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A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a
%'ick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect

to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have

to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are

"double graphs'* analogous to those introduced by Dyson and also by Kawasaki, in which the response-

function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-

dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.

I, INTRODUCTION

Recently the need for a systematic classical. per-
turbation theory of thermodynamic Green's func-
tions has become manifest in a variety of differ-
ent physical problems characterized by nonlinear
equations of motion, ranging from dynamical crit-
ical phenomena and anharmonie cxystal lattices to
plasrnas and turbulent liquid flows. This need has
been eloquently formulated by Martin, Siggia, and
Rose (MSR) ln a paper wlHch reviews the attempts
made in this problem during the last 10 or 15
years and which makes several decisive contribu-
tions towards a consistent diagrammatic formula-
tion.

These authors, in fact, recognized the import-
ance of the doubling of dynamical variables oc-
curring naturally in classical perturbation theory.
This doubling means that the derivatives with re-
spect to the original variables g„(the canonicai
p's and q's) have to be treated on the same footing
as the g's themselves. It turns out that the natu-
ral definitions of the new variables, for which we
use the notation g, of MSR, are linear combina-
tions of the derivatives &/&g„ taken with the skew-
symmetric matrix D occurring in the canonical
equations of motion written in the g's. The reason
for the importance of these $ variables resides in
the fact that the classical time evolution is deter-
mined by the I.iouville operator, which has a lin-
ear form in the derivatives 8/sg, .

This doubling of dynamical variables gives rise
to two types of Green's functions and, as a conse-
quence, to two types of lines in classical diagrams.
The structure of classical diagrams is therefore
more complex than the Feynman diagrams of quan-
turn systems, and it is natural to seek simplifica-
tions.

This was the aim of a recent publication by
Deker and Haake, ' who invoked the existence of a
fluctuation dissipation theorem (FDT) to achieve
such a simplification and who succeeded to prove
a FDT for a large class of classical systems. A

FDT gives, in fact, a relation between the two

Green's functions oeeurring in the theory, namely,
the propagator or correlation function (which gov-
erns the fluctuations) and the response function
(whose imaginary part describes dissipation). In

their renormalized perturbation theory Deker and
Haake' propose to eliminate completely one type
of Green's function and one type of self-energy by
successive partial integrations of the time varia-
bles.

While MSR, as vrell as Deker and Haake, de-
velop a formal renormalized perturbation theory
based on Schwinger's functional method, it is the
main aim of the present paper to derive a Wick's
theorem for time-ordered products and hence to
establish an explicit unxenormalized perturbation
scheme. It is our belief that this Wick's theorem'
gives the formal procedures of Refs. I and 2 a
firmer and more transparent basis.

The retarded character of the response function
implies that the associated lines form a "tree
structure, " i.e., a network without closed loops.
This tree structure gives rise to "double graphs"
analogous to those introduced into quantum field
theory by Dyson in 1951 and discussed by Syman-
zik.' A double graph is obtained from a given tree
structure by joining the free legs of the vertices
by propagator lines.

It is interesting to note that the same double

graphs also appear in Kawasaki's perturbation
scheme, ' which was designed to calculate dynami-
cal critical phenomena. This is not surprising,
since Kawasaki' starts from the same retarded
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equation of motion for observables as Dyson~ (see
also Ref. 6). Other perturbation schemes for
various correlation functions have been developed
and applied in the critical region' and in turbu-
lence "'

A well-known difficulty with quantum systems
stems from the perturbative expansion of the
canonical density matrix. This is because that
expansion is identical with the time evolution op-
erator taken at imaginary time i t = -1/k sT. Sev-
eral formalisms have been devised to cope with
the dilemma of a simultaneous chronological order
along the real and the imaginary time axes (see,
e.g. , Refs. 9 and 10).

For classical canonical systems the perturbative
expansion of the canonical probability density turns
out to be much simpler. This is due essentially to
Liouville's theorem or, more explicitly, to the
skew symmetry of the matrix D occurring in the
canonical equations of motion for the P variables.
In noncanonical classical systems, such as those
falling under classes A and B of Ref. 2, the skew
symmetry of D and hence Liouville's theorem are
lost." In this respect the present paper does not
have the generality necessary to cover all classi-
cal systems of interest. However, it turns out that
the same perturbative expansion remains valid
for noncanonical systems, including random
forces, "so that the present restriction to canoni-
cal systems is justified.

We believe indeed that the present paper achieves
the goal set by MSR, i.e., to free classical per-
turbation theory from the guesswork inherent in
earlier formulations which made use of quantum-
mechanical techniques and, in particular, of the
limit h -0. In fact, this last limit turns out to be
very often ambiguous for dynamical calculations.
As to the static problem, it is simplified by the
absence of the g variables. And since the free
Hamiltonian has a quadratic form in the g vari-
ables, Wick's theorem for ordinary g products is
just a consequence of Gaussian integrals. "'

On the other hand, the analogy with quantum the-
ory has been followed as closely as possible in
building up the classical perturbation scheme pre-
sented here. It is, in fact, useful to consider the
set of initial values of the g variables as the
"state" of the system and the full time evolution
of observables as the "Heisenberg representa-
tion. " The interaction-free evolution from the
same state then plays the role of the "interaction
representation, " and as in the quantum case the
key quantity for perturbation theory is the trans-
formation S between the two representations.

As in quantum theory this S transformation also
gives the perturbation expansion of the probability
density p, and it is no surprise that we also need

II. CANONICAL DYNAMICS

We consider systems defined by a Hamiltonian

H(p, q) and choose for the canonical variables the
notation

0 =P 4+) =qg (2.1)

Introducing the skew-symmetric 2N x 2X matrix

D=-D=-D '= 0 1
-1 0

(2.2)

the equations of motion can be written in the com-
pact form

'dH
(I)v

8 Duv &
v 7, ~ ~

&
2X

+u
(2.3)

where summation over repeated indices is under-
stood. Furthermore, defining the differential op-
erators"

a
4v

vugg

Y'u
(2.4)

the Liouvillian reads

(2.5)

so that the equation of motion of any dynamical
quantity A(g, t) is given by

dA BA—=[1., Aj+ —,
dt ' Bt ' (2.6)

where the commutator bracket automatically en-
sures that L acts only within it.

The above notation is particularly suited for the
classical many-body problem, which is known"
to lead to a doubling of the dynamical variables in
the sense that Green's functions have to be intro-
duced for pairs of both g and g variables. But in
addition this notation also suggests an immediate
generalization to noncanonical systems where the
matrix D ceases to have the simple form (2.2)."

In order to formulate perturbation theory we
split the Hamiltonian into a free part 8, and an

the well-known adiabatic switch-on condition. In
its classical form this assumption states that when

p is traced back to times t ——~ along unperturbed
orbits it coincides with the probability density p,
of the unperturbed system. For probability densi-
ties p sufficiently general to describe nonequilib-
rium situations, which is the scope of this paper,
the adiabatic switch-on condition is, of course, a
serious physical assumption. While this condition
is well known in quantum theory (see, e.g. , Ref.
9), it has also been used in the microscopic for-
mulation of kinetic theory (see, e.g. , Pomeau and
Rhsibois, Ref. 7).
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interaction part H „
H =Ho+a~ . (2.7)

JI, is taken as real, positive definite, and of quad-
ratic form, up to a constant,

v(t, t') = v(t-)v '(t'-) =v(t, r)v(r, t ).
Equation (2.17) may also be generalized to func-

tions of p by observing that for an arbitrary infini-
tesimal 5„

1
&O = &PP&P1 0V ~ (2 8)

A(q+5) -A(y) = 5„D„„[j„,X(y)) (2.21)

so that according to (2.3) and (2.5) the free equa-
tions of motion are A(0(t), ~(t), t) = v(t}A(q, i, t)v-'(t), (2.22)

is also an observable satisfying (2.17). Hence

and where

(2.9)

(2.10)

(2.11)

where ())(0) =)t). This generalization will be impor-
tant later; in particular, it applies to the Liouvil-
lian.

In order to determine this transformation, we
differentiate Eq. (2.17), leaving out the parametric
time dependence for simplicity. This yields

—A(g(t))dt

is the free Liouvillian.
There exists a nonsingular transformation g- gX which diagonalizes A according to

= ~ (~& ((&
-'

(~ & „,"~(('& ~()') „, )( t~) (' -' t~) ,

(2.23)
(x-'Ax)„, = ~„5„, (2.12) or, with the Liouvillian,

(here p is not summed). Solving (2.9) explicitly
in this representation and transforming back, one
finds

(2.13)

&(t)= &(4, i-, t) =U '(t) -„,

dU '(t)
)

dh

applying (2.22) to l.(t},

(2.24)

w„„(t)=x»e'('x, (2.14)

is independent of the g's and the superscripts in-
dicate free time evolution. From (2.12) and
(2.14) we also obtain

w(t) = w(t)A. (2.15)

It is useful to introduce the time evolution in

analogy to quantum mechanics (see, e.g. , Ref. 9}
by first defining the state of the classical system
as the set of initial values at ~ =a,

y(0) =y'(0) =q. (2.16)

Then Eqs. (2.3)-(2.9)are tobe understood as the
Schrodinger representation and the evolution of an
observable from this fixed state,

A((}&(t), t) = U(t)A((f), t)U '(t), (2.17)

is the Heisenberg representation, while the free
evolution from the same state,

A(y'(t), t}= v, (t)A. (q, t)v„'(t), -(2.18)

defines the interaction representation. It is some-
times of interest to generalize these transforma-
tions so as to have the group property, namely,

A(e(t), t ) = U(t, t')A(C(t'), t) V(t', t), (2 19}

where

—„&A(0(t))= [f44(t), () (t), t), A((}(t)}], (2.25)

which gives the precise meaning of Eq. (2.6).
Equation (2.24) may also be written

U(t) =U(t)L(t) = L()t)(t), g(t), t)v(t), (2.26}

where we have made use again of (2.22). Without

parametric time dependence I. is constant and

v(t) =e". (2.27)

The free Liouvillian, which was assumed to have
no parametric time dependence, has the property

f.(e'(t), 0'(t)}= f.(0, e) -=L. , (2.28)

which follows from (2.22) and (2.27) applied to the
free motion.

In perturbation theory the transformation be-
tween the Heisenberg and the interaction repre-
sentations is of particular interest. It is defined
with respect to the initial state (2.16) at t =0 as"

~(y(t), j(t), t) =~(0, t)A(V'(t), V'(t), t}S(t,o) .
(2.29)

Application of Eqs. (2.17) and (2.18) immediately
gives

S(0, t) =S '(t, 0}=U(t)U, '(t} .
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We want this transformation, when applied to a
product AB, to have the gxoup propex'ty. This is
Rssured by the definition

s(t, t') -=s(t, 0)s(0, t')

=U, (t)U-'(t)U(t')V (t'}

= s(t, ~)s(T, t') . {2.31)

In order' to determine this transfox"mation we take
time derivatives of (2.31)„making use of Eq. (2.26), FIG. 1. Graphical representation of a vertex with two

( legs and one g leg (with arrow), according to Eq. (2.33).

,s(t, t—')=s(t, t'}L',(t') .

(
-

)
&8,(4), t)-

is the interaction Llouvilllan L(t) Lio, and

z,'{t)= t.,j q'(t), j-'(t), t)
'e' 0f(y, q, t)e-'"

(2.32)

(2.34)

axe typical of classical perturbation theory, as will
be seen below. An exception, however, is given by
quantum hydrodynamics, where vertices with two
p legs occur (see, e.g., Ref. 10).

It is important for the existence of a Wick's the-
orem {see Sec. 1V) that g' variables commute with
each other for any time arguments and indices,

[0',(t), 4!(t'}]= 0. (2.37)

To prove this, it is sufficient to show that the com-
mutator

is its interaction representation, in agreement
with (2.18). Equations (2.32) may be written in in-
tegr al equation form,

t

s(t, t'}=1 — dT z.,'{~)s{~,t')

vanishes, where & „=&/&g„ in the notation of (2.16).
First, it follows from (2.11) that

[&„e~~'] = e~ o' vA„„&„,
= j. + iT S I,, ~ L,' 7, {2.35)

which by lteratlon yields the well-known expx'es-
slons

g~, ~ )=2 a*p(-J' a. l„'(r))

=Texp + d7I 7 (2.36)

Here T and i are the chx onological and antichrono-
logical operators which order the factors of a prod-
uct such that increasing time arguments run from
right to left and from left to right, respectively.

From Eq. (2.33) one sees that if

We are interested in the statistical averages of
observables A(y, 4),

dg~p P)A Q, p, I, (3.1}

But the last expression obviously commutes with
Equation (2.37) is, of course, not true for the

perturbed variables g(t).

that is, if the interaction vex"tex has fi, g legs, then
1., has always one g legand(n —1) /legs. Wewill
distinguish the g leg graphically by an arx ow point-
ing towards the vertex (see Fig. 1). From the
point of view of the doubling of variables (q, P )
—

(ry, 4) mentioned earlier, this type of vertex has
no analog in conventional many-body quantum the-
ox'y. In fRct, it gives rise to complications whlc1l

with an arbitrary density matrix p obeying the nor-
m Rllz ation

(3.2)

Since we have to allow for both g Rnd g variables
the convention adopted in (3.1) that p always stands
to Ne teft Itmgd side of the obs-ervables is very im-
portant. This is, in fact, different from the quan-
tum-mechanical trace, which is cyclic with x'espect
to any product.

We want to study the response of the system to a
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Ht(t) =H +5H(t), 5H(t) =5f„(t)&t&„.

The associated Liouvillian is then

(3.3)

particular small external field 5f„(t) which is
switched on at t, and which we show explicitly by
writing, in the Schrodinger representation,

is recognized as the response function (3.9),

R pu(t~ t ) —Gg (g)(, (&') .
p v

Indeed, according to (2.23),

&)&, (t) =U(t)D» U '(t),
vpgy 7

(3.12)

(3.4)

In interaction representation with respect to 5f, (t)
averages are formed with

pf(t) p + 5p (t)

while &)&„evolves as &)&„(t). On the other hand, in
Heisenberg representation averages are formed
with p, while &t& evolves as &t&t„(t). Hence

«)&t (t)) = Trpb„(t) = Trpt(t)&t&(t)

or

where &)&(0) =&)& are the initial values. But from
(2.26.) and (2.5) we see that U '(t) is an exponential
of differential operators and hence is unity when it
stands completely to the right-hand side. From
this argument it also follows that' '

(3.13)IT@(t)II (t')

In the ca.se of Local thermal equilibrium the Ham-
iltonian will in general have a parametric time de-
pendence due to external fields, and the density
matrix has the canonical form

5&&((t) &
= Tr5p, (t)q(t) =&/(t) —&t(t)& . (3.5) p = exp[F(t) -H (&t&(t), t )] . (3.14)

Now according to (2.29), written for the initial
time t„

tp'„(t) = 5'(t„ t)&t&(t)~'(t, t, ), (3.6)

where Sf(t, t, ) is obtained from (2.35) with the in-
teraction Liouvillian (3.4) in the interaction repre-
sentation (2.34); to lowest order in 5f, (t),

t
St(t, t, ) = 1 — dt' 5f, (t')&t (t') .

tp

Insertion into (3.7) yields

(3.7)

or

(3.8)

Taking the switch-on time tp to -~ we arrive at the
response function

(3.15)

Here we have made use of Eqs. (2.4) and (2.5), and

the vanishing is due to the skew symmetry (2.2) of

D, or, equivalently, to Liouville's theorem.
Specializing to global equilibrium, where H has

no parametric time dependence and p is constant,
Eq. (2.6) shows that p commutes with L Equation.
(3.15) then implies ([L,A]& = 0, or, in integral form
making use of Eqs. (2.22) and (2.27),

&A((&(t), y(t))& =&A(0, e)&, (3.16)

Here the free energy F(t) is determined by the nor-
malization condition (3.2), and we have put ka T = 1

for simplicity.
With (3.14) a useful identity is obtained, for any

observable A bounded by a polynomial in g and g,
by partial integration at an arbitrary time t,"

5&(&((t)&

5f, (t')

s &t&(&(t)

eq, (t')

We define the Green's functions

(3.9)

which expresses time-translation invariance of
global equilibrium. In this case it follows with
Eqs. (2.19) and (2.20) that the Green's functions
(3.10) depend only on the time difference t —t'.
This is true, in particular, of the free Green's
functions

G @(t)y'&g'~ =Gy'&c &y(&& =&T(&(&(t)4&'(t'))& (3 ~

where P and P' are any g, or g„. In particular,

G «~(t, t') —= G«(()&( (&, )
——&g(&(t)q, (t')& (3.11)

is the propagator which is symmetric in the two
variables, while

G g&g), y &t') =&T&&&& (t t')0' (0)))0 (3.17)

in which the average is defined with the unper-
turbed density matrix

eFp Hp( $ )
I p (3.18)

From (2.13) we obtain with the initial condition
(2.16)

G ««(t) = &4'x$& &0 Wx(&(t) .
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In view of Eq. (2.8) the average (g~g, &, may be
evaluated by making use of the properties of
Gaussian integrals. With the help of the identity"

follows immediately that'~

(3.31)

(e' &o =exp[-,'gq(E ')„,$,],
we immediately obtain

=(& ')„s,
so that (3.19) becomes

G'„, (t) =w„, (t)(z-') „,.

(3.20)

(3.21)

(3.22)

Introducing for the remaining self-energies a, nota-
tion analogous to the one chosen for the Green's
functions,

Epv(tt t } ~ikp{t}{7~{(')~

~pu(t~ t ) Ethp{t\fp{t'& ~

(11')„„(t,t') =rr.„(t', t) =Z; „,„„,

The free-response function follows immediately
from (3.9) and (2.13),

ft '„„(t)= e(t)w„—„(t)a,„. (3.23)

(3.24)

Similarly we introduce a matrix

(t{P |('It 4P ttP

PP aft 4P Illj

(3.25)

for the self-energies which are defined through
the Dyson equation

C = G'+O'ZG,

or formally by

(3.26}

The occurrence, for classical systems, of two

types of Green's functions is analogous to the situ-
ation with quantum systems without particle con-
servation, such a,s the quasiparticles in supercon-
ductors or superfluids' or the phonons in quantum
fluids" or dielectric crystals. " As in these theo-
ries a 2x2 matrix form for the Green's functions
is indicated and was actually introduced by MSR. '
Here we find it convenient to introduce a 4Nx4&
matrix notation,

(3.33)

In terms of the 2Ãx2N submatrices introduced in
Eqs. (3.29) and (3.33) the Dyson equation (3.26) has
the following content:

G - O' = G'IIR '+Z'rr'0+a'ZZ ',
a -zo =eon'Z .

These relations are also readily verified starting
from Eqs. (3.27) and (3.30).

IV. WICK'S THEOREM. DIAGRAMS

In Sec. II we have reduced the full time evolu-
tion of observables to the free one with the help
of the operator S(t, t') [see Eqs. (2.29), (2.31), and
(2.36}]. In order to arrive at a perturbation scheme
in the form of a systematic diagrammatic analysis
we also need the reduction of the general density
matrix p to the free matrix p, of Eq. (3.18).

Liouville's theorem states that

—=o =[I,p]+—,dp BO

dt ' Bt '

or, in integrated form, in the notation of (2.16),

(3.27) p(g(t), t) = p(P, 0) —= p = const. (4.1)

Note that in Eq. (3.26) matrix multiplication also
includes the time-convolution integr als.

Defining the transposed response function as p({t'(t), t) =S(0, t)p(P'(t), t)S(t, 0) . (4 2)

On the other hand, Eq. (2.29), applied to the func-
tion p({tI(t), t}, reads

(R')„,(t, t') =z„„(t',t), (3.28) Now the adiabatic switch-on condition states that

Eqs. (3.11)-(3.13) lead to the following form of the
matrix (3.24):

(3.29)

lim p(g (t), t) = lim po({tto(t})=p, , (4.3)

where po is given by (3.18). After taking the limit
t- -~ in Eq. (4.2), insertion of (4.3) leads to the
desired result,

whose inverse is, formally, o = S(0, --)p.S(--,0). (4 4)

(3.30)

By comparison with Eqs. (3.25) and (3.27) it then

Here we have, of course, assumed the existence
of the limit t- -~ on both sides of Eq. (4.2). Since
we want our theory to be sufficiently general to
describe nonequilibrium situations, p must be left



quite general. In this case the switch-on condition
(4.3) is a serious physical assumption which, how-
ever, is currently and successfully made in the
literature.

With Eqs. (2.26) and (4.4) it is now possible to
reduce an arbitrary T product of polynomials
A(P, g) to the interaction representation. Making
use of the group property (2.31) and of the anti-
time-ordering action of the operator j we get

&T{A,(f,) A~ „~(f„))&

Wick's theorem for T products. The first step is
to eliminate a given g'„(f') by commuting it succes-
sively with all factors standing to its right-hand
side in the anti-time-order. This we do until
Po (f') arrives at the right-hand end of the product,
where it annihilates.

According to (2.37) commutation with another
factor P has no effect, while commutation with a
g introduces a g-independent term

Indy. b'(0, -")P.T(s(-,+")&',(f, ) A'. (f„))1,

(4 5)
where we have introduced a factor S(f„,+~) =1 at
the far right-hand side.

In order to get rid of the factor S(0, -~) to the
left-hand side of po in Eq. {4.5), we write

=D.P'i „(f—f') (4 8)

This is true if P'„(f) stands to the right-hand of
$0(f') in the anti-time-order, that is, if f& f'. We

may extend (4.8) to f & f ' with the help of a factor
e(t —f ') by defining the contraction (denoted by
dots to the right of the symbols)

S(0, -~) =1— BH,(p'(T), r)
4'„( )

&T(" P''(f')" 0'(f)" )&

=&T( "x ~ ~ x ~ ~ )&,&T(0'„(f ')g'„(f)) &, , (4.9)

where we have made use of (2.35), (2.34), (2.33),
and (2.4}. Transforming the integration variables
in Eq. (4.5) to go(r), we perform a partial inte-
gration over P„(r) of the term proportional to
S(0, -~) —1. Provided that the exponential decay
of po is strong enough to annihilate the boundary
terms of this partial integration, we end up with a
factor

s'H, (y'(r), ~ )"' ago(r) sp'„(r)

which, as in Eq. (3.15), vanishes because of the
skew symmetry of the 8 matrix, or, equivalently,
because of Liouville's theorem. Hence S(0, -~)
can be replaced by unity in Eq. (4.5), so that

&7 {A,(f,) A„(f„))&~~

= &T(S(-, + }A',(f,) ~ ~ A'„(f„))&,. (4.6)

Taking a fixed term in the Taylor expansion
(2.36) of S(-~, +~), the last expression reduces
to a sum of new T-products,

4.) -=&T(4', (f,) y'.(t.)}&„(47)

multiplied with the vertex functions contained in
the interaction LiouviQian f., As in Eqs. (3.10)
and (3.17) we want the P's in (4.7) to stand for g
or 4 variables. This requires, however, that
some of the time arguments may coincide, first,
because L,, contains more than one factor P, and,
second, because we allowed the A's in the product
(4.5) to be arbitrary polynomials.

Our next task is the factorization of the products
(4.7), or, in other words, the establishment of a

where a cross means omission of the correspond-
ing factor. From Eqs. (3.9), (3.10), and (3.12)
applied to the free Green's functions it is readily
seen that for f & f the contraction in (4.9) is identi-
cal with (4.8).

Thus we arrive at the first result,

&T( "P )) =P&T( 0'" 0' ))

(4.10)

where the sum runs over all P factors in the pro-
duct. Since according to {4.9) contraction elimi-
natesaP, /pairing'(P, ~ ~ @ ), a.llew'smaybeelimi-
nated in favor of free-response functions by a suf-
ficient number of contractions. Qbviously, a
r'(Q, P)which. contains more P's than P's is zero.

We are thus left with products 7'0(P„~ ~ P„)of
commuting factors which, according to (2.13) and

(2.16), may be put into the form

r'(0„„"4„.}
=&&., ~ C..&.W.,„~,(~f,) ~ W..„.(f.)~ . (4.»)

The products &P„,
~ ~ P„&o may b~ e generated from

the identity (3.20) by differentiation with respect
to $„,~ ~ ~ $, and then putting $ =0. It immediately
follows that &P . ~ $„&,=0 for odd m. For m =2n
we may write

&y„~ y„,„&.=,.„, (E-')..., . (E-'). ,
xsv, ' ' s,,„(ha,f „' ' $.„h,„),

(4.12)

where s„=s/B)„Now we .select an arbitrary pair
of indices e, Pout of v, ~ ~ v,„such that 8 Bz acts
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on the last pair $, $, . Because of the freedom in
the labelings and the symmetry of E this can be
done in 2n ways; the result is

1
( ) s(2 -

( y)I ( '''( )

x ~ ~ ~ 8 ~ ~ o g o ~ ~&a &8

x(~.,~,,"~ t.„,~,„,),
where the barred derivatives are to be omitted.
This can be written in the form of a contraction,

( '$ ~ ~ 'P ~ ) =&. x x ~ )(E ')

(4.13)

Now the selection of pairs of indices cyP on the
right-hand side of (4.12) can be done in n(2n —1)
ways; hence

(4.14)

where the sum extends over all pairs.
Reinstating the time dependence we may use Eqs.

(3.17) and (3.22) to define the contraction

&T( ~ ~ y'(t) ~ ~ ~ y'(t') ~ ~ ~
)&

=(T( x ~ x ~ )), &T(p'„(t)p' (t'))&, , (4.15)

which is written in the same form as (4.9). Making
use of (4. 14) and (4.15) in (4.11) we obtain

&T(. .0' 0' )& = g &T( 0' 0' )&

(4.16)

By successive application of this reduction we

finally arrive at a complete factorization of any
T product. This is Wick's theorem, which now

may be stated in the following form:

&T(g(t, ) "y.'.(t..))&.

&T(y', , (t„,)P'—,, (t-„,.)))o, (4 17)
(v;,v))

where the sum is over all pairings (v, , v, ).
This derivation of Wick's theorem is very simi-

lar to the one given for imaginary-time-ordered
products by one of us" where also three types of
contractions occurred due to the nonvanishing of
normally ordered products. Here the $ variables
behave like absorption operators and the shifting
to the right-hand side corresponds to the standard
derivation of Wick's theorem for normally ordered
products in quantum field theory. " However, the
P variables are not analogous to creation opera-
tors, and this gives rise to the complication anal-
ogous to those encountered with thermodynamic
Green's functions. "

We now are in a position to introduce diagrams.

In accord with the diagrammatic definition of
vertices introduced in Fig. 1 we associate a simple
line to the propagator G' and a simple line with an
outward arrow pointing towards the past for the
response function R, and similarly with double
lines for G and R (Fig. 2). It follows immediately
from these definitions that closed loops of R lines
vanish. This leads to a tree structure of R lines
which is defined such that exactly one R line is
incident at every vertex, while the number of
emerging R lines may vary between zero and the
number of legs of the vertex. The procedure to
construct diagrams of given vertex structure
(fixed number of legs), given order (fixed number
of vertices), and given external lines (fixed num-
ber and type) now is as follows: Insert all possi-
ble tree diagrams into the given structure such
that each vertex has exactly one arrow, and then
fill in all possible propagator lines.

Thus the diagrams have the structure of double
graphs similar to those introduced in quantum
field theory by Dyson in 1951 for retarded pro-
ducts. As in our case Dyson's tree structure is
formed by retarded Green's functions, and the
number of tree lines emerging at every vertex is
exactly unity, while the number of incident lines
may vary between zero and the number of legs of
the vertex [see Fig. 4 of Ref. 4(b)]. Note that our
arrows have direction opposite to those of Syman-
zik. The reason is that we introduced arrows as
a property of the interaction vertex (see Fig. 1),
which here is the natural thing to do. It is inter-
esting to note also that Kawasaki's diagrams are
exactly the same double graphs, the only differ-
ence being that instead of drawing arrows Kawa-
saki assigns a definite time direction to his dia-
grams. This similarity is not surprising, since
Kawasaki starts from the same retarded equation
of motion as Dyson and Symanzik.

As an application let us now discuss the dia-
grammatic content of the Dyson equation for verti-
ces with three legs. In Fig. 3 the property (3.31)

FIG. 2. Graphical representation of the free propaga-
tor G&~ (t-t') (single line), the free response function
R&0, (t- t ') (single line with arrow), the fuLl propagator
G» (t-t') (double line), and the full response function

R» (t-t') (double line with arrow). Arrows point towards
the past.
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is seen from the diagrams for Z&&, which all van-
ish (closed loops). Figure 4 shows the lowest-
order contributions to II and Z. Note that the sec-
ond Eq. (3.34) is exactly represented by Fig. 4(a)
of Ref. 1(a), whereas Fig. 4(b) of Ref. 1(a) may
be obtained from the first Eq. (3.34) only under
special requirements pertaining to the Navier-
Stokes equation.

V. FLUCTUATION-DISSIPATION THEOREM. DISCUSSION

As observed by MSR' end by Deker and Haake'
the complication of two types of diagrams may be

reduced in part by exploiting the connection be-
tween propagators and response functions known
as the fluctuation-dissipation theorem (FDT).
The derivation of a FDT for classical canonical
systems has been given independently in Refs.
2 and l4. The purpose of the present rederiva-
tion is to show the extent of its validity. It turns
out, in fact, that the key property needed is the
canonical form (3.14) of the density matrix.

Starting from Eq. (3.9), we transform the inte-
gration variables of the average to g(t') and per-
form a partial integration of P„(t'). The result is

R„„(t,t') =e(t —(')))„)' (p,(„(t)(' —J rl (()), () (t-)„ (5.1)

(5.2)

Thus (5.1) becomes

( t')= 8(t t') (5.3)

which is the FDT. It is obvious from this deriva-
tion that the FDT will not be true for general non-
equilibrium situations.

For the transposed response function as de-
fined in (3.28) the FDT reads

where, according to (4.1), p = p(g(f'), f'). ff p is of
the local equilibrium form (3.14), where H may
still depend on external fields, then the boundary
terms vanish, a.nd, in view of (2.3),

into the simple matrix relation [cf. Eq. (2.45) of
Ma and Mazenko, Ref. 6]

R(f) —R'(f) = G(f) . (5 5)

As was emphasized by Deker and Haake, 2 the
existence of a FDT can be used to eliminate one
of the two self-energies Z and II introduced in
Sec. III. This is true provided that global equi-
librium holds, so that Eq. (5.5) is applicable; in-
deed we have not been able to derive this relation
between Z and II for local equilibrium.

We start from Eqs. (3.34) by projecting out G'

(5.4)

In the special case of global equilibrium where
the Green's functions depend only on the time
difference, Eqs. (5.3) and (5.4) may be combined

+ 0 ~ (e

FIG. 3. Lowest-order diagrams contributing to Eq.
(3.31). All. diagrams vanish because of closed response
function loops,

FIG. 4. Lowest-order diagrams contributing to the
self-energies II and & according to Eqs. (3.34).
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with the help of the relation

d—-A Go(f)=0, (5 8)

which follows immediately from Eqs. (3.22) and
(2.15}. Since according to (3.23), (2.14), and
{2.15)

(5.7)

this projection yields

(
——A G =-O(ri'G+ZR'),
dt

(——A R =-O(1+n'R),
dt

(5.8)

(5.9)

where matrix multiplication and time integration
are understood. We now take the time derivative
of Eq. (5.8). This step requires some precautions
because of the step functions contained on the
right-hand side.

Indeed, causality of R(t) implies analyticity of
its Fourier transform

in the upper half-plane Imu&0. Then R '(u) exists
and is analytical (up to poles) in the same domain.
Therefore R '(t) also exists and is causal, while
for Rr(t) and (Rr) '(t) anticausality holds, i.e. ,

R(t), R-'(I), n'(I) e(f),

R '(I), (R '}-'(I),n(f) e(-I) .
(5.10)

These relations, together with time-translation
invariance, imply that

df' n '(I —I') G(t')

dt'Il -t' G t' —t), (5.11)

ZA = dt'Z t —t' 8 t'

from which follows that

—(n'G+ZR') =n'G+ZR' (5.12)

Inserting this result together with the FDT (5.5)
into the time derivative of Eq. (5.8), we find

—- A (R-R') =-o[n'{R -R")+zR "j .
dt

(5.13)

After substitution of Eq. (5.9) and multiplication
from the left-hand side with D =-D ' and from the
right-hand side with (Rr) ', Eq. (5.13) leads to

z(f) = (R')-'(I) +n'(t) o-——A 5(f).dt
(5.14)

n NOr)-1 (R r)-1

we obtain the final result

z(f) = n'(I) —n(f),

or applying the relations (5.10),

[nr(t), for t&0,
z(&) =

~
l-n(f}, for t&0.

(5.18)

(5.18)

Here the first equality is the same as Eq. (7.1}of
Deker and Haake, ' while the second is a conse-
quence of the first. This is because, quite gener-
ally,

(5.19)

which follows from Eqs. (3.27), (3.30), and (3.33),
since according to Eq. (3.11)

G G (5.20)

This symmetry (5.19) also follows from Eqs.
{3.23), (3.14}, and (3.17) of Ref. 2, and in this
sense Deker and Haake's result (7.1) is complete.
Note also the analogy of the 7' transposition with
time reversal in Eqs. (5.18).

In closing, we wish to comment on the shifting
procedure for time derivatives used by Deker and
Haake' to prove diagrammatically their Eq. (5.5).
The fact is that at each response function line a
boundary term is picked up by differentiation of the
0 function. This can be seen by using as an exam-
ple Eq. (5.11), which by differentiation becomes

il'G+n'(0 )G =n'G.

Here the boundary term -Ilr(0')G is picked up by
shifting the time derivative from II to G. Deker
and Haake avoid such boundary terms by keeping
time-integration limits formally at -~ and +~.
In this formal sense the diagrammatical proof of
their Eq. {5.5) is, of course, correct, and may in

principle be used to simplify diagrams by eliminat-
ing one of the Green's functions G or R.
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But here the last term is just the reciprocal,

{R')-'(I)=O ——A 5(f),dt
(5.15)

as can be verified from Eq. (5.7), either by multi-
plication with A or through Fourier transforms.
Since from the second Eq. (3.34) there follows,
after taking the T transpose defined in Eqs. (3.28)
and (3.32),
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