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Through an extensive use of the Poisson summation formula, we have elucidated the description of the

phenomenon of Bose-Einstein condensation in finite systems in terms of a "collapse in the thermogeometric
space. " In particular, we have carried out an explicit evaluation of the temperature dependence of the
thermogeometric parameter y for a cubical enclosure under periodic boundary conditions, which in turn
enables us to evaluate the temperature dependence of the condensate fraction N, /N as well as the two-point
correlation function p(r, i') for cubes of arbitrary sizes. Numerical results are given for two specific sizes,
L/l = 40 and 100, where L is the edge length of the enclosure and I the mean interparticle distance in the
system. In the appropriate limit, our results are in complete agreement with the Fisher-Barber scaling theory
for finite-size effects. Application of the Poisson summation formula has also enabled us to extract
information of direct physical interest about the growth of long-range order in general cuboidal geometries.
The special case of the thin-film geometry has been studied in detail; the resulting formulas provide a
considerable improvement over the ones obtained by previous workers.

I. INTRODUCTION

Interest in the study of finite Bose-Einstein sys-
tems arises principally for two reasons. Firstly,
these systems possess the unique property that in
the thermodynamic limit they undergo a phase
transition even in the absence of interparticle
interactions. The resulting phenomenon is purely
a quantum-mechanical effect arising from the
symmetrization of the wave functions. Being non-
interacting, these systems are mathematically
more tractable than the corresponding realistic
ones; accordingly, they are more amenable to a
rigorous theoretical analysis. One therefore hopes
that a detailed study of these systems may lead to
a better understanding of the general problem of
finite-size effects in systems undergoing phase
transitions.

Secondly, there exists a close connection be-
tween the phenomenon of Bose-Einstein condensa-
tion on one hand and that of superfluid transition
in liquid 'He on the other. Since the latter has
been subjected to extensive experimental study in
restricted geometries, such as thin films, narrow
channels, and small pores, it becomes natural to
make a corresponding theoretical study of Bose-
Einstein systems confined to similar geometries,
in the hope that this may elucidate the observed
behavior of liquid 4He under the aforementioned
circumstances.

Since Osborne's' pioneering work of 1949, sev-
eral authors have examined the problem of an
ideal Bose gas confined to restricted geometries. '
More recently, a rigorous asymptotic evaluation
of the specific heat of a Bose gas confined to a
thin-film geometry has been carried out by Path-

ria' and by Greenspoon and Pathria4 under a vari-
ety of boundary conditions. The results of these
evaluations turned out to be in excellent agree-
ment with the corresponding numerical ones ob-
tained earlier by Goble and Trainor' and with the
corresponding theoretical ones obtained almost
simultaneously by Barber and Fisher' using dif-
ferent mathematical techniques. In addition, the
first-order results of Greenspoon and Pathria
were shown to be consistent with the Fisher-Bar-
ber scaling theory for finite-size effects. '

Subsequently Greenspoon and Pathria' extended
their analysis to a system confined to an arbitrary,
finite euboidal geometry under periodic boundary
conditions. This analysis was based on the for-
malism of the grand canonical ensemble and de-
pended on the use of the Poisson summation for-
mula for evaluating the various summations over
states that enter into the problem. One is thereby
led to the construction of an abstract "thermoge-
ometric lattice space" whose scale factors y„y„
and y, are directly related to the chemical poten-
tial of the system as well as to the discrete level
spacing which arises from the finiteness of the
enclosure. In this picture, the phenomenon of
Bose-Einstein condensation appears as a gradual
"collapse" of the lattice points of the thermogeom-
etric space onto its origin as the temperature of
the system is lowered. In the thermodynamic
limit, the collapse takes place abruptly at the bulk
transition temperature T,(~), which corresponds to
a transition accompanied by singularities in the
thermodynamic functions of the system.

In this paper we apply the techniques developed
by Greenspoon and Pathria' and by Chaba and
Pathria' to examine two important aspects of the
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problem of Bose-Einstein condensation in finite
geometries. First of all, we carry out an explicit
evaluation of the temperature dependence of the
thermogeometric parameter y (=y. ..) of the cubic
system under periodic boundary conditions. In
view of the fact that this parameter plays a central
role i.n the entire problem one is able to extract
from these results considerable information of
direct physical interest. For instance, in Sec. II
we examine the growth of the condensate fraction
and in Sec. III the growth of spatial correlations
as a function of the temperature of the system.
In Sec. IV some special cases are examined in

depth. In each case we discuss the influence of the
finite size of the system on the property studied
and, wherever possible, a comparison is made
with the results obtained by previous workers.

II. THERMOGEOMETRIC PARAMETERS AND THE
CONDENSATE FRACTION

We start with the asymptotic expression'

' .=' [z./, (~)+~'"~'"~,(y„y„y.)],
LJ L

where N is the number of particles in the system,
J

&
are the dimensions of the cuboidal enclosure,

X [=Al(2v mAT)'~'«LJ ] is the mean thermal wave-
lengthof the particles, o= —p/AT, p, being the chem-
ical potential of the system, the g„(a) are the familiar
Bose-Einstein functions, "while

the bulk transition temperature, one finds that
(i) for t&0 and N-'"«t«1,

~-r, x, -r, y-x'~'»s ~

(ii) for f&0 and N 'h«
~t

~

«1,
X -N y-N '~ «1.

while (iii) for ~f
~

-N '~',
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N"2~3 S N2~3 - 10

Thus as the temperature of the system is lowered
through the bulk transition temperature T,(~), the

scale factor y goes from very large to very small
values, the rapidity of the variation being governed
by the size of the system. One clearly observes
the abruptness of the transition as X-~.

We now proceed to evaluate the parameter y ex-
plicitly as a function of temperature. In the case
of the cube,

j 00 m2+q

~,(y)=- g, q=(ql+q!+ql)'".

Recently, Chaba and Pathriag have established
several identities for a class of multidimensional
lattice sums, one of which is the following:

+ I"(~,w'q'/a) = „,+a+C„
q sa40 Q Qlt2a3

(8)

with

~ RR($)

1(ylfy21ys) Q ft( )

&(q) = (qlyl+qlyl+qlyl)'",

y =~"o'"L/~ q=l 2 3

(2)

(3)

c,=&vp g' ', — ', a'a) =-asn6S3.
"all k

Taking the Laplace transform of (6), we obtain
another identity, viz. ,

» + —e '" =2vy+ —,+C,. (7)
~ „q'(y'+v'q') q y'

I p. l

y' A'/mL"m
(4)

thus the y2& represent the chemical potential of the
system reduced in terms of its level spacings. In
a more recent paper, Greenspoon and Pathria"
have further pointed out that y&-L&/$, where $
[=X/(2s'~'n'~')] is the correlation length for the
bulk system.

Insofar as the influence of finiteness on the
growth of the condensate fraction N, /N is con-
cerned, we may restrict ourselves to the case of
a cube (LJ = L, y&

= y). Introducing the reduced
temperature f = [T —T,(~)]/T, (~), where T,(~) is

It may be noted that the primed summation in Eq.
(2) implies exclusion of the term with q= 0. More-
over, the system is assumed to be under periodic
boundary conditions.

From Eq. (3) it follows that

Since the second part of Eq. (V) is directly pro-
portional to S,(y), we can rewrite (1) as

g~g2 Q +-

+ — —'+ 2y —— 8
ly2a3

Now, the ground-state occupation, under periodic
boundary conditions, is given by

N, =l/(e —1)=1/n, for a«1.
Note that for a macroscopic occupation of the
ground state it is necessary to have «& I. Re-
calling (3), we find that the second term on the
right-hand side of Eq. (8) is precisely equal to
N„the condensate therefore emerges rather nat-
urally in this analysis and does not have to be ex-



14 LO%-TEMPERATURE BEHAVIOR OF BOSE SYSTEMS. . 1271

tracted artificially, as is customarily done in the
study of the bulk system.

Now, in view of the fact that for small n

etc.
Expanding the summand in Eq. (11) in powers of

y' we can write for y &g

whence

2 2+ 2 2

ly2a 3

((y) g(3 ) 2v1/2ol/2

Eq. (8) is further simplified to

L '
N= — f( ', )+N—o

(10)

1=b, —2 +b2 —, +b, —, +''',
where

C3+~+

(12)

(13)

(14)

N, =N1 —( )
2 2+ 2 2

1~ 2v3

The first part in Eq. (11) is precisely the expres-
sion for N, in the bulk system; the second part
therefore represents the finite-size correction.
Since C, is negative, this correction is positive
throughout and, except very close to T,(~), varies
linearly with temperature (see Figs. 2 and 3). The
fact that we obtain an "enhancement" of the con-
densate fraction over the bulk value is not sur-
prising in the case of periodic boundary conditions.
In this case the ground-state energy in both the
bulk and the finite systems is zero; however, as
we go from the bulk to the finite case, the excited
states become discrete and are shifted upwards,
thereby shrinking the mean occupation numbers
for these states and, consequently, enhancing the
fraction of particles in the ground state. The
situation may very well vary from one set of
boundary conditions to another, but this requires
the extension of the present analysis to other
boundary conditions, such as Dirichlet, Neumann,

We note that in the series (12) the coefficient 5,
alone is temperature dependent; all other coeffi-
cients are pure numbers, as defined by (14).
These numbers can be evaluated by expressing the
sum over q in terms of other, strongly conver-
gent sums by using a method developed by Van der
Hoff and Benson" (see Appendix A). The resulting
values are given in the second column of Table I.

In principle, the temperature dependence of y
can now be determined by inverting the series in
(12). However, since the coefficients h» approach
their asymptotic value 6(- 1)» at about k = 10, it
is in practice simpler to replace coefficients
higher than a suitable value of k by their asymp-
totic value and collect all these higher-order
terms into a closed form. Thus we may write with
negligible error

(15)

Another advantage of the foregoing expression is
that now one need not restrict oneself to y&m, al-
though this restriction was never a severe one

TABLE I. P coeff ic ients.

Pp(09 o, 0) =(—1) bI, pg(0, 0, 2) Pp(0, a, b)
1 1 1

Pp(2, S, a)

1
2

5
6
7
8
9

10

16.532 32
8.401 92
6 ~ 945 81
6.426 12
6.202 15
6.098 18
6.048 26
6.023 88
6.01186

—0.301 38
0.689 22
1.341 11
1.683 75
1.849 81
l.928 38
1.965 54
1.983 26
1.991 80
1.995 96

—1.830 05
—2 ~ 156 89
—2.195 52
-2.144 81
—2.089 56
—2.050 71
—2.027 35
—2.014 34
—2.007 39
—2.003 76

—2.51936
—3.863 16
—4.788 44
-5.345 57
—5.656 67
—5.823 03
-5.909 76
—5.954 30
-5.976 95
-5.988 40

6.000 00 2.000 00 —2.000 00 -6.000 00
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p, (r, r') = ((t)(r)P (r')), (19)

where ( }denotes a grand canonical average.
Expanding the field operators (t)(r) as

p, (r, r'), which is related to the off-diagonal ele-
ments of the same matrix. By definition, p, (r, r')
is a measure of the overlap between a given wave
function of the system and the one obtained by
transferring one of the particles in the system
from a point r to another point r'. This quantity
evokes considerable interest in the study of Bose-
Einstein condensation, for the main reason that it
can be regarded as a measure of the degree of
long-range order prevailing in the system. We
have

odic boundary conditions,

p, (r, r') = p((jr - r' j)

where

e &L' ~ (P-P')
y k

fc

(n;)= pe f'e /24,
f=1

(n ) (ca+24&2& 1)-1

e (k) = k2k2/2m = (8 /2m)(k, '+ k'+ k')

k, = 2((n, /L, , n, = 0, + 1, a 2, . . . .
Writing (22) as a geometric progression,

(21)

(22)

(23)

)(t(r) = Q a„-e'"',
VV

(20)

we obtain for free particles in a box, under peri-

and interchanging the order of summations over j
and k, which is legitimate in the case of a finite
system, we obtain"

r — e f-e (2( *(-~(&e-/2 2/i ~ e-(&(2&2'2~2&e /2 2 /42 -e- 23&2'«&e-/3 23/4
~1~) I~ rr ~

f=a 1 2

(24)

2((in((x'( -x, )= Z exp— JW Ãf
n =-i L]

(25)

we apply Poisson's summation formula, "with the
result

L( ~ ~L '(q(+ x(/L()'
Z exp —7f

n~ 22~& Q ]

x(=x( -x(. (26)

Noting that the summations over k, are really sum-
mations over n„viz.,

Equation (24) now takes the form

p (j r r j) j- 2e fa Q e 2&4&ff-1
X

12223
(27)

where

L L
y(q}=(( ~ (q, +a, )'+ —' (q, +a,)'

L 2 =X+ 2 (q +a )', a, =—'. (29)

We again interchange the order of summations over
j and q and apply Poisson's summation formula to
the sum over j. Assuming that

j
a

j
4(0, we get"

00 00 00 ~ 00 00 00

3/2 fa 2(4& /f = Q j 3/2e face(g& /f g |& (X j)X-3/2eaae 2&4& /3 dX g X- I e- + ((&ae«4& /3 a
4540 ~

fop fga00 +p g= 00 Q

(29)
The last step follows from the identity

|&(x j) Q e 22((x

g F00

(30)

which forms the backbone of the Poisson summation formula. The integral in (29) is a tabulated Laplace
transform; consequently

~ eW- 2h (q)]("(o+2vif)'")
[ (-)] /

1220 3

m(-3()l(e, ~,)*+)l(q.~ .)*+)l(e.~ .)*]'") 3 P ... I.,~ (,i.R)

2 g( " exp[- 2(((l(/'/X)[L, (q, + a, )'+ L,(q, + a,)'+ L', (q, + a,)']' ].
[L2(q, + a, )'+ L', (q, + a,)'+ L',(q, + a3)2](/2

1222 3

(3l(Q, ~,)'+&l(4*+ .*' )l( L4)')'"),
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where

(L2 2+ L2o2+ L2s2)1/2
1 2 2 3 3

The first term here cox'responds to 1 = 0 and is
precisely the result one would obtain by integra-
ting (27) over j. The second and third terms cor-
respond to E 4 0, q = 0 and k 4 0, q 4 0, respectively,

and determine the relevant corrections as func-
tions of the parameters X/R and X/L, . For
R/X»1 and L,./X» 1, these corrections are clear-
ly negligible. The first of these conditions is con-
sistent with the fact that we are primarily interes-
ted in the growth of long-range correlations; the
second one is quite genex'ally satisfied by systems
of practical interest. Hence under these condi-
tions the two-point correlation function may be
written in the form

()- -
)) g xp(-2[y (q + )'+v (q + )'+y"(q + )']' ']

j.e 2p 3

(32)

which possesses the expected properties of reflec-
tion symmetry [p, (a&) = p, (-a&)], of periodicity
[p, (a, ) = p, (1+a, )], and of vanishing slope at inte-
gral and half-integral values of g, These prop-
erties are in accord with the imposition of peri-
odic boundary conditions and allow us to confine
our consideration of a( to the range (0, —,'). In pas-
sing we note that the special case R = 0, which
determines the condensate, cannot be recovered
from the foregoing expression; for that, one must
go back to E(ls. (27) and (28), which give

tion numbers (n„")in the summand have been re-
placed by their low-energy approximation (o(+t]e) '.
This can be understood by noting that for R =

~

r'
—r»X the oscillatory factor in the numerator of
(21) destroys contributions from most wave vec-
tors except theonesforwhich k«2w/X. Accord-
ingly, the replacement of (n„-)by (n+Pe) ' causes
errors ln p, (~ r —r'~) which are of a negligible
magnitude; in explicit terms, these errors are
given by the second and third terms of E(I. (31).

p (0) g~-s/2&-/~&-zo(PY)//

~))"(~)~"(~) )*

= —(ylq,'+ ya2+ ygl).

Subsequent analysis then leads to the desired re-
sult (1), for L&/X» 1.

To obtain a more tractable form we again apply
Poisson's summation formula to E(I. (32) and ob-
tain a remarkably simple result:

()0 e-off'f g» I.)

~a~~0 (33)

wllel'e No = I/lx ~ Tile Bios't 8'trlklllg feature of this
result is that it is precisely the same as the orig-
inal expression (21) except that the mean occupa-

IV. DISCUSSION OF SPECIAL CASES

%e first examine the case of a system confined
to a cuboidal geometry with I., »L, » I, and
hence y, »y, »y, . For this we write E(I. (33) in
the form

Pl(ol, Q2, Q3)

3/2~X /2

+0

(x) mf (qe R)

X .1+ v'(q,'/y, '+ q', /y,'+ q', /y,') '

(34)

and, in view of the relative sizes of the various
y's, calculate the sum over q as follows (see Fig.
4): (i) for q, =q, =0, we sum over q„. (ii) for
q, = 0, q, 4 0, we sum over q, but integrate over
q„.and (iii) for q, 00, we sum over q, but inte-
grate over q, and q, . This gives

)), w'"u"* ),cosh[), (( —~,)] „)~ „,) )
e y{-)a,v, [)~ ( q./). )*]"*])

Pl(+1~+2)o3 7/ y~y y y sinhy 1 Z 2 2 [I+ ()[q /y )2]1/2

+ y'y' g cos(2vq, a,)IC,(2(a,'y,'+a', y', )'/'[I+ (&q,/y, )']'/')
7l q
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(q /y)

4/y& - ~

2/y& -.

rr
~ ~ ~ ~

6 9

The I = 0 term here corresponds to (36) and is
precisely the result obtained earlier by Krueger»
for the thin-film correlation function; the remain-
ing terms provide an improvement over that re-
sult.

As a check we consider the limit of Eq. (37) as
the film becomes increasingly thick and approaches
the bulk system. For the latter, the two-point
correlation function is given by"

2/y

(q, /y, )

FIG. 4. Relative lattice spacings in the reciprocal
thermogeome&ic space" for a cuboidal geometry
(I &»1.2»L, 3); this provides the motivation for a method
of evaluation of the sum appearing in Eq. (34).

where A;(x) is the zero-order modified Besselfunc-
tion; the last step requires that either a, or a, be non-
zero. If we now proceed to the limit of a thin-
film geometry, for which I.„J,and hence y„y,
—~, the first part on the right-hand side vanishes
while the second part can be approximated by inte-
grating over q„provided that a, [=x,/L, ] is taken
small enough to make the cosine factor sufficiently
slowly varying. However, this is not a severe
restriction, because I., is infinitely large. The
second part in (35) then becomes

p'""(a a a )=X /V+(I/~2It)e-"« It ~0 (36)

which is of the same form as the Ornstein-Zernike
density-density correlation function for a classical
fluid. Now, in the limit 1.3 —~, we may convert
the summation in (3'I) into an integration, with
the result

p, (a)

No 4 X y3
"" R'-—'+ —,——'

~ cos(2a, y@)K,—(I+a')'i' dl&'J3 m
3 0

23/2~1/2 &2 1/4 ~&2 A/2

=~y+ ~3 (2 +«3y3 &~/2 (2 +«.'y

2y, g ( )- 'y' cos(2a, y@)
q ] W o

2y, y, R'

exp[- 2a, y, (1+I')'~']
d

(1+u')'~~

pg (ag ~ a2 ~ ay)

cos 2glg3 Eo —1+

wher. . It' = (x', +x,')'~' is the magnitude of the pro-
jection of r'-r on the (x,y) plane, while $=L, /2y,
= A/(2v'~'a'~') is the bulk correlation length. Com-
bining this with the third part of (35) yields, for a
thin-film geometry, the axially symmetric xesult

It = (R"+ 4a'y'$')'~'= (x'+x'+x')'h

which is identical with (38). Quite expectedly, this
result possesses spherical symmetry, for when
we pass over to the bulk limit there are no sur-
faces left to define any special direction(s) in the
system.

In the low-temperature regime, where y3«1,
the I e 0 terms in Eq. (3V) become negligible and,
except for the factor 1/I.

„

the correlation func-
tion becomes exactly the same as for a strictly
two-dimensional infinite Bose gas (see Appendix
B). In the three-dimensional case, the function
acquires cylindrical symmetry.

A case that deserves special consideration is the
one for which R'=0, i.e. , where one considers
correlations between points along a straight line
normal to the surface. %'e then have, directly
from (32),

8-ay I q+a31 l y 8-2ye3 8- 2y(j. -a3)
p (0 0 a )=——g =—— F(a, 1,1+a;e ~}+ E(I —a»1, 2 —a;e '~), a &0,X' L, , „

Iq+a I
X' L, a, " ' " (1-a)

(»)
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where E(a, b, c;z) is the hypergeometric function.
Expression (39) does not contain any condensate
term, because in a thin-film geometry a non-neg-
ligible condensate fraction cannot exist except at
T =O'K. Specifically, for the condensate to be
significant, we require

a - 1/N or y3- (L,/X)(1/f3'~2)

Together with the thin-film result"

1 L, X,3(~) —A.
sinh y, = —exp —' T&T,( ), (40)

'(2/12L, ) ln(2/y), for y « I,
(42)

(4/X2L3)e, for y» 1.
In the asymptotic regime, where y» 1, E(a, b, c;z)

=E(a, b, c;0}=1,so that

(43)

this requires that

[T/T, ( )]ln[(T, ( )/T)1q]-l, (41)

which can be satisfied only if T/T, (~)-1/InN. The
bulk limit clearly implies that a condensate can
only exist at T= 0'K. It may be noted that the fore-
going result is analogous to that of Osborne, ' who
found an "accumulation temperature" T, - T (~)/InL,
where J denotes the lateral dimension of the film.

Since we are operating under periodic boundary
conditions we may, without loss of generality, fix
our origin at one of the points in the median plane
of the film and vary the other point along the z
axis (from a3»k/L3 to a, =2). For a, =2, which
determines the degree of correlation between a
point on the surface of the film and a point lying
directly below it in the median plane, Eq. (39)
becomes

p, (0, 0,—,) = —,—lncoth(-, y)
2 A. 1

For a, =2, Eq. (43) agrees with the corresponding
limit of Eq. (42). For values of a, which are not
too close to 2 the first term in (43) will dominate
over the second, so we may further approximate
by writing

p, (0,0, a,) = (I/&'L a3)3e '3'3= (I/X'z)e '~3. (44)

Note that this again is an Ornstein-Zernike type of
result which can be obtained from the bulk result (38)
by putting a, = a, = 0 (except for the background
contribution N, /V, which is absent in the case
under study). This is indeed expected because
when y is large finite-size effects generally disap-
pear, although this will not be the case for g, = &.
It may be pointed out here that Eq. (44) can also
be obtained by simply retaining the q = 0 term of
Eq. (39), which is quite appropriate for y» 1 and
for a3 not too close to 2.

In the other regime, where y «1, we may use
the approximation

E(a„1,1+a, ; e ~) = a,[ln(1/2 y)+ lt(1) —$(a3)],

with the result

p, (0, 0,a, )=, 2 ln —+ 2$(1) —$(a3) —P(1 —a,);=1 1
X'I,, 2y

(45}

here, $(z)=d[lnI'(z)]/dz is the digamma function.
For a, = —,', this reduces to [since p(1) —$(2)=21n2]

p, (G, 0, 2 ) = (2/12L3) ln(2/y),

which agrees with the corresponding limit of Eq.
(42).

We now turn our attention to the problem of cor-
relations in the cubic geometry (L, = L, y&

= y). In
this case Eq. (33) takes the form

2e'f (q4)
Pl( 19akit 3} k2L 2 2 2 2 t (4 )

y q y+mq
12223

where q2-qi2+q22+q3 Emandlng ln powers of y2

we obtain, say,

y
2/+2

p1(al& 2& 3} g2L 2 2 M ( } f 2+1(a11a2{a3} y plAL, gyg~g
e~213$» R~l

Pk( 2 a } ~ 2k (43)

These sums converge rather slowly; however, by using Poisson's summation formula they can be ex-
pressed in terms of other sums which converge rapidly. As shown in Appendix A,

pk(a„a„a,)= F b Z, Q eos(231q, a, ) ' ' ' ' Kk,{231q,[(q2+a2)2+(q, +a,)']' ')
q ] q mao

2y3

»o»o
Iq +a l

' '~2 (233)2k
+

T( 3 Z eos(2«2a2) ' '
&k-1i2(»qk lq. + a. l

}+(- »' ' «», &2k(a3}*
/ q -y 4f -a»o' 2- 3-

(49)
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edge, and the face of the enclosure, which may be
understood in terms of the relative separations of
these points from the origin. The minor influence
of the actual size of the enclosure, which is ex-
pected over and above the dictates of the scaling
hypothesis, is evident in both Figs. 5 and 6.

APPENDIX A

We propose to establish the expression {49)for
the coefficients p»(a). For this we employ a meth
od developed by Van der Hoff and Benson' which
also makes use of the Poisson summation formula.
First of all we have

s cos(2mq, a, ) cos(2xq»a, ) cos(2'mq, a,)

cos(@q~a~) cos(2xq»a») cos(2vq»a») ~ ~ c (Rq»az) (Rq3») 2 ~ (+2~ 2k
q ~l q ~«OO ql 2 3

(qg+ q»+ q») q «l q «eo2= 3«« 3-

(Al)

Using the integral representation

t" 'e~'dt
q" &(n)

and the Poisson identity

2 2g e ""' '= — g cos(2xqa)e
g-~ q ~eo

(A3)

we can write
20-1

P»(a)= F Q Q Q cos{2mq,a, )
q l q -«oo q «ao
l 2 3

&0

»-» -r»»» {q»+a») +(q»+a»)
u e~ 'l" exp— dQ

3 an-], /2 r
Co (2 )2»

+ cos(2vq a ) ' u» '~'e ' '»"e «3+'»& t"da+ (- ].)» ' Il„(a,).

Next, using the integral representation

t" 'e» ' ' ~'dt= 2—K (2xkq)tl (A5)

we obtain the desired result:
ao

tl»{')= I p Z Z Z cos{2vqiai) ' ' ' ' &a-82«i[{q»+a»)'+(q. +a,)']'")
q l q «co q «oo

» 3

+ (,Q Q cos(2xq~, ) ' ' K», t, (2wq, ~q, +a, ~)+(-1)' '
( )

B»»(a,)
J q -lq -«ao

(A6)

The asymptotic behavior of the P»(a), for large k, can be obtained from (A6) with several summations re-
placed by integrations, whence

CO

p»(a) —
F Q», ' ' d(q, +a») d(q, +a,)[(q,+a )»+(q, +a,)»]~» ''~»K», (2wq, [(q, +a,)'+(q3+a, )']'t )

q l «oo «CO

, , (2x)"
+ F(~, Z», 1, dl, l, K», g, (2nq, l,)+ (- 1)

( ), B»»(a,).
q, ~

0

Expressing the double integral in terms of plane polar coordinates and using the formula

f
oo 2P«l

x"K„(ax)dx =
„„

I'(—,'(t»+ v+ 1))I'(g&p —v+ 1)),
0

a""
we find, for large k,
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cos(2wq, a, ) ~ cos(2mq, a,), 1», (2m)'»
&

»i qi »

, , (2m)", , „~cos(2wqa, )+ cos(2mqa, )+ cos(2~qa, )
2k

q

= 2[cos(2ma, ) + cos(2ma, )+cos(2~a,)].
The special cases required for our analysis of the condensate fraction and correlation functions can be

written after some rearrangement of terms, with the result

P+ I 1 &I»»-~
P»(0, 0, 0) =—(-1)'b»= ~ „Q ' K»,(2nn[P+(m —1)']'i')

f~m~n=l

+ P —. K», &,(2mij)+ —g(2k —2)+ 2t(2k)+ 2&'i' ' g(2k 1),
ek
1'(k);, =, J'

1 6».» ~ ~ ~
(~n 2+ n2)i/»» l.

fi.(0, 0,—.')= „2"P PP," K„(.f(» .")&)
l=i m=2 n=l

CYCIt Odd

(A9)

»o oo 1/2 k

+ 2 "' Q Q K», (nij)+ 2 'i' — K», i,(mij) —. —2(l —2 '~')&(2k),
l =1 1&1 i

(A10)

16 k ~ ~ (m2+ 2)1/2 k 1

l~l m~n=l
Odd

k CO CO ~ k-1/2

+
~(k)

~ »-xi»2-»" i'Q Q (- 1)' — K (mij) —2(1 —2 ")0(2k)

(All�}

16n'
oo m2+ n2 '/' " '

p (
—' —' -')= 2-»" Q P ( 1)' ( K (ml(m'+n')' ')
» l»

l=l m, n=1

k 00 ~ k-1/2
+ 2-""" g (-1)' —. K,„,(mif ) —2(1-2-'»"}g(2k).

k=1 J=l
(A12)

For asymptotic considerations, we note that

g cos(2gqa, .) i
«2k»

»=a q l —(1 —2' »»)f(2k), a; = ».
Since lim~ „f(2k)= 1, the asymptotic values of the foregoing coefficients turn out to be 6, 2, —2, and —6,
respectively. Table I shows the manner in which the actual values of these coefficients approach their
asymptotic limits.

APPENDIX 8

For a strictly two-dimensional Bose gas, the correlation function is given by

(2) r~ ~I X W -it:lr&P'-X) 3 W -i&-ABC

1 2 k J=1la 2

In the bulk limit

kl
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whence

p'""'(r —r')- ~~e" e '~ ~ "kdk1 2
0

2& ~ikl r-r'I cps 0 y~ e~
2'

~ y ~p
e '"" "'d, (k~ r r' ~)dk

J~
( I) 2

exp —77 jj (B2)

Now, applying the Poisson summation formula to the sum over j, we get

p,"'(r —r') = —,Q K,(2(m' '/X)(n+ 2mij)' '(x,'+x,')' ')
m OO

= —,Z, (R'/~)+ —,P'Z, (2(& ~/X)P r ~(~+2„,) &).
m OQ

The second term is negligible if R'»X. Therefore to all intents and purposes

p'"(r —r') = (2/l ')&.(&'/5) (a4)

It may be noted that in the two-dimensional case the condensate term N, /L, L, is negligibly small for the
whole temperature range of interest.
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