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The Monte Carlo data of Hansen for the internal energy of the classical one-component plasma in the fluid

state is found to satisfy accurately a simple functional form, U/Xkr = al + bI"'"+ c, for I p 1. The Auid

static energy is very close to the bcc lattice energy of the solid, and the fluid thermal energy varies as T'".
Simple and accurate expressions for other thermodynamic functions for the plasma fluid are given.

Hansen' has reported very accurate Monte Carlo
calculations for the equilibrium thermodynamic
properties of the classical one-component plasma
(OCP) in the fluid state. In a second paper of the
series Pollock and Hansen' reported similar cal-
culations for the OCP in the solid phase, and the
fluid- solid phase transition was studied. These
"numerical experiments" are considerably more
accurate and complete than the results in the
pioneering work of Brush, Sahlin, and Teller'
(BST). In terms of the conventional Coulomb coup-
ling parameter,

I' = (Ze)'/kTr,

where 7 is the ion-sphere radius„

Hansen gives results for the fluid QCP internal
energy for 23 values4 of I' from 1 to 160, each
obtained with Monte Carlo chains of 10' con-
figurations of 128 point charges. These results
map out almost the entire fluid branch of the OCP
below the fluid-solid transition at I'-155. The
data indicate that the fluid internal energy func-
tion, V/NkT=f(r), can be divided into a fluid
static energy portion and a thermal energy portion,

v/xk T = (v, + v, )/xk T =f(r) = ar + g(r) .

In this note the fluid OCP data of Hansen will be
used to deduce a simple analytical form for the
fluid thermal energy function, g(r).

In the solid phase the static energy has a clear
meaning, ' namely, the lowest lattice energy at T
= O'K; this is the bcc lattice for which the Made-
lung constant is a=ab„= —0.895929. T'he solid-
phase thermal-energy function was found to be'

I.3/'2 ~bcc ~2
XkT (5, + I')"' 5, + I'

and found six free parameters by least-squares
optimization, Other fitting functions may repre-.
sent the data better, and it was found that a four-
parameter function,

V/XkT=ar +kr'+e, (3)

g(r) = —,'+ 3500/I", due to harmonic vibrations plus
an anharmonic correction. The term OCP fluid
static energy here means the ar term in Eci. (2);
it is the dominant portion of the total energy for
I' &1, and this fact complicates the task of finding
a functional form of the fluid thermal energy from
Hansen's 23 data points. The thermal energy is
approximately 35/0 of the static energy at I'= 1,
about15%atr=40, and less than 2% at I'=160.
Consequently the Monte Carlo results for the total
energy must be accurate to 0.1% in order to obtain
the thermal-energy portiontoanaccuracy of a few

percent, particularly for large I'. Hansen states
that his thermal-energy results are expected to
be accurate to about 1/o for all values of I'. Our
analysis of his data suggests that his results are
indeed this accurate or better for the ten data
points in the smaller I' range 1 ~ I' ~ 40, but that
the 13 data points in the larger I' range 50 ~ I'
~ 160 are less accurate due to much larger Monte
Carlo noise and a possible systematic error due
to number dependence that becomes more pro-
nounced near the phase transition.

Hansen fitted his entire range of data, listed in
Table I, by the form
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TABLE I. Monte Carlo OCP data, fits to the MC data, and HNC results. The 1=0.5 MC
value is from BST, with a center-of-mass correction. The 23 values from I =1 to 160 are
from Hansen (Ref. 1) for N=128; the additional MC values at 1'=70, 100, and 140 are for
N=250. The MC fits use Eqs. (6), (7), and (9j. The HNC energy values for I =0.5 to 10 are
from Ref. 6; the remainder are from Ref. 7. The HNC values for C~/Nk are computed from
Eq. (11).

MC data MC fits
U/NkT DU/NkT f((l ) Cy/Nk DU/Nk T Cy/Nk

HNC
U/Nkr C,/Nk

0.5
1
2
3
4
6

10
15
20
30
40
50
60
70

80
90

100

110
120
125
130
140

155
160

0.246
0.580
1.318
2.111
2.926
4.590
7 ~ 996

12.313
16.667
25.429
34.232
43.094
51.936
60.807

69.690
—78.569

87.480

96.360
—105.284
-109.732
—114.182
—123 ~ 095

-136.44
-140.89

0.202
0.316
0.474
0.577
0.658
0.786
0.963
1.125
1 ~ 252
1.449
1.605
1.702
1.820
1.908
1.928
1.984
2.065
2.113
2.148
2.192
2.227
2.259
2.289
2.335
2.37
2.43
2.46

-0.158

—0.290
—0 ~ 368

—0.675
—0.803
-0.898

-1.078

-1.226

—1.292

—1.412

—1.481

—1.510

0.55
0.75
0.80
1.0
1.06
1.16
1.30
1.40
1.37
1.25
1.6
1.5
1.55
1.5
1.8
1.6
1.5
1.8
2.15
1.9
1.9

2.046
2.132
2.213

2.288
2.359
2.394
2.428
2.492

2.584
2.614

0.061 0.186
0.11 0.317
0.22 0.472
0.28 0.577
0.35 0.659

0.785
0.964
1.125
1.252
1.449
1.605
1.736
1.850
1.953

0.014
0.111
0.227
0.305
0.365
0.457
0.588
0.704
0.794
0.932
1.039
1.127
1.203
1.270

0.236
0.570

2.103

7.935

16.537 71

33.99923

51.597 35

0.027
0.116
0.222
0.294
0.350
0.440
0.573
0.697
0.799
0.963
1.098
1.214
1.318
1.412

1.330 —69.263 88 1.500
1.385 1.581
1.435 —86.973 42 1.658

1.659 2.018
1.677 —140.255 62 2.047

1.482 1.730
1.526 -104.713 14 1.799
1.546 1.832
1.566 1.865
1.605 -122.475 61 1.928

F, d g(F)
dr r (4)

with a, 0, c, ands foundbyanonlinear least-squares
program, did in fact fit the entire range of data,
with a considerably smaller standard deviation than
Hansen's fit. The exponent s is a small number,
s-4, whereas Hansen's function for large I gives
an expansion in inverse powers of I' '. Also, in
Hansen's function the static energy term for the
OCP fluid was assumed to be the static energy
for the bcc lattice. In our work the constant a
for the fluid static energy is left as a, free param-
eter to be determined by the data.

In principle the form of the thermal-energy func-
tion could be found by integrating the heat capacity
at constant volume,

C F d(U/Nk)
Nk dT

Unfortunately the Monte Carlo noise in the C~/Nk
data (obtained from a difference of large numbers,
(U') —(U)), is too large to allow the C» data to be
useful for obtaining the form of g (I'). However,
one can use the much more accurate data for
U/NkT directly to find g(I') by forming the function

f, (I') =f (I') —2f (
—' I')

=g (I') —2g(-,'r) . (5)

Hansen's 22 data points for f (I') give the 12 values
of f, (I') shown in Fig. 1, and this function has the
form BI"+C, with s = 4. In this way the thermal-
energy function was found directly from the data
without needing the exact value of the fluid static
energy constant a.

In order to fix the exponent s as exactly as pos-
sible, va.rious ranges of the U/NkT data were
fitted by Eq. (5) with a nonlinear least-squares
program giving a, b, c, and s and also a linear
program giving a, b, and c for assumed values of
s; the standard deviation o(s) was computed for all
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FIG. l. Excess thermal energy AU/NkT and the auxil-
ia y fun ti n -f&{l) vs 1'~ . The —fr{I') p ints up to 1
=40 lie on a perfect straight line. The solid line for
AU/ÃO'T is computed with Eq. {6), and has a positive
curvature because of the positive Aa l term in Eq. {7).
The dashed line through the larger I values of au/ÃA T
is a plot of Eq. {8), and has a negative curvature.

fits. The ten data points in the lower range, 1 ~
I' ~ 40, fell on a very smooth curve with a small
a(s) that had a sharp minimum near s = 0.25; the
best value of s was s =0.247+0.009. Thus within
statistical error the Monte Carlo (MC) data for
the smaller I' range give s = &, consequently, the
dominant temperature dependence of the thermal
energy is U,„-T'/~. With s =0.25 the best fit to
the ten data points is

U/Nk T = —(0.894 61 + 0.000 03)F

+ (0.8165 s 0.0008)I'i'
—(0.5012 +0.0016),

with 0 = 0.0009. The fluid static energy obtained in
this manner from the data is

U,/NkTI'=a=ah„+ &a= —0.89461,

which is above the bcc lattice energy by 4a
= 0.00132, or 0.15 j{). The excess thermal energy
(the energy above the bcc lattice value at T = 0 'K)

aU/NkT = (U —U„„)/Nk T = &aF+g(F) (7)

C„/Nk = (1 —s)5I"—s

= 0.67096I'«0. 5012,

and this result agrees well with the noisy MC
values for C~/Nk.

The interaction part of the Helmholtz free en-
ergy obtained from Eq. (6) is

(9)

with 0=0.0060. The coefficients a, 5, and e are
significantly different from the values in Eq. (6),
and the difference is far greater than the estimated
statistical errors. Thus there appears to be a
kink in Hansen's data at I'=50. A possible ex-
planation is that 128 charges is insufficient to
accurately represent the N=~ system for large
I'. Hansen gives results for n.U/NkT obtained
with 250 charges at I'= 70, 100, and 140 that are,
respectively, 1.0%, 1.5k, and 1.3% larger than the
corresponding results for N = 128. These differ-
ences, although small, account for about half of the
difference between Eqs. (6) and (8) for I'= 70 and
100. The calculation of the Ewald potential with
five Kubic harmonics rather than four may also
lead to about 1% increase in 4U/Kk T for large I".
The values of 4U/NkT for I"= 155 and 160 are
three or four standard deviations above the values
expected from Eq. (8) (see Fig. 1), and were not
used.

The bI'~'+e form of the OCP fluid thermal en-
ergy is evidently an asymptotic form for the
stongly coupled system, I'-1. In fact Eq. (6) re-
produces the MC data with great accuracy down
to 1 = 1; it must clearly fail for 1 &1, since as
I'-0, the energy must go over to the Debye-
Huckel form, U/NkT = —~

3'i'F'~'. At I' = 0.5 the
asymptotic form is about 10% below the BST value.
It would be helpful to have a few more accurate MC
results in the 0.3& I'& 1 region in order to estab-
lish how the function f (I') changes over to the
Debye-Huckel form. The MC data of Hoover et
a/. ' for fluids governed by inverse power poten-
tials, u(r)- I/r ", can also be well fitted by this
form of the thermal energy.

The heat capacity for the OCP, using Eqs. (4)
and (6), ls

obtained from Eq. (6) for the I' «40 range is shown
in Fig. 1. When extended to the large-I' range, Eq.
(6) gives results for AU/NkT a few percent larger
than Hansen's results.

The 11 data points in the large-I" range, 50 ~
I' ~140, had too much noise to determine the ex-
ponent s to better than s = 0.3 +0.l. With s assumed
to be 0.25, the best fit to the data gave

0.89461I + 3.265 91I' '

—0.501 23 lnI —2.816. (10)

U/Nk T = —(0.8966+ 0.0001)I'+ (0.874 s 0.009)I"'i'
—(0.568 + 0.023),

The entropy constant d is obtained with I",= 1 and
F(1)/Nk T, = —0.445. Hansen's fluid free- energy
expression obtained from his fitting form with the
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(U/NkT)„„= —0.900470I'+0.268826 31'~'

+ 0.071 999 25 lnl" + 0.053 791 9,
(11)

(C „/Nk)„„c = 0.134 413 2I'~'+ 0.071 992 5 lnI'

—0.018200 6, (12)

for I'&1. These asymptotic results for the HNC's

large-I' data for N =128 intersects the solid free
energy' at l" = 158. This estimate of 'he location
of the fluid-solid transition is very sensitive to
small changes in nU/NkT. The three slightly
higher values of AU/NkT obtained with 250 charges
gives an estimate of the free energy that lowers
the transition to about 150. Using Eq. (10), which
may be a better estimate for the N=~ system,
lowers the transition point to about I'= 144.

Qf the va, rious integral equations applied to the
OCP the hypernetted chain (HNC) equation gives
the best results when compared to the MC data. '
Ng' has solved the HNC equation for I" up to 7000,
and has obtained very accurate results for U/NkT.
Since there is no noise in Ng's numerical results,
the method indicated by Eq. (4) could determine
the exact functional form of the thermal-energy
function g(I') for HNC's as bi'~'+ c lnI'+ d. The
results are

U/NkT and Cv/Nk break down for I'& 1 is about the
same way as do the analogous results obtained from
the MC data, Eqs. (6) and (9). The HNC results
and the MC data and fits are shown in Table I. The
main reason for the apparent good agreement of
HNC and MC results for the total energy is that
the static term in the HNC energy is so close to
that for the MC fluid static energy. The static
term from HNC is nearly identical to the ion-
sphere result' ( 0.9I') and is 0.4% below the bcc
lattice value, whereas the static term in Eq. (6) is
0.15% above the bcc lattice value. The thermal
energy from HNC is very different in analytic
form from the MC form, I' ' vs I' ', and the
HNC thermal-energy function is numerically larger
than the MC thermal-energy function; this dif-
ference is about 50% at I' = 100.

In the HNC approximation all bridge graphs are
neglected, whereas the effects of the bridge graphs
are necessarily present in the MC results. At
present there is no clear theoretical model that
can account for the l ' ' form of the MC thermal
energy.
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