vanish, since it
is comprised of only nondegenerate X„unlike

~
V~.

Hence the set of equations has only the trivial
solution

BX

Baj

for all l. Thus all electronic states are required
to display vanishing forces at the same set of val-
ues (cI of the nuclea. r coordinates, i.e. , the set
(c) represents an equilibrium point for the sys
tern in any X,. In real molecules, excited elec-
tronic states involve electron density redistribu-
tion at the very least. This consideration alone
makes it physically unreasonable to expect all
forces in every electronic state to vanish for the
same nuclear configuration; however, we shall
pursue the consequences arising from case (ii)
irrespective of applicability to real systems. This
is undertaken so that the analysis will be as corn-
plete as is possible.

Equation (2.2) is the first-order derivatives,
evaluated at (cj, of the set of functions in Eq. (2.1).
Since the set in Eq. (2.2) is identically zero for
case (ii), as is clear from the discussion in the
preceding paragraph, the next-higher-order
derivative set will be considered. This set is ob-
tained from the set of functions in Eq. (2.1) and
is evaluated at (c}. One finds that the form taken
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by the set is the following:

B2y

J
l 1Ba', Ba',.

L=1

N By BA
Xy C 2

= 2 y ~ ~ ~

l=l QAl i
a=c

(3.2)

i 11 .& &),".'. '

Here, all cross products f(OX,/Oa, .)(OZ&,/Oaz)] j, ,
vanish by virtue of the result that case (ii) leads
to (N /Oza. ,)j, ,. =0 for all j andi, given that

B&g' —B&" = 0
j a=c J a=cBa ~

for all j. The analysis of Eq. (3.2) separates into
two parts. First, assume that

B2A(iia), =0, for all j,m.
Ba2&

The resulting set of homogeneous linear equations
in Eq. (3.2) may be solved, using the techniques
outlined in Sec. II, upon eliminating the Nth equa-
tion and transferring the appropriate products
with either (O'X, /Oa~) j, or (O'A. ~ z/Oa', ) j, , to the
right-hand side. One then has a set of N- 1 in-
homogeneous linear equations to solve. Say the
products with (O'Xs/Oa&) j, , have been transferred;
then the determinant of the matrix of coefficients
is readily shown to equal the order N- 1 Vander-
monde determinant jgj». Here, jVj» is formed
from the order N Vandermonde determinant by
deletion of the Nth row and kth column. Since the
remaining X& (l ssk) are nondegenera. te, jVj»x0.
Thus the set of N- 1 inhomogeneous equations is
solvable and possesses a unique solution. Ap-
plication of Cramer's rule followed by fairly ex-
tensive manipulation results in

B'X, I V(- X&!) I &z&s

Ba& ~v~»
(3.3)

O'X,
j =0,

leak,

k+1.
Ba~

(3.4)

Equation (3.4) reveals that the force constants

Here jV(- X,)j&»zz is the order N 1Vandermonde-
determinant formed from j Vj„s upon substituting
the appropriate powers of (- Xs) for the elements
of the lth column. Specifically, v„=(—As)' '. Only
when l —= k+1 will

j
V(- z&s) j &~+z be nonvanishing.

All other l values result in
j
V(- Xs) j & „», having

two identical columns formed from powers of
—X~ and —A.„„.Hence

B 1~1
B 2
az ~c Baj

must vanish for all electronic states but the two
states characterized by X„and Xg 1 Thus nuclei
do not influence each other in those states where
l ck, k+ 1; this eliminates vibrational motion, in

effect. Clearly, the result is physically incorrect.
The picture is not complete, however. If, as an ex-
ample, (B '&„/o a,') j, , & 0, then (o '&„,,/o a') j, , & 0,
and one state (k) has a minimum at {c}while the
other state (k+1) has a maximum. The degen-
eracy, which now could exist only at{c}, is not
stable. On the other hand, (B9.,/oa,'), , = 0 is
not only physically unrealistic but also is unstable,
since any kinetic motion would cause the system
to fly apart. Therefore it is concluded that
(O A /Oa&) j, , cannot vanish for all m and j We
now consider the resulting case,

B'A(iib),~&0, for some m, j.
Ba2&

Equation (3.2) once more represents a set of N in-
homogeneous linear equations. Now the determinant
of the matrix of coefficients is identical to that in

Eq. (2.5), i.e. , jVj. It is the order N Vandermonde
determinant comprised of elements

v, , =(- l&z{c})' ', i, l =1, . . . , N.

Its rank is N- 1, since X~= X~,. Suppose that X~

were not equal to X~„; then one could apply
Cramer's rule and follow the reasoning in Sec.
II to obtain

B2 N-1
B2!

( I)N+z ~ ( )s Az&-s I V I N!
~s ' Oa'. .. ll' I

(3.5)

Here, jVj„, is the order N —1 determinant formed
from

j Vj by deletion of the Nth row and lth column.
Suppose for some X„ lssk, k+1, that Xz(~) &A.z(c).
If ( AO/ &aO)jz, . ,&0, there is a relative minimum
at {c}.There also must be at least one relative
maximum for some configuration between {c}and
{~},since the slope is increasing in the neigh-
borhood of {c}but must ultimately decrease if the
minimum at infinity is to be realized. If
(O'Z&&/Oa', .) j,( 0, there is a relative maximum
at {c]. Then there also must be at least one rela
tive minimum for some configuration which lies
between {c}and a totally collapsed system ex-
periencing infinite repulsion. Thus we are
confronted by the nonphysical result that there
must be regions in the configuration space of the
nuclei where the nuclei experience greater repul-
sive forces as greater separation among the nu-
clei is effected. Finally, if ( OA z/O'a)j, , =0,
the nuclei do not exert influence while in {c}but
do when some nuclei are infinitely separated.
Clearly, this alternative is also impossible. We
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can avoid such unacceptable choices only by stip-
ulating that a system which must display vanish-
ing forces in every possible state for a particular
nuclear configuration cannot possess any repul-
sive states. This poses an impossible condition
to be satisfied by physical systems; it would
mean that under all conditions the molecule at
{c},in any state, is more stable than its appro-
priate components.

We are forced to conclude, therefore, that case
(ii) is physically unreasonable in that it requires
molecular systems either to display vanishing
forces in all states but k, k+1 or to be completely
devoid of repulsive states. Quite naturally then,
we turn to the consideration of case (iii).

Case (iii). The only stipulation in this case is
that forces in the degenerate states must vanish at
{c}.The forces in the other electronic states need
not vanish. This allows for the existence of states
which are repulsive as an example. Thus case
(iii) represents a physically reasonable situation,
unlike case (ii). It may not be obvious that case
(iii) does cause the polynomial in the numerator
of Eq. (2. 6) to vanish; thus a derivation is pre-
sented in the Appendix.

It is well known that if the rank r of the matrix
of coefficients of a solvable set of N inhomogeneous
equations in N unknowns is less than N, then N- r
equations may be discarded, as long as the rank of
the resulting matrix of coefficients of the remain-
ing r equations is r. This set of equations can be
solved by retaining r unknowns, on the left-hand
side, whose rxr matrix of coefficients is of rank
r, and transferring to the right-hand side the re-
maining N- r terms. Explicitly, with reference
to Eq. (2.2),

shown that only by choosing either (BX,/Ba, ) j, or
(BX ~/Ba&) j, , to be arbitrary will the matrix of
coefficients of the remaining N- 1 unknowns be
nonsingular. However, neither (BX„/Ba,)j,nor
(BX~,/aa, ) j, , can be arbitrary; they both must be
set equal to zero initially or the set of equations
in Eq. (2.2) will be inconsistent and insolvable. In
other words, in order to satisfy conditions en-
suring the consistency and solvability of the set
of equations in Eq. (2.2) we are forced to require
that both (BX~/Ba,.) j, , and (BX~„,/Ba&) j, , vanish;
but the solution of this set of equations requires
that either (BX,/aa, ) j., or (BX„,/aa, ) j, , be com-
pletely arbitrary. Thus one is confronted by the
contradiction that if the set of equations is solv-
able then either (az,/aa, ) j ...or (BX.../Ba~) j, ,
must be chosen to be arbitrary; however, neither
(B&,/aa, ) j, , nor (B&„„/Ba,) j, , can be arbitrary if
the set of equations is to be solvable. This situation
is not equivalent to choosing a physically accep-
table solution from a continuum of mathematically
allowed solutions; indeed, a continuum of solutions
is impossible, since (BX,/aa, )j, , .and (BX,„,/aa, ) j, ,
can be assigned only one value if the set of equa-
tions is to remain consistent. This mathematical
contradiction results directly from the premise
that X,= X„,40. Here the argument is that one
would be examining a dissociated molecule if X,
and &„,bothvanished. Intu», theset(BX, ./aa, ) j. ,
would have only the trivial solution (BX,/Ba, ), ,
= 0, for all l. Hence one is forced to conclude that
~„and ~„+, cannot be both nonzero and degenerate,
given the requirement that

~k ~0+ j. 0
j ~2c j acBa. Ba.

BX, BA. N

Baj
~

Baj
~ ~ ~ jBaj

(3.6)

BX BA B~

where

fflf ~ ~ ~ ~ Ill l

The unknowns on the right-hand side of Eq. (3.6),
i.e. , (ax,/aaz) j,„l)r, are completely arbitrary
Assignment of specific values uniquely determine
the unknowns on the left-hand side of Eq. (3.6),
i.e. , (BX,/an~) j, „I «r. The rank of the matrix of
coefficients for case (iii) is N I, as was tr-ue for
case (ii). This leaves one equation of the set in
Eq. (2.2) superfluous. Furthermore, it can be

The arguments developed in this section can be
readily applied to higher-order degeneracies, as,
for example, X~ = X„,= X~„without modification.
The thrust of the arguments of this section also
remain unchanged when A.,= X~„X = ~ „, ~„4 A.

The analysis of cases (ii) and (iii) thus reveals that
the adiabatic approximation does not permit both
degeneracy and simultaneously vanishing forces to
occur among electronic states with nonzero ener-
gies in an equilibrium configuration of the nuclei.
This relationship between degenerate electronic
states with nonzero energies and vanishing forces
is the essence of the Jahn-Teller theorem. The
inescapable conclusion is that the Jahn- Teller theo-
rem is an inherent feature of the adiabatic ap-
proximation. Extension of the analysis to include
accidental degeneracies among electronic states
in configurations where not all will exhibit vanish-
ing forces is of immediate interest. This ex-
Bmination will be the thrust of Sec. IV.
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IV. BREAKDOWN OF THE ADIABATIC APPROXIMATION

A. Accidental degeneracy, electronic states crossing

Here, the interest rests withcases where degener-
acies exist but some of the involved electronic
states are experiencing nonvanishing forces. Let
X,(a =d), I = 1, . . . , N, denote the set of electronic
energy states when the nuclei are in the configura-
tion {d). It is assumed that X,{d)=X~,{d) WO, with
the remaining A. {dJ nondegenerate; furthermore,
let, [BX,(a)/Ba&], , OO for some j. It is clear from
the discussion in Sec. III that some factors (BA /
Ba&) ~, on the right-hand side of Eq. (2.2) will not
vanish, particularly since {dj cannot refer to an
equilibrium configuration. One is dealing with a
set of N simultaneous linear inhomogeneous equa-
tions. Since two electronic states are degenerate,
the determinant of the matrix of coefficients in
Eq. (2.2), which equals the Vandermonde deter-
minant

~ V~, vanishes. The rank of V is N 1. -
As was true for the equilibrium case (iii), this
leaves one equation of the set in Eq. (2.2) super-
fluous, and only by choosing either (B&„/Ba&) ~, ,
or (B&„„/Ba,) ~. , to be arbitrary will the matrix of
coefficients of the remaining N —1 unknowns be non-

singular. However, if the set of equations in Eq.
(2.2) is to be consistent and solvable, (BA„/Ba,) ~, ~

must be determinable from the consistency condition
mentioned in Sec. III, case (iii), i.e. , (BX~/Ba,.) ~, ,
=0. Here {ejdenotes the equilibrium configuration
for the 0th electronic state. One finds formally that

proximation encompasses the entire set of elec-
tronic states.

B. Application

The results obtained in Sec. IVA also demon-
strate that there are regions in the configura-
tion space of the nuclei which cannot be traversed
adiabatically. These regions are delineated by the
onset of degeneracy between electronic states,
where forces are present in at least one of the
states. Longuet-Higgins recently attempted to de-
rive a criterion for the intersection of potential
surfaces in polyatomic molecules. " The a»ump-
tion that all pathways in the configuration space of
the nuclei comprising the molecule can be tra-
versed adiabatically is critical to his subsequent
arguments. By an adiabatic traversal is meant
that the electronic states can be deformed by all
nuclear displacements without the incurring of
transitions of any sort. The regions which must
be treated adiabatically, if the approach adopted
by Longuet-Higgins is valid, are those regions
where degeneracy among electronic states occurs.
It has been demonstrated in Sec. III, within the
framework of the adiabatic approximation, that
equilibrium configurations cannot be degenerate.
The alternative, nonequilibrium configurations,
has been dealt with in Sec. IVA. One must there-
fore conclude that the arguments which Longuet-
Higgins employed are faulty. His assertion that
electronic degeneracy is common in particular
polyatomic systems is left unsupported.

BZ, ~ g p (y~ —e, )"~

j g=d ted=2 fly 48j ll) =I ~ j

„II (d, —s, )"& B"g
n, . Ba", ~ ~ ~ ga", ' = e

g~ —8 ~

Specifying {d) in the adiabatic approximation
scheme fixes the permissible value assignment
for (BX,/Ba, ) ( ~. Thus (Bkgsa, ) (, , cannot be
arbitra, ry, or the set of equations in Eq. (2.2) will
be inconsistent and insolvable. Similarly, ap-
pealing to arguments offered in the equilibrium
case (iii), (BX~,/Ba~) ~, ~ cannot be assigned ar-
bitrary values. The mathematical contradiction
which now arises is that the set of linear inhomo-
geneous equations has a matrix of coefficients
whose rank is less than the number of unknowns,
yet the set is required to possess an unique solu-
tion. We are forced to conclude that the adiabatic
approximation scheme fails in this region.
Furthermore, the breakdown of the adiabatic ap-

V. CONCLUSION

Jahn and Teller assumed for simplicity that
molecules possessing electronic degenerate states
do have an equilibrium position where forces van-
ish for those states. It was upon considering small
displacements from that equilibrium position,
where forces could no longer be expected to van-
ish, that they showed degeneracy was broken in
first order for nonlinear polyatomic molecules.
Henner" had shown that degeneracy was broken
in second order for linear molecules. It would ap-
pear that this convenient assumption of an equilib-
rium configuration need not be made. The im-
position of the adiabatic approximation leads di-
rectly to the general Jahn-Teller theorem. This
result was obtained under the broadest conditions.
Electronic wave functions must be orthogonal,
normalizable, and denumerable; further specifi-
cation is unnecessary. It also was demonstrated
that there are regions in the configuration space
of the nuclei comprising the molecule which can-
not be traversed adiabatically. These regions rep-
resent nonequilibrium configurations where de-
generacy is present amongst some electronic
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st3tes. Therefore whenever the assumption is made
that the adiabatic approximation is applicable for
a particular region of the nuclear configuration
space of a molecule, an accompanying condition
must be the exclusion of degeneracy among elec-
tronic states; otherwise, hidden contradictions
and indeterminacies are introduced.
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P (- ~,)*&„,=0.
g=Q

Differentiating Eq. (A2) with respect to a,. and
evaluating the resulting terms at fc) yields

(A2)

f(x)= g (- I)'A,.z" ', (Ala)

APPENDIX

It will be demonstrated that setting (s&ja}/sa, ) ~, ,
= 0 causes

Fl g~ (

Pf~8

8=Q C=C

to va ish.
Expansion of the polynomial f (X) =II;, (X —X,)

yields a Ns 0
Ba

g=Q a=c

when (sX,/sa, .) ~, ,= 0, which was to be shown.

(A4)

Q s(- X,(c})'-'A, ,{c)
a=c S-1

, P(.P)) '",-&'&' =0. (AS)
s=Q

' C=C

If (SX,(a)/Sa, ) j, ,= 0, then the first term on the
left-hand side of Eq. (AS) vanishes. Thus Eq.
(AS) reduces to
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