
PHYSICAL REVIEW A VOLUME 14, NUMBER 4 OCTOBER 1976

Calculation of the vacuum-polarization potential*
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The lowest-order vacuum-polarization potential, known as Uehling potential, is expanded for a spherical

charge distribution in a convergent form valid for all distances. The accuracy of this expansion is carefully

examined at different distances. The ratios of the vacuum-polarization potentials of orders a(Za), a'(Za),
a(Za)', a(Za)', and a(Za)' to the Coulomb potential for a point nucleus are also calculated and presented in

figures for r ( 3.5%,. Several simple fitting curves are suggested.

INTRODUCTION

Vacuum polarization originates from the process
involving the creation of virtual electron-positron
pairs by the electromagnetic fields. It is one of
the radiative corrections in quantum-electrodyna-
mic theory. Although quantum electrodynamics is
our most complete and best verified theory in

physics, there are still good reasons for further
tests of its validity. ' '

In recent years, the tests have been carried out
in a large variety of experiments at high and low
energies for atoms and individual particles; in
some cases, highly accurate calculations of vacu-
um-polarization potential over large distances
are necessary. The lowest-order vacuum-polar-
ization potential, known as the Uehling potential,
has been expanded in several forms. ' " One finds,
however, that all those expansions are inaccurate
for distances greater than 500 fm, where the
Uehling potential still has a non-negligible con-
tribution, about 24 ppm of the Coulomb potential.

In this paper the Uehling potential is expanded in

a convergent form valid for all distances. The
ratios of the vacuum-polarization potentials of
orders o(Zo), a'(Zo}, a(Zo)', n(Za)', and

n(Za)' to the Coulomb potential for a point nu"leus
a.re also calculated for r & 3.5 g (1351.6 fm),
where the Uehling potential falls less than 0.1 ppm
of the Coulomb potential.

Note added. . After submitting this article for
publication, we learned of a recent calculation by
Fullerton and Rinker, "who present rational-ap-
proximations for the vaccum-polarization poten-
tials of the orders n(Za) and a'(Za).

UEHLING POTENTIAL

-2Ir —r'I
&& exp

(2)

For a spherical charge distribution, (2) can be
reduced to the familiar form'

2

V»(r) = — dr' p(r')r'
0

&&[x,(2lr -r'I} -x.(2lr+r'I)It:

where x„(2r) is defined as

2„(2 ) = I d2 —„(2~—,)(2 ——,) 2 "'

(3)

The integral X,(2r) may be reduced to the form'

X,(2r) =f,(2r)E,(2r) +g, (2r)e ", (5)

where f,(2r) and g, (2r) are entire functions of r,
and E,(2r) is the exponential integral defined as

e-2rt
E,(2r) = dt

We expand f, (2r) and g, (2r) in power series,

whereA& andA„"p are the p, th components of the
four-vector potentials, and q is the three-vector
momentum. Here, relativistic units, 5=m =c =1,
are used. The electric part, which modifies the
Coulomb potential, has been referred to as the
Uehling potential. " For a charge distribution
p(r), the Uehling potential can more conveniently
be given in positional space as

The renormalized leading term of the vacuum-
polarization potential is"

n -, "' 2v'(1 ——', v')
A„""(q) = —q' d —, ~A„(q),

f,(2r) = g C»(2r)
@=0

g, (2r) = Qg), ~(2r) .
k=0

The convergence of these power series and the

(6)
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calculation of their coefficients are presented in
the Appendix. The first few coefficients are as
follows:

C20 = -1)

1~ 22 ~0~

40 320 &

1
24 5 160 960&

1
~25 S51 55S 400&

1
~26 162 iS4 S37 120&

1~ 27 49 594 'T61 216 000 &

9
D20 32

D„=~m —ln2 ——,',
D„, = —~3m —ln2+p,

D23 = —~7I —2 ln2 +~4,9 1 19

D24 = —~6m —
6 ln2+~,71 1 29

+25 3640 766
151 37 541

26
97 1 )ng + 623

7680 ~ ~ 14 400 ~

+ 1
gnat + 170195

161 260~ 5040 ~n 16 934 400 ~

where C 0 C21 C22 Rnd D20 D21 D24 had been
obtained by McKee' in R different fashion, follow-
ing Glauber et aE.7 Por large 0, it is more con-
venient to use the following recurrence relation
and rapidly convergent series:

(k —l) (2k —5) bg, -
4k'(2k+ l) (k —2) '& o (2k+ l)! '

~ ~(2l —k)!&.,a =(-l)' c (2f „i),
'

bi*

where b, ha.s the recurrence relation

b, +,=, bg, bo'= 1, b, =0, b, = —p. (10)
l (2l —3)

To compute f,(2r) to an accuracy of l ppm, the
expansion (6) terminated with C~„ is adequate for
r &0.0669)|; (Compton wavelength of electron+,
=366.159 05 fm = o a u.), and the expansion termin-
ated with C,, is adequate for r &0.293+„etc. %e
present these in Table I. Expansion ('I) for g( 2r)

is also analyzed in the same way in Table I.
The term g( 2r)e '" dominates the term f,(2r)E,(2r)
throughout the region r &0.1+, andbothhaveabout
the same order of magnitude in the outer region.
Note that in (3) we seem to have the subtraction of
two almost equal quantities whenever r or r' is
small. This difficulty, however, only exists in an
analytical sense since X,(2r) is a fast-varying
function. In practice, even Rt R fairly small dis-
tance r = 0.1 fm from the center of a charge dis-

TABLE I. Numerical analysis of the expansions of f2(r}
and g2(x}.

TABLE Il. Numerical analysis of the expansions of
fi(&} and gi(&}.

Expans loll

terminated with:

Appjlca4le radius (+8)
with the accuracy of:

ppm 0.1 ppm
Expansion

terminated with:

Applicable radius (X~ }
with the accuracy of:

10 ppm 1 ppm

C2o

C2„,

C,6

Cgv

C,8

C2

0.066 9
0.293
0 ~ 614
0.982
1.37
1.77
2.18
2.58
2.99
3 40
3.80
4.21

0.037 6

0.199
0.460
0.780
1.13
1.50
1„89
2.27
2.67
3.06
3.46
3.85

Cio
Ci2
Ci3

Ci5

Ci7

i8
Cia
Ci, io

0.079 5
0.311
0.622
0.972
l.34
1.72
2.11
2.49
2.88
3.27
3.66
4.05

0.044 7

0.212
0.466
0.772
1.11
1.46
1.82
2.20
2 57
2.95
3.33
3.71

»o

D22

Do4

D25

D2

1 't

Do

D2, 25

0.000 018 6
0.005 59
0.032 2
0.064 6
0.254
0.286
0.603
0.969
1.36
1.76
2.16
2~5 l

2.97

3.78

0.000 001 86
0.001 77
0.014 9
0.036 3
0.160
0.195
0.452
0.769
1.12
1.49
1.87
2.26
2.65
3.04
3„44
3.83

Bio
Dii

Dis

Di5
Di 6

Di 8

Di, i4

Di.i8

0.000 018 5
0.004 54
0.022 2
0.147
0.190
0.478
0.484
0.841
1,23
1.63
2.03
2.44
2.85
3.26
3.66
4.07

0.000 001 85
0.001 44
0.010 3
0.082 8
0.120
0.326
Q. 348
0.651
0.995
1.36
1.74
2.13
2.52
2.92
3.32
3.71
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tribution, we will not lose more than two signif-
icant digits. For small r, this seeming difficulty
is further reduced by the weighting factor r' and
does not constitute a problem at all. Nevertheless,
when a great accuracy for the Uehling potential is
desired, it is important to include enough terms
of X,(2r); a test run is a simple and effective way
to find out.

In the limiting case r =0, the Uehling potential
has the form

where X,(2r) was defined in (4) and has an expres-
SiOn Of the fOrm7

(k —1)(2k —5) bk

4k'(2k —1)(k —2) """ (2k)! '

(2l —k —1)!
Di k

= (-1) Q, (2l)! bi.

(15)

At different distances, the numbers of terms to be
included in the expansions (13) and (14) to achieve
certain accuracies are summarized in Table II.

1~ 15 77 414 400 & ~15 T5Y ~ 7200

1 29 19 ln2 9353~ 16 14 014 218 240& ~ 16 2880 2880 345 600 &

where C10, C», C», and 8„, D», .", D„had been
obtained by Glauber et at, .' in a different fashion.
For large k, the recurrence relation and rapidly
convergent series are useful:

](,(2r) =f,(2r)E, (2r) +g, (2r)e ". (12)

Here, the entire functions f,(2r) and g, (2r) may be
written as the convergent power series

f,(2r) = QC, «(2r)~,
k=p

UEHLING POTENTIAL OF A HOMOGENEOUS

CHARGE SPHERE

As a special case, consider a homogeneous
charge sphere of radius R,

g, (2r) =Q D, „(2r)'.
k=p

The first few coefficients are as follows:

(14)
-*,Z/aR', r

&(r) =
, 0, ~&R.

The Uehling potential of this charge distribution is

C10 =1,

C„=O

C 1

D, =ln2--,',
D =-3m + ln2 ——"

11 8 6 7

1
D, =qm+2 ln2 ——, ,

ZA Nv„(r) =
r 2mR

R
r'dr'[X, (2!r r'[) —)(,(2(r+r'-()].

0
1

5760 &

1
14 573 440&

D„=—„m +& ln2 ——„,11 1 59

D„=—„m +~ ln2 ——„,,5 5 199
By carrying out the v' integration, we find

(17)

(Z o(/r) (n/2-7(R')Qr + —,
'
[X,(2R + 2r) -](,(2R —2r)] +-,'R[X,(2R + 2r) —X,(2R —2r)]j, r ~R,

v„(r) =
-(Z~/r)(o/2((R')(n[X, (2R +2r) -X,(2r —2R)]+—,'R[X,(2R +2r) +X,(2r —2R)]],

(18)

where X,(2r) and X,(2r) were defined in (4). In

general, x„(2r) may be expanded for any integer n

as

not a non-negative integer or k & -2. In addition,
we need

X„(2r) =E,(2r) Q C„„(2r)"+"'
2k ~ max [0,(1-n)]

+e '" Q D„,(2r)'
k= mm fp ~ (ll 1)]

(19)

3(n+1) (n —3)!!
2(n + 2) n!!

3(n+1) (n —3)!!w

2(n+ 2) n!! 2 '

(22)

The expansion coefficients C„k and D„„may easily
be obtained from the recurrence relations

C(„+»k = —C„k/(n +2k), (2o)

D(n+ l)(k+» [ /( )][D(n+» k Dnk + C(n+»((k+ 1-n)/2]] q

(21)

with the exceptions D („. 1)
—nD( 1) „, for n&0, and

D&&, =C, , Here C(„+»((k+, n)&2]—- 0 if —;(k+1—n) is

where we define (0)!!=1. The recurrence relations
(20) and (21) may be reversed to calculate the coef-
ficients of X„(2r) for n ~ 0, which appears in a
Taylor-series expansion of (3)."

VACUUM-POLARIZATION POTENTIAL

OF A POINT NUCLEUS

The vacuum-polarization potential of a, point
nucleus may be expanded in powers of e and Za.
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The first few orders are listed below.
l. Order a(Za) .For a point nucleus with

charge Ze, the Uehling potential (3) may be fur-
ther reduced to

2r ()o

Z, (2r) -
~&2 dy e 'y'~'[ I +0(y/2r)],

as r-~

V„(r) = —(Za/r)R„(r),

where

R„( ) =(-' / )X,(2 ).

(23)

(24)

= [e '"/(2r)' ') (-'v)' '[1+0(1/2r)),

Z. Order a (Za) T.his order has been derived
by Kallen and Sabry. '4 Using their results, Blom-
qvist" obtained

It is obvious that y, (2r) has a logarithmic di-
vergence as r-0. Its asymptotic behavior may
be obtained with the substitution y = 2r(t 1), —

V„(r) = —(Za /r)R„(r),
where

(28)

OO

R (t )= —„— dt t '"((—,", t ' ~, t~' ~—', t ')(t' —t)'t' ( —", t ' ~ —-', t ' ~ —',t '+ —', t ') t (t (t —t)'t'' J
1

(
—', t ' —', t )(t —'()'t'' t (St(t —l)]+ (

'
—,t 'f —', t- ')deaf(*)),

t
(27)

f(x) = ln[x+(x' —I)'('] —, ,&, In[8x(x' —1)].

The expansion for small r was given as

V„(r)=, ——(inr +y) — (lnr + y) —[ g(3) +» v + «, ] —+ —, v'+ 9 v ln2 —,» v+ -, r(lnr + y)
n'Zu 4 13 65 13 32 766 5

—'—,'r+(,—", n —8O, v)r' ——,', r'(Inr+y)'+ ',",, r'(In—r+y)+(—,
'

g(3) —2+, z' —,",~ )r'+0(r') . (28)

The asymptotic behavior of R„(r) may also be obtained with the substitution y =2r(t —1),

2 ~ -2r r-'o -
y

1/2
y

1/2

R„(r)- — dye ' —2 — ln —+0 — +2 lt f(x) dx, as r-~
7T 2y ~3 y 2y 2r 1+y/2r

1/2
y y

1/2

f(x) dx- f(x)dx+ — ln —+0 —,as r-~
+ 3I/2r L

r 2r 2r

Hence we have

e2 2r 1/2

R„(r)- 2 f(x) dx+0 —,as r-~.
7r 2r- 2y'

(29)

3. Orders a(Za)', a(Za)', and a(Za)". These represent the major effect of the distortion of the elec-
tron and positron wave functions in a strong Coulomb field. The leading order has been given previously
aS 10 e 15 I 16

V„(r) = —(Za /r)R„(r), (30)

where

tt (r)= — t dt *"———'H(t —t) t t(t —t) 'J df(t '—'**)'t*f(*)*a(Za)' (",1

0 0
(31)

1 —x 2 1+x 1 —x 2 1+x 2 —xf(x)= —2x(jt(x ) —xin (I —x )+ + In(1 —x ) In + In +, ln(1 —x2)

3 —2x 1+x
+ x2 ln —3x, for x&1,
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f()= —'. ~(
—'.)-'"," ((-')-~(--')-'". ' ("((-—'.).)""",

1 x+1 3x2+1, 2 x+1 1—(n* —() tn(( ——In + )n' —n (nn ) ( ——,
x x —1 4x x-1 x'

Sxw+1 x+ \ x(3x —2) 1 3x +2 Sx3 —2 x+1
lnx ln + 5 — — — ln1 ——2+ ln

2x x —1 x' —1 x x x2 —1 x —1

q(x)=- ( dx', = g —,, —1~x~1,, ln(1- x') " x"

0 x ft g
Pl

( )
I0, x&0

)1, x&0.

The expansion for small F eras given as'

V»(r) = [a (Za }'/w ]j[——,l'(3 ) + —,w —
9 ](1/r) + 2w f (3) —

4 w + [ —6& (3) + —,', w~ +-,' w2] r
+ —,wr'(inr+y)+ [—', wl'(3)+-', w ln2 —,",w]—r'+—,', (lux+a)'r'

+ (—„w' —,—",)(inr + @)r'+( —,",&(3) ——,",,' w'+ —",')r'+0(r' lnw')j .

The asymptotic behavior of R»(r) may be obtained
by expanding the integrand of (31) in powers of t,

a(Za)' 32 1 1
w 225 (2r)' [ r' (33)

The corresponding vacuum-polarization potentials
may be estimated'0 by scaling in the same ratios
as the 1/r contribution to the full contribution with
the a(Za)' potential.

RESULTS AND DISCUSSIONS

We use the expansions (24), (28}, and (32) to
obtain the ratios of the vacuum-polarization po-
tentials to the Coulomb potential for r ~3.5&„
where the Uehling potential falls less than 0.1 ppm
of the Coulomb potential. By evaluating numerical-

Higher-order corrections a(Za)' and a(Za)',
considered by%ichmann and Kroll, "can be
written

V„(r) = (Z /& a)R—„( ), r'

V„(r) = (Z /ar)R„(r)-,

and the leading terms are

R„(r)=-[a(Za)'/wj [-', g(5) ——", g(4)+ —,",g(3)

--.'V(2)j o(r), (36)

R„(r)=-[ (Za)'/ ][--:l(7) —;~(6)——",,'~(5)

--.'C(2)f(4)--'. ~'(3)j o(r).

I

ly the integrals (27) and (31), Vogel(' calculated
the corresponding potentials with better than. 0.1%
accuracy for 0.105~, ~r~1.0~,. All these results
are presented in Pigs. 1 and 2. In the regions
considered, the exponential behavior is very
prominent for R«(x)1 R„(&), and R„(r). We find
that conies can fit the calculated curves very
nicely in a semilogarithmic plane. For example,
by using for V«(r) the five points

R„,(0.01}=4.983 273 x 10-',

R„(0.1) = 1.724 463 x 10 ~,

R„(0.5) = 2.755 383 & 10 ~,

R„(1.0}= 5.564 347 x10-5,

R«(2.0) = 3.724 597 x 10

we obtain the fitting curve

R'„(r) =5.853199x10 ~

x exp[-0.405 603 9&

—(3.315 715rw + 14.872 73'
—0 124 4584)'" j (38)

which deviates from the exact curve by less than
1% in most regions within 0.01~,&r&3.5~,. The
largest deviation is only about 3%. This kind of
fitting curve could conveniently be used to give a
good offhand estimation of the vacuum-polariza-
tion potential. The rational approximations re-
cently made available by Pullerton and Rinker" is
more accurate than the fitting curve (38) and may
be used in actual computations. Similarly, for
V„(r), the five points
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R„(0.01) =4.245367x10 ',
R»(0.05) =1.866034 x10 ',
R, (0.1) =1.198 744 x10 ',
R»(0.5) =2 ~ 2925x10 ~,

R»(1.0) =5 ~ 7730x10 '

give the curve

R,', (r) =6.247314x10 '

x exp[6.889829r

R„(0.3) =-7.0274 x10 '(Zn)',

R„(0.6) =-3.6246 x 10 '(Z n)',

R„(1.0) =-1.6109x10 '(Zn)'

determine the curve

R,', (~) = —(Z n)'8. 400 763 x10 '
x exp[0. 372 807 9r

—(4.416 79 Sr'+ ll. 39911r

+2.906096)' ] (4o)

—(85.07811r' ~49.17160r

-0.292 9971)'»] (39)

which has about 1% accuracy in the region 0.01~,
&r&0.03; and about 0.1% accuracy in the region
0,03;&r&1.0;. For V»(r), the five points

R„(0.01)=-1.483 025 x 10 '(Z n)',

R„(01)= 1153944x10 4(Zn)2

which has an accuracy of about 0.1% in the region
0.01~,&r&1.0X,. Because of the simple forms
and good accuracies, the fitting curves (39) and

(40), or others of that kind, could be used along
with the expansions (28) and (32) instead of the
cumbersome integrals (27) and (31)~ These fitting
curves may be used to generate the extrapolated
potentials for &&1.0~„which have not been calcu-
lated before. Because of the smallness of the po-

-2Io 1I I I i I I I I J I I I I ( I Ifl
/

I I I I g I I I I ~ I I I ~ -IO I ' ' ' I I I I
I

~ 1 I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

IO'

-IO-4

IO-4

D

O
-IO-'

IO'

IO-'

-I 0-6

Io-~
0.0 0.5 1.0 I.5 2.0 2.5 3.0 3.5

c (a, )

-l 0-'
0.0 0.5 I,o I.5 2.0 2.5

t' (a, )

3.0 3.5

FIG. 1. Ratios of the vacuum-polarization potentials
of orders &(Zn) and n (Zn) to the Coulomb potential for
a point charge Ze. The solid lines are obtained by using
the expansions (24) and (28). The dash-dotted line rep-
resents Vogel's numerical- integration result. The
dashed line represents the fitting curve (39), which is
indistinguishable from the more accurate curves in the
region 0.01+~ ~r~ 1.0Xe. The fitting curve (38) is also
indistinguishable from the solid curve &f$.

FIG. 2. Ratios of the vacuum-polarization potentials
of orders e(Zn)3, n(ZQ)5, and n(Zn)7 to the Coulomb
potential for a point charge Ze. The solid line Rf)/(Zn)
is obtained by using the expansion (32). The dash-dotted
line represents Vogel's numerical-integration result.
The dashed line represents the fitting curve (40), which
is indistinguishable from the more accurate curves in
the region 0.01~, —&—1.0t~ The solid lines &f 5/(Z+)
and R&7/(Za. ) are obtained by scaling.
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tentials in this region, these extrapolations, though

having nothing to do with the actual potentials,
would not introduce very large errors. The mini-
max rational approximations with the right asymp-
totic forms, for example,

n- ].

R.(z) =(-1)" („1,~,(z)

), n —l 2)—!
(n -1}! (A4)

n

a,. r~
R' (r) =e '" for r&0.5~, , (41)

s=o

and

c i

l.(') = l+4
Qd,. r'
4=0

(42)

would probably give good fits and generate better
extrapolated potentials. Nevertheless, it would

require many more parameters to attain the same
accuracies as those of the fitting curves (39) and
(40}. All the fitting curves are also presented in

Figs. 1 and 2.
As long as Zo. «1, it is reasonable to assume

that the expansion of the vacuum-polarization po-
tential in powers of a and Za is valid, and that
the finite-nuclear-size effect is not important for
the orders a'(Zo. }and n(gn)" with n&3. Hence
the expansions (3), (26), (30), (34), and (35) will
give a rather accurate account of the vacuum-
polarization potential. For high-Z nuclei, how-
ever, one is compelled to consider contributions
from all orders of n(go. }"and render a careful
calculation of the finite-size effect." "

we obtain the expansion (5}for!!,(z} and its coeffi-
cients C, «and D, «, presented in (8} and (9), re-
spectively.

The sequence {C,J decreases rapidly and the
power series (6) for f, (z) converges for all z,
which can be proved, say, by the ratio test. The
convergence of the series (9) for D, , can be es-
tablished by Gauss's test. Furthermore, we can
see that the sequence (D, «) starting from k =1
is alternating and monotonically decreasing. Con-
sequently, for z ~1, the power series (7) for g, (z)
converges by Leibniz's rule, and the error in-
troduced by a truncated series of g, (z) is less
than the absolute value of the first neglected term.
Also, we note that the near equality in magnitude
of successive coefficients (i.e. , D, „=D«»„)
will not lead to numerical unstability, since D, »
and D»„, decrease very rapidly with increasing

For z &1, we can always find a sufficiently
large K such that

ID, ,.I& ID, ,, „(z)l&ID, ,,...(z)'I (A6)

whenever 2m -K; this may be proved by comparing
the general terms in the summation expressions
for D, „'s. Hence after the Kth term, we can re-
arrange the series g, (z) as
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APPENDIX: SERIES EXPANSION OF X2 (z)

Define

1/2

X„(z)= dt „1+, 1 ———, e ". (Al)
1

We will consider only!!,(z) here; the results for
the general case!!„(z}follow similarly. We ex-
pand!!, (z) in terms of exponential integrals,

(T,~ + T«~+, ) + (T«~+, + T,„+,) + (T«~, 4 +,~+«) + '

(A6}

where T, =D, «(z)'. As a result, the new sequence

((T,~+T,~+,), (T«~„+,~„),(T,~+4+ T«~+«), . . .)
(A7)

is alternating and monotonically decreasing.
Therefore g, (z) also converges for z &1, and a
truncated series after the Kth term will introduce
an error less than the absolute value of the first
neglected term (T; +T„,). This completes the
proof of the convergencies of f, (z) and g, (z).

The summation of the series (9), i.e. ,

Z„(z) =

and get

ne (A2) (2l —k)!
,~«(2l+ 1)!

X.(z) =Pk, &...,(z), (A3) 1«M b,
(2l+1}(21) (2l —k+1}

where f««were given in (10). By using the formula for small )I|', may be carried out first by decom-
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posing 1/(21+1)(2l) . (2l —0+1) into partial frac-
tions. Then each summation involving a partial
fraction may be calculated after expressing it
as an integral of elementary functions; for ex-
ample,

(A9)
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