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The effects of nonlinearity in nematic liquid crystals subject to electric and magnetic fields are emphasized.
For the Fréedericks transition, the distortion profile is calculated exactly. For the domain modes, the torque
equation can be approximated to a high degree by the nonlinear sine-Gordon equation. An exact two-
dimensional periodic solution is found whose consequences are in good quantitative agreement with all
experimental observations. The possibility of a first-order transition to a vortex pattern is predicted.

INTRODUCTION

Applied electric, magnetic, and thermal fields
induce in liquid crystals a variety of flow patterns
with striking optical properties.»®* The first and
best known of these patterns is the Williams do-
main mode,?® but a number of other vortex patterns
or domain modes are now well established.* Our
basic understanding of the physical mechanism in-
volved comes from Helfrich’s conduction-induced
alignment theory.® His treatment, however, is
essentially one-dimensional and linear. Penz and
Ford have substantiated Helfrich’s theory by solv-
ing the stationary electromagnetohydrodynamic
boundary value problem.*%7 Recently, Penz modi-
fied the solution to include dynamic effects, in-
voking the principle of selective amplification.® In
either case, the equations are linearized, and thus
the treatment is, of necessity, limited to small
perturbations. A linearized theory can, of course,
yield no values for the amplitudes. Yet the inter-
esting domain modes appear with finite amplitudes
at well-defined thresholds. Thus the validity of
the theory is still open to question.

It seems that nonlinearity plays a crucial role
in stabilizing the domain patterns. Therefore in
this work attention is focused upon the effects of
nonlinearity. In this paper, the distortion pro-
files, i.e., the director angle as a function of the
coordinates are calculated. It should be empha-
sized that analytic rather than numerical solutions
are sought.

Section I deals with the exactly solvable case of
the Fréedericks transition. The mathematical de-
tails are postponed to the appendixes. The Will-
iams domain mode is the subject of Sec. II, which
constitutes the main body of this paper. A version
of the one-elastic-constant approximation reduces
the rather complicated torque equation to the sine-
Gordon equation, which, in this instance, is exact-
ly solvable yet retains the essential nonlinear fea-
tures of the problem. Section III extends the re-
sults to homeotropic domain patterns. In Sec. IV,
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the form of the solutions, as well as ways to im-
prove on the predictions are discussed. More-
over, it is shown that the model predicts domain
contraction with increasing voltage and a first-or-
der transition to the domain modes.

I. FREEDERICKS TRANSITION

As an example of a complete treatment of a non-
linear problem we present the exact solution for
the well-known Fréedericks transition.® Saupe’
calculated the critical field and the distortion am-
plitude but failed to calculate the distortion pro-
file. We shall do so now. After the completion of
this report, it came to my attention that Deuling"!
has treated the same problem. Nevertheless, I
present my results, since they seem to be more
compact and also for reference purposes in what
follows.

A. Case 1: Splay-bend (n, H,)

Consider a nematic liquid crystal of thickness d
sandwiched between two plane-parallel plates. To
fix ideas, we assume that the nematic molecules
in the undisturbed sample are aligned along some
well-defined “easy” direction parallel to the plates.
Such an easy direction can be readily established
by rubbing the plates. A magnetic field H and/or
an electric field E applied perpendicular to the
plates will, generally speaking, change the orien-
tation pattern. We shall calculate the director
angle ¢ as a function of the distance from one of
the plates.

We introduce a Cartesian coordinate system with
the x axis parallel to the easy direction, the y axis
parallel to the field, and the z axis perpendicular
to both.

The differential equation for the director angle
¢ is, in the magnetic case,

d*¢  OxH®+k(do/dy)?
dy? Tk, cos’p + kg, Sin®e

sing cos¢, (1.1)
where
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ax=x"-x*, AOk=ky—k,; (1.2)

k,, and k,, are the splay and bend moduli, re-
spectively, and x" and x* are the magnetic sus-
ceptibilities parallel and perpendicular to the easy
director axis. In the presence of an electric field,
AyxH? must obviously be replaced by AxH?+ A€E?,
where

" et (1.2;)

’

A€ =€

and where €" and €* are the parallel and perpen-
dicular permittivities.

We make Eq. (1.1) dimensionless by introducing
a characteristic (or “coherence”) length X, de-
fined by

=k, /OxH? (1.3)
and substituting

n=y/A, (1.4)
Moreover, we set

K = (kgq — Ryy)/ Ry, (1.5)

Then, (1.1) becomes

0% _ 1+k(0/on)

o T3k sin’e sing cos¢ . (1.6)

This equation can be solved by standard procedure.

The solution is
Kk sing =¥ sp/(1 - ¥?sp?)*/2, 1.7

where sp is an abbreviation for a generalized Ja-
cobian sine-amplitude function,

Y? =k sin®¢,/ (1 + k sin®¢,), (1.8)

and ¢, is the maximum value of the director angle.
The details of the calculation and the relevant de-
finitions are postponed to Appendixes A and B.

B. Case 2: Twist (n, .H, H,)

The geometry is almost the same as for case 1,
except that now the magnetic field is in the xz
plane, i.e., parallel to the plates H=H cosa,0,
Hsina). The distortion is pure twist.

Now the differential equation for the director
angle becomes

¢ _ AXH?

& " h cos(a - ¢) sin(a - ¢), (1.9

where %,, is the twist modulus.
If the magnetic field is in the z direction, then
a=37, and we have

d*¢ = AxH®* .
o7 " 7. singcose. (1.10)

This is the one-dimensional sine-Gordon equa-

tion. It has to be solved subject to the boundary
conditions

¢(0) = ¢(d) =0. (1.11)
The solution is well known to be
sing = sing, sn(n\¢,), (1.12)

where 7 is defined by (1.3, 4) except that %, is re-
placed by the twist modulus %,,, and sn(n\¢,) is the
Jacobian sine-amplitude function of argument n and
modular angle ¢,.

For arbitrary @, we introduce the substitution

p=¢-a, (1.13)

which again reduces (1.9) to the sine-Gordon equa-
tion

‘Z—Zyz’; =+ A};‘:Z cosy siny, (1.14)
now subject to the boundary conditions

P(0)=9(d)=- a. (1.15)
Again, the solution is

siny = siny, sn(n - n\¥,) , (1.16)
with

1, =F(arcsin (sina/sind,)\,)

arcsin (sina/ sindg) - a1z
f do(1 — sin®yp, sin®6)"'/2,
0

(1.17)

where F(¢\y,) denotes the elliptic integral of the
first kind, of argument ¢ and modular angle ¥,.

C. Case 3: Bend-splay (n,,H,)

In this case we have homeotropic boundary con-
ditions, i.e., the easy direction is perpendicular
to the plates, This can be achieved, for instance,
by treating the plates with lecithin. Otherwise,
this case is analogous to case 1, except that &,;
and &,; have interchanged their roles.

Figure 1 shows plots of ¢ vs 2y/dfor 4-4’-azoxydi-
anisole (PAA) for all three cases. The curve cor-
responding to twist can also be used to compare the
exact solution to the one-constant approximation
(k=0). It becomes clear how to correct the re-
sults of the one-constant approximation. For case
1, the exact curve starts off steeper and ends up
flatter. Of course that could have been anticipated,
since at the boundary %, dominates, while further
on k,, becomes more important. For case 3, the
converse is true. Figure 1 shows also an ordinary
sinusoidal curve to facilitate comparison with the
linear approximation.

The corresponding curves for N-(p-methoxyben-
zilidene) p’-butylaniline (MBBA) are not shown,
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since because of the small difference between the
elastic moduli, the curves appear to be almost
indistinguishable at the given scale. Hence we
conclude that the one-constant approximation will
be excellent for MBBA.

II. WILLIAMS DOMAINS

If the nematic sample contains free charge car-
riers, i.e., impurity ions, the phenomena become
much more complicated and interesting. In the
geometry of case 1, with an electric field E= (0,
E,0) applied across the sample, one observes
stripes parallel to the z direction. This pattern
has become known as Williams domains. We shall
not describe the physical model, which is by now
familiar and is described in Refs. 1-5. Rather,
we focus attention on the specifically nonlinear as-
pects of the problem.

We are again dealing with a nematic liquid crys-
tal sandwiched between two plane-parallel elec-
trodes across which an electric field E is applied.
A magnetic field i may also be present. To fix
ideas, we assume that the nematic molecules in
the undisturbed sample are aligned along a well-
defined easy direction. We work in the geometry
of case 1. Helfrich® has shown that the problem
is planar in the xy plane.

We choose to calculate the director angle ¢.
Once that is known, other quantities of interest
may be computed, and perhaps a self-consistent
calculation might even be attempted. For that
purpose our solution should serve as the best
available trial function.

To begin with, we write the torque densities

45°

o 0 |
Y

FIG. 1. Director angle ¢ vs reduced distance Y=2y/d
for the Fréedericksz transition in PAA. Curve 1: splay-
bend (k; =1.43); 2: twist (k,=0); 3: bend-splay («;
=0.59); and 4: linear approximation [¢ =¢(sin(371)].
The amplitude was arbitrarily chosen as ¢,=45°. Curve
2 represents also the one-constant approximation, which
for ¢(=45° should be worst. The corresponding plots
for MBBA (k=0.189, k3=-0.159) are virtually indistin-
guishable from curve 2.

m$, mE, m¥ produced, respectively, by viscous
shear, dielectric polarization, and magnetic field.
According to Helfrich,®

m$ = (k/2n)[(A0/0)e — Ae]E2sin2¢, (2.1)
mf =30¢[(E% - E?) sin2¢ - 2E, E cos2¢], (2.2)

ml =_ 3 Ax H? sin2¢. (2.3)
Here we have introduced the notations

1

w=w"c?+w's?, Aw=w"-w'

n=n"c?+n*c?s®+n's?, (2.4)

c=cos¢, S=sing.

The symbol w represents the permittivity €, the
conductivity o, the susceptibility x, or the shear-
torque coefficients k"'=%,, k*=%,; the viscosity
coefficients were denoted by 7. For « and 7, par-
allel (|) and perpendicular (L) refer to the orien-
tation of the velocity gradient with respect to the
easy director axis; i.e., in standard notation,
n'=1,, Nt=7,.

The distortion torque density is

82 82
m?P = (kyyC® + ,,S?) a—;; + (R, C? +k3332)a—y(£
324) a¢ 2 a¢ 2
eaae g wes|(57) - (5% |
a¢ 0
+Ak(c—s)£—¢ (2.5)

ax 9y’

The equilibrium of torques yields the equation

D N

P, H_
m2+my+mi+ml=0. (2.6)

Clearly, this is a rather complicated nonlinear
partial differential equation. It should be solved
subject to the boundary conditions

¢(y=0)= ¢(y=d)=0. (2.7)

The solution must, moreover, be consistent with
the hydrodynamic and electrodynamic field equa-
tions. For the linearized case, Penz and Ford
have found just a solution.

It is reasonable to assume that the essential
qualitative features of the linearized solution
should remain valid at least for moderately large
director angles. Therefore we shall postulate that
the periodicity conditions derived and discussed
by Penz and Ford hold in general, except, per-
haps, for minor modifications in the period ratios.
In other words, we postulate solutions ¢ (x, )
periodic in x and y.

To reduce the problem to manageable size, we
introduce a modified one-constant approximation.
That is, we set
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k,=ky,c®+k, s% = const,
ky=k,,C* +kys® = const, (2.8)
Ak =0, w=const,

but nevertheless admit Aw #0. Even the ordinary
one-constant approximation is known to be useful
in much simpler cases, so probably this is the
best we can do. After completing the solution one
can find appropriate mean values for the coeffi-
cients. Moreover, the terms neglected because of
Ak =0 are very small anyway. Consistently we
may also set E,=0. Equation (2.6) then becomes

92 92
k ¢ +Iey—aib = A sin¢ cos¢, (2.9)
52

T 0.
with
A=_ AeE2+ AXH?Z,
Ae!t B (Ae Ao\ Ac
< <? * 7) <
The stability of the uniform orientation pattern
depends crucially on the sign of A. Helfrich® has
already discussed this point. With the appropriate
values we get for PAA: Ae/e~ - 0.03, ae®tf/e=
+0.10; and for MBBA: A¢/€~ - 0.15, Ae®tf/e=
+0.15. Thus the conductivity clearly governs the
instability.
Now we introduce the characteristic (or “co-
herence”) lengths

A =2k, |AY2, X =(2k,/|A])?, (2.11)

(2.10)

and substitute
E=x/X, n=y/A,. (2.12)

Then Eq. (2.9) becomes the two dimensional sine-
Gordon or Frenkel-Kontorova equation

¢ 8¢ : -
EEd + Frd +2sin¢ cos¢=0. (2.13)

Equation (2.12) has the obvious trivial solutions
p=nr/2, n=0,+1,£2,..., (2.14)

corresponding to perfect alignment along x (for
even ») and along y (for odd #).

An exact periodic solution to (2.13), vanishing
at y=0, is'?

sing =+ 2k sn((1+R2)'/2E, B) sn((1+ k%) /%, k)
L+ k% sn®((1+ &%) 72, k) sn®((1+ &%) /%n, k) ?

ke(-w,+o), (2.15)

where sn(u, k) is the Jacobian elliptic function
sine amplitude of argument » and module k. (Un-
fortunately, % happens to be a much-used letter,
but we prefer to adhere to established standards.)

For |k|>1, Eq. (2.15) may be transformed into

Sin = 20 sn((1+ 7)1 /3£ /12, 1) sn((1 + I2)* /20 /12, 1)
= T P X1+ P2/, Dy snX(1+ B 20 /5, 0)

I1=1/kc{-1,+1}. (2.16)

For either case, the director angle amplitude is
given by

sing,=2k/(1+k?)=21/(1+ 7). (2.17)

Thus for each value of the module there are two
solutions, one stable, the other unstable. For
AZ0, the stable solution corresponds to k|21,
respectively. We shall not dwell upon this point
here.

The function sn(u, k) is periodic with the real
period 4K, where K is the complete elliptic inte-
gral of the first kind of module 2. According to
the boundary conditions (2.7), the sample thick-
ness must be a half-period in y. We use these
boundary conditions, taking into account (2.10),
(2.11), and (2.12). With the inessential simplifi«
cation H, =0 we obtain the equations

nK(1+k*)™"/2= (A /8k,) /?E d,

nlPL(L +1?)"/2=(ae*tt/8k ) /2E d, (2.18)
n=0,1,2,

for the two sets of solutions, respectively. Here
K and L denote the complete elliptic integral of the
first kind of module k,l, respectively. The first
of Egs. (2.18) then implies, for n=1, k=0, a
critical voltage.

Ver=E d=n(2k,/Ae®t) /2. (2.19)

Inserting the proper values, we predict V°**=6.8
V for PAA and V°*=4.5 V for MBBA. The observed
values are® 7 and'® 5 V, respectively.

The dispersion relations (2.18) are plotted in
Fig. 2, which shows V/V vs the modular angle
a@ and vs the amplitude ¢,. Figure 3 shows an
example of a map of ¢ =¢(&,7n) for ¢,=45°. The
dependence of the modular angle @ and the module
k=sina (or ! =sina) upon the amplitude ¢, is shown
in Fig. 4.

It can be seen that according to the present mod-
el integral multiples of the critical voltage, V,
=nV*, are again thresholds. At these thresholds
new modes appear and thus instabilities are to be
expected.

It must be emphasized that the module % is the
same for the elliptic functions of both £ and 7.
Thus the boundary conditions in the y direction
impose periodicity in the x direction. This effect
is essentially nonlinear. A whole class of nonli-
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90°

30°%
/

V/Ver

FIG. 2. (a) Modular angle ¢ and (b) director angle
amplitude ¢, vs reduced voltage V/V =E/E . The
first four stable (solid line) and unstable (dashed line)
modes are shown.

near equations, of which the sine-Gordon equation
isatypical example, exhibits effects of this kind. % '®

This seems to be a paradox, since the problem
has translational symmetry in the x direction. Yet
this is just the common phenomenon of broken
symmetry, familiar even within the context of
liquid crystals. After all, the symmetry argument
cannot be carried too far, since in the real sam-
ple there are of course boundary conditions in the
x direction which may well uniquely determine
the origin, albeit in an uncontrolled manner.

Penz?® claims that the x period is determined by
the “fastest-growing solution.” Although I have

+40°

+30°

—

+10°

X

FIG. 3. Height map of the function ¢ (X=¢/&, Y=10/1,),

for amplitude ¢,=45°. (£, ny) are the coordinates of the
crest. The coordinate scales are not necessarily equal,
since in general A, = A .
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/
/
/
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FIG. 4. Module £ and modular angle « vs director
angle amplitude ¢,.

not yet studied this point in detail, I believe that
these two aspects may well be reconciled. Our
solution holds for the steady state at high ampli-
tudes and predicts their saturation. Penz’s linear
dynamic solution describes the buildup of the pat-
tern and should be adequate at least at the begin-
ning, when the distortions are still small. It is
quite plausible that the fastest growing solution
will tend to that stationary one which is stable.

III. HOMEOTROPIC DOMAINS

Greubel and Wolff,'® as well as Schiekel and
Fahrenschon,'” have observed domain patterns
under homeotropic boundary conditions, i.e., with
an easy direction perpendicular to the capacitor
plates. Penz and Ford* suggested that this pattern
be called the homeotropic domain mode. This
situation corresponds to case 3 of the Fréedericks
transition.

This time the y axis of the Cartesian coordinate
system is parallel to the applied electric and mag-
netic fields and to the easy direction, while the
mutually perpendicular x and z axes are parallel
to the plates but may be rotated through an arbi-
trary angle. The director angle deviation ¢ is
from the v axis.

We again start with the torque densities

m$ = (k'/2n")(Ac’/0")e’ - Ae’|E? sin2¢), (3.1)
m? =zA¢’[(E2 - E2) sin2¢ - 2E,E cos2¢], (3.2)
H_

m¥=_ 3Ax H? sin2¢, (3.3)
92 92
mP = (k) €%+ kyys?) —% + (kgsc® + Ry S?) 33%

, 9% ’ 3¢ 9¢
+ 24k 7);_AlecsK 8x) <8y>]

+ Ak’(cz _ 82)

£18
sle

(3.4)

The parameters are defined as before, except that
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the prime denotes the interchange (||) = (1),
(11)~— (33). Clearly, keeping this modification in
mind, the arguments of Sec. II hold exactly.

It is worthwhile to note that the problem as for-
mulated now has rotational symmetry around the
y axis as well as translational symmetry in any
direction within the xz plane. Nevertheless, one
observes well-defined parallel domains. This is
even more paradoxical than the static Williams
domain pattern. The explanation obviously must
be that in laboratory practice these symmetries
are never exact. Minute deviations from symme-
try determine the establishment of some particu-
lar pattern. In this sense then, the fastest-grow-
ing solution comes into play.

IV. FURTHER DISCUSSION

According to Fig. 2, the domain pattern sets in
with a relatively high director amplitude which
hardly changes with further increases in the ap-
plied voltage, until the next higher instability is
reached. Our model predicts values of ¢, above
60°, which should be compared to 45° from optical
and resistance measurements, as reported by
Penz.? The rather too high value of ¢, is clearly
an artifact of our approximation in which all coef-
ficients w were taken to be constant [cf. Eq. (2.8)].
Carroll’® has shown how to correct this deficiency.
Very roughly speaking, one should replace in the
results sin¢ by tan¢. If such an approach is to be
taken seriously, we predict ¢F=41°. Moreover,
we find that ¢, remains always less than 45°. At
any rate, the data are rather uncertain and the
calculated value of ¢, should not be taken too
seriously.

We also note that at the threshold amplitude
¢,~62°, k~sin37°, and consequently the sn func-
tion is still virtually indistinguishable from an
ordinary sine function (cf. Fig. 1). Hence the li-
near analysis should not be in significant error.
This ought to be the ultimate justification for the
calculations by Penz and Ford.*%7 Hence our
stipulation of their periodicity conditions is sus-
tained.

An interesting novel feature of the dispersion
relations (2.18) is the S shape of the stable curve,
with a minimum of V/V°F at V= 0.955V°" and
¢,~62°. Hence it follows that in the present ap-
proximation the transition becomes of first ovder,
albeit only weakly. This does not seem to be sup-
ported by experiment and is probably an artifact of
the introduced simplifications.

APPENDIX A: SOLUTION OF EQ. (1.6)
To solve the equation

d*¢ _ 1+k(d¢/dn)
an® T 1+ksin®¢

sing cos¢, (A1)

we observe that

(¢72) =2¢"¢", (A2)

where the primes denote derivatives with respect
to the argument n. We also substitute

s =sing, ds=cos¢pdd. (A3)
Thus we obtain
d¢’  2sds _ d(s?)
1+x¢?  ~ 1+ks® ~ 1+ks>’ (a4)
A trivial integration yields
1+k¢"?=C/(1+ks?). (A5)

The integration constant is determined from the
condition that the director amplitude ¢, be an ex-
tremum value,

¢=0,, ¢'=0. (A6)
Thus

C=1+«ksin’p,. (A7)
Then

¢'2=(sin*¢p, - sin*¢)/(1 + k sin®¢) , (A8)
and hence

or-ao e )
Now we substitute

sing = sing, siny. (A10)
Then

n—no=fowdw<ll—i'm——ﬂs—‘};——’§j;”)l/z. (a11)

The nonessential integration constant n, only fixes
the origin and can be discarded. The right-hand
side can be evaluated in terms of the elliptic inte-
gral of the third kind, I1(n; #\@) in standard no-
tation.'®?*®* Thus we finally obtain (cf. formula
284.02 of Ref. 19.)

N=(1+xsinp,)" 21 (n; ®\a), (A12)
with the substitutions

sin® =sing (1 + k sing,)'/ 2/sing, (1 + k sinp)*/2,

n=ksin’¢,/(1+k sin®¢,), (A13)

sina = (1 + k) sin®¢,/(1 + k sin®¢,).

Actually, Eq. (Al11) is better suited for numerical
computations.

The director angle takes its maximum value ¢,
midway through the slab, where y=3d. Substitut-
ing into (A12)

n=Hax/k,)?Hd, ¢ =0, (al4)
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we get an equation determining ¢, as a function of
H:

1(ax/ky)2Hd = (1 +k sin’¢,) "/ *I(n\a), (A15)
where

N(n\e)=N@;z7\@) (A16)

isthe complete elliptic integral of the third kind. %
This exactly reproduces Saupe’s result [Eq. (5) of
Ref. 10].

APPENDIX B: INVERSION
Equation (A12) determines 7 as a function of ¢.
However, we are interested in the inverse function

We define an elliptic function of the third kind as
the inverse function

®=apn;v\a). (B2)

This is an analog and a generalization of the Jaco-
bian function am(v\a). Indeed, for n=0

ap(0;v\a)=am(v\a). (B3)

We further define the function

sple;v\a)=sin ap(;v\a). (B4)

o). . o ) ) In an analogous fashion one could define the func-
Consider the elliptic integral of the third kind tions cp, dp, etc. Again we have

v:II(n-<I>\oz)=]o d¢

’ b, (1-nsin?¢)(1 - sin®a sin®¢)*/2. sp(0;v\a)=sn(v\a). (BS)

(B1) With these definitions we obtain from (A12)
—

sing sp(n; (1 +k sin®¢.)"/%n\a)
sing,  [(1+« sin®p,) — k sin®p, sp?(n; (1+ k sinp,)/*n\a)]*/2 * (B6)

or, in a form easy to remember,

ksing =y sp/(1 - y* sp?)*/?, (B7)

r

where, of course, sp takes the arguments indicated
in (B6) and y =n'/2.
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