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Molecular theory of optical polarization and light scattering in dielectric fluids.
I. Formal theory

Rene Samson* and Ruben A. Pasmanter~
Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel

Abraham Ben-Reuven
Chemistry Department, Tel-Aviv University, Tel-Aviv, Israel

(Received 12 May 1975; revised manuscript received 17 February 1976)

A molecular theory, based on first principles, is introduced for the systematic study of the eA'ects of
intermolecular forces on optical properties of dielectric molecular fluids. This theory covers a broad range of
applications, including (polarized and depolarized) Rayleigh and Raman scattering, absorption spectra, and
nonlinear optics. A canonical transformation is presented by which externally applied coherent fields can be
separated from internal radiation fields, thus enabling the introduction of radiative corrections (such as
retardation) to the intermolecular forces. The polarization of the medium is expressed in terms of a many-
body polarizability (or nonlocal susceptibility) operator. The latter quantity contains implicitly all so-called
local-field effects (modification of the molecular polarizability by electromagnetic fields due to neighboring
molecules). The dipolar contributions, when summed to all orders, yield the familiar Lorentz-Kirkmood factor,
involving the retarded dipole tensor.

I. INTRODUCTION

Much of the information we have on molecular
interactions in fluids is obtainable from spectral
studies of the propagation and scattering of light.
Recent improvements in light-scattering tech-
niques, ' ' using monochromatic laser sources,
make it possible to study in some detail effects of
intermolecular forces on molecular correla-
tions, ' ' collision-induced depolarization, ' forbid-
den Raman trans itions, "resonanc e fluores-
cence, "'"higher-harmonics generation, " "etc. ,
in dielectric fluids. The theoretical procedure
usually employed is to start from the independent-
molecule picture and add, in an ad-hoc fashion,
various terms pertaining to the effects of the sup-
posedly relevant intermolecular forces. The lack
of a deductively applicable formulation of the the-
ory of light scattering, based on first principles,
makes it practically impossible to judge the suf-
ficiency of the Qd-Doc px'ocedux'es.

Various attempts have been made to formulate
microscopic or phenomenological theories of
optical polarization and light scattexing. '"
Recently, Fulton has developed a. fully quantized
microscopic formalism in which he uses Schwin-
ger's method of functional derivatives"'" with
respect to an artificially introduced classical field
in order to obtain equations of motion for the rele-
vant correlation functions. In this powerful exten-
sion of Kubo's method of linear response, "expres-
sions can be derived for correlation functions per-
taining to any power of the interaction with the
transverse radiation field (treated as a perturba, -
tion) in which the Coulombic longitudinal fields in

the mattex' are fully incorporated.
We find this approach lacking, however, in two

ways. First, on the practical side, thex'e is still
a need for an exposition in which effects of the
various intermolecular forces are spelled out in

more explicit fashion, enabling the derivation of
expressions of a more readibly applicable nature
in specific cases. What we need is a systematic
way, starting from first principles, of adding
many-body effects to the molecular optical polar-
izability, expressing them in terms of couplings
between multipole-multipole polarizabilities and
multipole- induced-multipole hype rpolarizabil ities
of the kind introduced by Buckingham and
Stephen"'" and by Kielich. "

Second, on a more fundamental level, there are
certain effects of the transverse radiative fields
that are present in the absence of an externally
applied radiation beam and may not be treated
satisfactorily on a perturbative level along with
the applied field. What we have in mind, for
example„are the retardation effects on intermo-
lecular forces produced by the transverse
fields, " "which can be quite essential under
near-critical conditions where long-range corre-
lations prevail. ""'"The distinction between
internal fields with their retardative effects and
the externally applied fields poses, however, a
serious dilemma x'egarding their separability. We
can conveniently separate transverse from longi-
tudinal fields with the help of the Coulomb gauge' '"
(although at the cost of losing covariance in a per-
turbative treatment). But how do we separate in-
ternal from extexnally applied transverse fields'P
Suppose we simply add to the nonrelativistic quan-

14



14 MOLECULAR THEORY OF OPTICAL POLARIZATION. . . I. . 1225

turn-electrodynamical Hamiltonian, considered as
adequately representing the interaction of radia-
tion with matter in the absence of applied fields,
an extra term representing the applied beam (in,
say, the classical-field approximation). Are not
we then in danger of "counting things twice?"

An obviously correct statement of the light-scat-
tering problem, in which internal radiations are
allowed for, is one in which the same Hamiltonian
is considered whether external fields are applied
or not, leaving the effect of external fields to the
boundary conditions. This approach is unlike the
conventional proc edure in scatter ing theory, where
the Hamiltonian is unambiguously divided into
terms pertaining to the beam, the target, and
their mutual interaction. " It is nevertheless pos-
sible, "under certain conditions, to introduce a
canonical transformation which transfers the ef-
fect of the external fields from the boundary con-
ditions to the Hamiltonian. This will result in the
addition of an extra term, representing the exter-
nal fields, to the Hamiltonian, with the require-
ment that the correlation functions be calculated
with boundary conditions appropriate to the iso-
lated material system in the absence of applied
fields.

In Sec. II we present the canonical transforma-
tion that justifies the addition of the external field
(as a classical field) to the fully quantized Hamil-
tonian in which internal radiation fields are already
incorporated. In Sec. III an expression is obtained
for the electric dipole polarization in the optical
frequency range. The polarization is related in
the linear-response approximation to a many-body
polarizability operator (or nonlocalized suscepti-
bility operator) whose propagators depend on the
full (external-field-free) Hamiltonian. This many-
body polarizability has the same form as the fa-
miliar Kramers-Heisenberg molecular polariza-
bility, except that it depends on dynamical vari-
ables pertaining to the real (interacting) fluid
rather than to an isolated molecule. The use of
Liouville-space operator techniques allows us to
perform operator expansions in powers of the
intermolecular forces, which can be reexpressed
as molecular cluster series of increasing cluster
size. Certain approximations pertaining to the
optical polarization of slowly moving, neutral,
stable molecules are systematically introduced,
allowing the expression of intermolecular inter-
actions in terms of molecular multipoles. The
effect of retaining fully only dipole-dipole terms
in the interaction is demonstrated. In Sec. IV,
using the Coulombic (instant-action) limit, the
Lorentz-Kirkwood relation"'" is rederived. In
Sec. V radiative corrections are included which
result in the replacement of the Coulombic dipole

propagator by a retarded one. Several generaliza-
tions and applications of the present formalism
are set forth in the following paper" (henceforth
to be referred to as II) .

II. EXTERNAL-FIELD APPROXIMATION

Here

Hs = Z Z h~ g(a&&a &&+~a)
k

[ E(r)'+ B(r)'] d r
2

(2)

is the free-radiation Hamiltonian. Particle i is
characterized by its charge e„mass m&, position
r;, and momentum p;. The second-quantized vec-
tor potential A is given by

w c
A(r) = M Z

2 „ek~(agze'
' '+a~ e '"' '

) .
V

(2)

The transverse part of the electric field, E(r),
and the magnetic field, B(r), are derivable from
A(r) in the usual manner,

E( r) = —(1/c) A(r),

B( r) = V && A( r) .

(4)

V is the volume of the material sample, the k's
over which one sums are determined by box nor-
malization, g and k obey the vacuum dispersion
relation

~g =ck,

and e kz (A. =1, 2) are the two polarization vectors
compatible with each allowed k value, and in the
Coulomb gauge they obey

k c k~ —0, &=ly2)

where

V A(r) =0. (8)

The operators ay~ and at„are the annihilation and
creation operators of a photon of wave vector k and
polarization Zg& and they obey the usual commuta-
tion relations

Consider the quantum-electrodynamical nonre-
lativistic Hamiltonian of a system of charged par-
ticles (electrons and nuclei) interacting with elec-
tromagnetic radiation (neglecting spin interac-
tions). In the Coulomb gauge, using rationalized
Gaussian units, the Hamiltonian can be written'0'"

2

H = P p; ——'A(r;)
2 m) c

1 ~ eej
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I o;& =D'(~;)
I Ox...&, (10)

where n; is a complex c number (related to the
field amplitude) and

I
0 k k,& is the vacuum state

pertaining to the laser mode with wave vector k;
and polarization index A.;. This can be easily gen-
eralized to more than one mode, replacing a; by

(9)

etc. The Coulomb gauge is convenient for dealing
with problems of chemical physics even when the
effect of internal transverse radiation fields is a
significant correction to the description of matter
as dominated by Coulomb forces."'"

The problem of light scattering by a sample of
interacting charges can be dealt with in two dif-
ferent approaches. The more practically appealing
approach is to add to the Hamiltonian (1) a term
V(t) describing the interaction of the sample with
the externally applied field (usually treated as a
classical field). " This approach conveniently en-
ables one to distinguish between "target" and
"beam" and treat light scattering in the manner
in which scattering phenomena are usually
treated. " However, this distinction becomes
dubious if internal fields, present in the sample
even in the absence of the external field, are
taken into account. From a purist point of view,
a fully quantized theory does not allow us to dis-
tinguish internal photons from external ones. This
problem is avoided by using the second approach,
in which the same Hamiltonian (1) is used whether
the external field is applied or not. The effect of
the external field is then introduced through the
boundary conditions, by defining an initial density
matrix in which the asymptotic state of the applied
beam photons is represented by a nonequilibrium
steady-state distribution. By doing so we lose,
however, much of the intuitive insight provided by
the first approach. This is particularly unsatis-
factory in cases where the applied field should be
treated only to first order while certain effects of
the internal fields are independently retained to
arbitrary powers, as in a fully retarded descrip-
tion of intermolecular forces."

It is therefore desirable to find a procedure by
which the effect of the external fields is trans-
formed from the density matrix into the Hamil-
tonian. Such a procedure can be shown to exist
if the initial state of the beam modes can be de-
scribed by a Glauber coherent state. ""Such
states are known to form a good representation of
coherent quasiclassical radiation fields, "'"and
are therefore most appropriate for dealing with
the scattering of laser radiation. "'"

Suppose the laser radiation is represented by
the single-mode Glauber state"

D(o'l)akxD (ol) =a kx+o'$6%%;6xk, k

we have

D(tk&)A( r) D (o;) = A( r) +( A( r ))

where

(14)

(A(r)), =(n;
I A(r) I o &

=(vhc/2Vk;)' 'e
k k (n,e' "~" +o', e' ".~"').

(15)
This displacement operator thus transforms the
vector potential (and hence the Hamiltonian} into
a. new form in which the term (A(r))~, , represent-
ing the external field, is added. However, the
averaging procedure now involves the vacuum,
i.e. the averaging can now be made as if no ex-
ternal field is present in the density matrix.

This transformation can now be employed in the
calculation of (several-) time correlation functions
of the type that we shall deal with in the following
sections, e.g. ,

(R(t)&~ = Tr[p~(to)U (t, to)R(to)U(t, to)j, (16)

&R (t)Q (t')) = » t p (t.)U (t, t.)R (t.) U(t, t.)
x U'(t', t,)Q(t,)U(t', t,}).

Here U(t, t,) is the time-evolution operator

U(t, to) = exp[ —(i/8) H(t —to)]. (16)

The initial value of the density ma. trix p (to) is
specified at time t„at which moment the Heisen-
berg and the Schrodinger representations are
chosen to coincide. The Heisenberg operators
R(t) and Q(t) correspond to dynamical variables of
the material medium; e.g. , if we take as A and Q
the dipole-moment density operator, then (16)
occurs in the theory of the dielectric constant and

(17) in light-scattering theory.
Assume now that the interaction between the

sample and the laser field is adiabatically switched
on at time t, and that at this time the density oper-
ator p is separable into a factor pertaining to the

(17)

a set of numbers lo.;) (i = 1, . . . ,j ) and D (o.;) by
the corresponding product. The unitary displace-
ment operator relating I n, ) to

I Og, k,.& is"
D'(n, ) =exp(o, ag k

—

o'war„,

, )

Consider now a function of the vector potential
of the type that will appear in later calculations.
The averaging of this function over the Glauber
state can be transformed into a vacuum average,

&o; If(A) I ~~& =&ok x. I D(~i)j(A)D (~;) I Oz, k,.&

=«». .. IAD(~~)AD'(~;)) I 0»,., &.

(12)

Since"
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laser modes and a factor p' pertaining to the mat-
ter in thermal equilibrium with all the other radi-
ation modes,

H (t') = exp[{i/6)H, (t' —t,)](H H-, )

x exp[ —(i/h)Hs (t' —t,)], (28)

p = p'
I n;) & n; I (19)

and finally use Eqs. (14) and (29),

D(n )e'+""=e'+""D(n (t)) (29)This assumption requires the laser modes be suf-
ficiently intense so as to be unaffected by the re-
action of the matter on them (the external-field
approximation). Also assume that the frequency
of the laser mode is high enough (h(d, »ksT) so
that at thermal equilibrium (i.e., in the absence
of the external field) any occupation numbers

n), .~, &0 can be ignored (by planck's distribution
5 5

law}; Then

(2o)

can be approximately identified with the grand-
canonical distribution for the entire molecular and
radiative system. Under these assumptions (16)
reduces to

&H(t)} = Tr[p, (t,}D(n,)It'(t, t,.)

XH(t, }U(t, t,)Dt(n, )]

The desix ed transformation of the Hamiltonian
is obtained from the identity

D(n;)U (t, t,) =X (t, t,)D{n;(t—t,}), (2

X()t,) =d d (
——, d() )d)}'

to

H(t) =H+ V(t),

)'()) =I ——'-
i&i - d(', )) (r( i)) p).

For operators R that do not depend on photon-
field operators, Eq. (21) thus reduces to

&Z(t)}.= Tr[t),(t,)X'(t, t,)Z(t,)X(t, t,)].
The transformation outlined here is trivially ex-
tended to several-time correlation functions such
as (17). Equations (16) and (30) personify the two
approaches earlier referred to":

(a) In Eq. (16), the dynamics of the system is
governed by the Hamiltonian (1) and the presence
of the external field is manifested in the density
operator p . Although this is the conventional
approach in quantum electrodynamics (Dirac
treatment of absorption and emission, Kramers-
Heisenberg treatment of Bayleigh and Haman
scattering), 7O'~" it is not the most convenient one
in problems where we want to maintain a distinc-
tion between external and internal photons.

(b) In Eq. (30), one starts from the Hamiltonian
(24), which incorporates the external field, and
calculates all statistical averages with the equi-
librium density matrix p, . This equation provides
the appropriate starting point for Kubo-type ex-
pansions in powers of the external field. "

To this end, an interaction picture in terms of
B is introduced, and subsequently the time-evolu-
tion operator (23) is expanded in powers of V(t):

x'{t,t,)

+2 ', &A(~g)&', «)22Ã)C
(25) T& exp —

Vl t' dt' exp —H t —t,

n, (t) = en' dd, (26)

i.e., H is replaced by H(t) by writing A( r)
+&A(r)) «& in {1) instead of A(r). In order to prove
Eq. (22), one has to introduce an interaction pic-
ture in terms of the free-radiation Hamiltonian

H„, disentangle (as per Feynman") the exponential
operator

ddd —)l () —),))

(31)

V, (t') = exp[(i/8)H(t' —t,)] V(t')

&& exp[ —(i/h)H(t' —t,)]. (32)

The interaction-picture operator corresponding to
R is given by

Z (t) = exp [(i/a)H(t —t,)]Z (t,)exp[- (t/6)H (t —t,)],

T, exp — II (t' dt' exp —H~ t —t,

(27)
where T, denotes positive time-ordering and

and the corresponding Heisenberg operator which
includes, in addition, the dynamics of the external
field can be expanded as

"to



1228 SAMSON, PASMANTER, AND BEN-REUVEN 14

This equation will be taken as the starting point
of our discussion of polarization and scattering
phenomena in dielectric fluids in Sec. III.

III. MANY-BODY POLARIZABILITY OPERATOR

In dealing with optical polarization phenomena
in dielectric fluids, we are concerned with the
time development of the dipole-moment-density
operator of the entire fluid

M( r) = g p„5( r - r„), (3 5)

where

SEA
e, r, (36)

V(t) = —f d M() E.„,(, t), (37)

where

E ( r, t) = (E( r))„.(,)
=E,„,(r)e' &'+E,*„,(r)e '

E,„,(r) =S,Z, e ' "~', (e, =Kg ~.),

(38)

(39)

is the dipole-moment operator of molecule A and
r„ is its yosition operator. For neutral molecules
whose spatial extensions are small compared with
the wavelength of the external optical field, it is
justified to introduce the dipole approximation"'"'
for the interaction term V(t) of Eq. (25),

Li (t)X =0 '[Vr(t), X] (45)

(X is any Hilbert-space operator here). Liouville-
operator techniques have found wide application in
molecular relaxation and transport problems"
and they will be profitably applied throughout the
present work. In Eq. (41) we have made use of the
commutativity of H with p, to eliminate all depen-
dence of the exponential operators on io [compare
(42) and (43) with (32) and (33)] and we have used
the arbitrariness in t, to put t, = —~ in the lower
limits of the integrals in (41).

In the remainder of this section, we shall be
concerned with the linear term in (41). We intro-
duce the operator

t
P(r, t) =i dt, Lz (t,)M(r, t) (46)

whose average, as the linear-response polariza-
tion, is related to the dielectric constant of the
sample, and whose two-point average Tr
[poP( r, t) P( r', t')] is related to the intensity of
scattered light (see paper II"). The quadratic
term in (41) is related to second-harmonic genera-
tion, and this will also be discussed in II.

The time-integration in (46) is easily performed,
allowing us to express P in terms of a many-body
polarizability operator 8,

and [see Eq. (4)]

mhk)
(4o)

+e ~ ~ cf r~Q r, r~' —(dt +ext

(47)

In Liouville-operator notation, "'"Eq. (34) for the
average of the Heisenberg operator M'(r, t) corre-
sponding to M(r) is Q 8(r, r'; &@) =—g '[M (r), G((t))M (r')]. (48)

where greek indices denote Cartesian components
and 9 is defined as"

(M'(, t)) = T P, (M(, t)
et

dt, L~(t,) M( r, t)
w oo

Here

G(&u) =lim ((t)+L —ie) '=P[1/(&u+L)] +Ar5(m+L)
C +0

t tg
+i ' dt, dt, L~(tE)L, (t,)

~ oo ~ oo

xM(r, t) +. . .

(41)

(42)

(43)v, (i) =e'"v(i),

while the Liouville operators L and Lz (t) are re-
lated to H and Vz (t) a,s

LX =5 '[II,X], (44)

Here, the interaction-picture operators M(r, t) and
Vz(t) are given by

M(r, t) =e' 'M(r),

(49)

is the retarded tetradic Green's function. "" The
formula (48) for 8 is a, many-body generalization
of the Kramers-Heisenberg form for the molecular
polarizability, "

~~(~) =II '[&~, G~(~)i(~], (50)

where G„((t)) is defined as in (49) but with L re-
placed by L„, the I.iouvillian of the (isolated)
molecule A. The operator 8 can be split into a
dispersive part and a dissipative part using the
separation in (49) of the Green's function into a
Cauchy principal part and a 5 function, respective-
ly. Far away from resonance frequencies of the
system the dissipative part can be disregarded.
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A specific space-time Fourier component of
P(r, f) corresponds to scattering with a wave vec-
tor k, and frequency m, (in keeping with our aim
to include both Haman and quasielastic Rayleigh
scattering we allow for ~, different from cv;):

performed, neglecting all radiative effects (Sec.
IV). This will also be included in Sec. V. To this
end, the Hamlltonian (1) is divided into a zero-
order {noninteracting) part Ho and perturbative
parts H, „H2, andH3, as follows

P"(k„u, ) =2mb(e, +I, —u, )8 (k» —k, ;&@;)g~e;

+F5(- (u; +L, —u),)8"8(k„k;; -(u;)S,*e~,

(51)

H =Ho+H, +H2+H3,

Ho = H~ +H~,

(56)

8 (k, k'; (u) =—h '[M (k), G((u)M8{ k')],

M(k) = gp„e' "'~.
A.

(53)

The 5 function in (51) expresses energy conserva. —

tion between the initial state ) a) with energy E,
and the final state

~ b) with energy E„namely, for
the first term of (51), H =- —Z —' p. ~ A(r )2=

C
m' t {60)

r Mr ~ T x-r, 'Mx, , 5

E q
——E Eq =h(-(u —(g().

For the second term, one has

(54) 2

E,~ =h(u&, +e;).
Although of little significance in light scattering,
the latter term is xetained in order to maintain
the Hermiticity of P( r, I). In Appendix A a sym-
metry property of 8 and its like is established,
resembling the Onsager symmetry relations for
related macroscopic quantities.

The main interest in the operator Q lies in the
fact that it contains all intermolecula. r foxces
fully and to all orders (implicit in the many-body
Liouvillian Q. The expression (46) thus offers a
rigorous sta, xting point for a cluster-type expan-
sion of 8 in terms of molecular moments and
quantities referring to intermolecular interactions.
This is achieved by separating the fluid Hamiltoni-
an (1) into intra- and intermolecular parts. The
more familiar contribution to the forces comes
fxom the Coulomb terxn. However, effects may
result from the contribution of the transverse
(radiative) terms (p A and A') to the intermolec-
ular forces. Consider, for example, the effect of
the p A term to second order. Physically, this
can be yictured as the emission of a virtual photon
by particle i (through a matrix element of p, A, )
followed by its reabsorption by particle j (through
p, ~ A~). This introduces a term dependent on the
distance r;, between paxticles i and j. The inclu-
sion of such terms will be shown to cause a, modi-
fication of the static result (obtained if one would
take into account only the Coulomb terms) to in-
clude retardation effects.

The x'esults anticipated here will be presented
in tmo stages. First, a static calculation will be

As before, subscripts i,j, . . . stand for electrons
and nuclei, while . A.,B, . . . designate different
molecules. At this early stage, the discussion l.s
restricted to intermolecular dipole forces in Eq.
(59). The inclusion of higher multipoles does not
constitute an essential difficulty and will be dis-
cussed in II." The T tensor appearing in (59) is
the static dipole-dipole tensox defined as

T(r) -=—(VV --,'Q) =, (1 —3ii),
4m' 4m"'

(62)

IV. DIPOLE APPROXIMATION (COULOMBIC LIMIT)

IQ this section H2 and H3 will be neglected. The
separation of 8 into intra- and intexmolecular
parts ls effected by means of a Dyson-type expan-
sion of the resolvent operator appearing in Q,
namely

G =Go —GOL,G. (63)

Hex'e, omitting further explicit reference to the
common argument (d&, we write

G=-((o +L, fe) '— (64)

The inclusion of the Laplacian term ( --', V') serves
to remove the 5-function singularity at r =O. This
is necessary to avoid the appearance of self-inter-
actions in the Hamiltonian, as we deal here with
intermolecular forces only. This point will turn
out to be of importance in the comparison of our
molecular theox y with yhenomenological theories"
(see paper II").
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G() =— ((3); +L4() —Ie)

where I., I 0, and L, , are, respectively, the Liouville operators corresponding to H, H„and H, . Simple
commutator algebra yields

8"8(r„r„(d;)=If '[M"(1),GM (2)]=K '[M (1),GOM (2)] —(2[[1') '[M (1), G,M~(3)TI'(34)[M (4), GM (2)]]
—(2A ') fM" (1),G, [M&(3), GM (2)]T &'(34)M '(4}]

—(2k') '[M (1),G~ &(3)[T~'(34), GM (2)]M'(4)].

Here the shorthand notation M(1) = M( r,) and T(34)
= T (r, —r4) has been employed. Also, integra-
tion over r, -and r, is implicit, i.e., we use a
"summation convention" over both repeated space
labels and repeated tensorial indices.

Let us analyze more closely the four terms on the
right-hand side of (66). The first term can be
written in the form

~0( 14 r2) (3)i)

=-b '[M(1), G,M(2)]

=8 'Q[tI„,G,[Is]5(r, —r„)6(r, rs),— (67)
A, B

where the extraction of the spatial 5 functions from
the commutator involves an error of the order
v/c (a Doppler shift; see Appendix B). Notice that
HA commutes with HB and with H~, and therefore
all 4+8 terms vanish. Qo then reduces to a sum
of single-molecule contributions,

8,{r„r„(u,) = Qa„((u;)5(r, —r„)5(r, —r,),
A

(68)
wllel'e og((3)3) 1s the KI'anlel's- Heise1111eI'g polariza-
bility (50). This simple result follows from the
neglect of the p A terms inH, . As was already
stated, these terms introduce in second order
couplings between the various charges. These
couplings include both intramolecular effects (when
the coupled charges belong to the same molecule)

and intexmoleeular effects. The former cause
small xadiative corrections to the molecular ener-
gy levels, which will not be discussed here. The
latter, however, contribute retardation correc-
tions (see Sec. V) to the intermolecular forces.
Consequently, if we do not separate H, from H,
in the present calculation, the sum Zz s in (67)
would not reduce to a sum of single-particle terms.
Besides, nA would remain an operator in the
space of photon states. In the present approxima-
tion it is an operator only on the internal degrees
of freedom of molecule g.

The last term in (66) can be neglected compared
with the second or third term. It is proven in
Appendix B that their ratio is of order U/c, or
even smaller.

Analysis of the second term of (66) is compli-
cated by the fact that the leftmost resolvent G,
operates both on M(3} and on [M(4), GM(2)] [its
action on T(34) produces, again, Doppler-like
contributions, and is hence ignored]. Generally
the action of ((3)+I ) ' on a, product of two operators
A and B can be disentangled as follows:

By this general rule the second term of Eq. (66)
can be factorized as

Z g( ) (M (1), (- '
)

34 "(3)I 3'4'(34)
I (-—' [M'(4), GM (3)[I

In Appendix C it is shown that if the photon scat-
tering process is quasielastic, i.e., when the en-
ergy

~
E, E3 ~

of the tran-sition from the initial
state

~
a) to the final state

~
b) is small with respect

to the photon energy hz;, then only them=0 term
in the summation over m in Eq. (70) contributes
significantly. Consequently, Eq. (70) can be
simplified to yield

—(1/2S'}f [M "(1),GPf &(3)]TI'(34)[M'(4), GM s{2)]

+M~(3) T&'(34) fM" (1), G [M (4), GM (2)]]}.

(71)

The third term on the right-hand of Eq. (66) can
be factox"ized similarly. Finally, collecting all the
terms, one has



14 MOLECULAR THEORY OF OPTICAL POLARIZATION. . . 1231

8 (12) =Qo~(12) —
QQO "(13)T& (34)8'8(42) +8&8(32)P''(34)QO (14)

+M&(3)P (34)B 8(142)+B "8(132)W (34}M (4)], (72)

where

8 8(12) —= 8 8(r„r„(u;),
B ~~ (123) =—h ' [M ( r,), (u, +Lo)

T" ( r) = T (+ r) (75)

and assuming that Q, and 8 commute, one has

8 8(12) =808(12) —80&(13)T& (34)8 (42), (76)

or, in 3N-dimensional matrix notation,

8 =8, -8, T 8.
This can be formally solved by writing

(77)

8 =(1+8, T) ' 8,.
Thus the many-body polarizability operator 8 is
related in a, closed form to the single-particle
operator 8o.' ' ' ' ' This relation is central to
the work of Kirkwood on dielectrics and, going
even further back, it is implicit in the work of
Lorentz. The exact relation between (78) and the
Clausius-Mossotti equation of classical dielectric
theory"" is further explored in II. The main
generalization lies in the fact that (78) is an opera-

x[M (r,), (&u, +L) 'M&(r, ))] .

(74)

The latter expression (74) is closely related to the
second-harmonic susceptibility tensor (see paper
II"). Although its appearance in the perturbation
expansion of the linear polarizability might seem
strange, it really has a simple physical explana-
tion: under the joint action of the external field
at position r„and the (static} dipolar field of a
neighboring molecule B, an oscillating dipole with
frequency (d; can be induced in molecule A. if it has
a nonvanishing B &. Further expansion of the
many-body resolvent G in Eq. (74) would show that
the expression (72) for 8 depends not only on the
molecular second-harmonic tensor B, but on all
molecular Pgigpger-harmonic susceptibilities as
well (see paper II"). The significance of these
hyperpolarizabilities has been noted and thoroughly
investigated by Buckingham and Stephen"'" and by
Kielich. ' ' Here we simply confine ourselves
to noting that for atoms and for molecules whose
point group includes an element of inversion
symmetry (nonpolar molecules) the terms in Eq.
(72) tha, t depend on M and B vanish by symmetry
arguments, and in tha. t case Eq. (72) can be further
simplified. Using

V. RETARDATION EFFECTS

We shall now proceed to consider the terms
&, and &„ neglected so far in the Dyson expansion
of Q, which, as was remarked previously, bring
about retardation effects. In the present section
only nonpolar molecules will be considered, so
that we need not worry, for the time being, about
such contributions as the MTB term. Also, the
dipole approximation will be retained. In addition
to truncating the expansion of the Coulomb term
as in (59), this implies replacing A(r, ), the vector
potential at the position of electron i, by A(r„), its
value at the center of mass of molecule A. to which
electron i belongs ~

This is not as trivial an assumption as it looks.
True as it may be with regard to the slowly vary-
ing external field, it is not at all obvious that the
same assumption can be made for the quantum
electrodynamics (QED) A, remembering that the
QKD definition of A contains a sum over all k
[see Eq. (13)], while the dipole approximation
implies that k is an optical wave vector. The
justification for this procedure lies herein that
A will finally appear only in commutators of the
type [A, (~+ L,) 'A ], which, owing to the dis-
persion relations obeyed by the radiation field,
contribute mostly when k=~/c (see, e.g. ,
Power" ).

First-order contributions (and likewise all odd
orders) in H, vanish. The reason is that diagonal
matrix elements of A (or of all odd powers of A)
between pure photon states (in the occupation-
number representation) vanish. This point of
view is justified by the results of Sec. II: all
matrix elements are to be computed with the equi-
librium density matrix, and for optical modes
this means that in all calculations the vacuum
expectation value is to be taken. The first non-
vanishing contributions (first order from H, and

+3 and second order from H, ) are all of order
&' (where e is the electronic charge). The first-
order contribution of H, depends on the commutat-
or

[A(r } GoP A] (79)

tor equation involving operators in the Hilbert
space of internal (electronic, etc.) molecular
states. Hence (76) applies as well to Raman as to
Rayleigh scattering, the only difference between
these two cases being the choice of matrix ele-
ments. More attention will be given to applications
to Raman scattering in paper II."
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and the only reason why this does not vanish iden-
tically is that the center-of-mass kinetic-energy
opex'ator contained in Go does not commute with

A(rs). This produces, again, only Doppler-like

corrections (of order P = v/c), which are negligible
if u, is far from resonance.

The second-order contribution of 8, is given
by

g /, (~; + Lo) ' L(e; /m, )p[A t, (~, + L, ) '[(8, /m, )p, A, , ((d, + L ) 'p ss]], A g Ii. (80)

Neglecting commutators of the type (79), this reduces to

» P [l ~, (~;+L.) '( e;/~;)Pl][A ~(~&+L.) 'A le[(e, /~, )P,', (~;+L.) '~', ].c' 'tEA (81)

Again assuming that the center-of-mass motion
has a negligible effect, we can write

(I/h)[A„, (u&,. +L,) 'A ]=(I/k)[A„", (&u, +Lg'A s]

=—D (r„-rs, w;), (82)

where I~ is the free photon-field Liouvillian cor-
responding to Hs [Eq. (2)]. The quantity D, the
temporal Fourier transform of the x etarded two-
point commutator of the vector potential, is a
well-known object in quantum electrodynamics
and it is known to be a c number in photon
space. ' " In the Coul. omb gauge it is given by 0

(~'/c') D(r, &u) = T(r) —F(r, (u), (83)

Where T is. the static dipole propagator [Eq. (62))
and I' is the retarded dipole propagator

(gp e2 —t Qfy'/C

F (r, u&) = — V V ——,V~+ —
2c2 4nr

4 &7'/C (d2
(rr —1)+ 2+ —(1 —3rr) .4r car cr2 r'

(84)

The appearance of the static dipol. e tensor T in
(83) will be shown to effect the cancellation of
the contribution of H, and to replace it by a term
containing only the xetarded propagator I'. To
recast Eq. (81) in the desired form, we use the
identity

In consistency with our present approximation
scheme in which we consider only quasielastie
scattering [see discussion following Eq. (70)),
we replace (87) by

o'„' (T~s —F~s ) ' ns

%hen this effect of H, is added to the first-order
contribution of H„one el.early sees that this
amounts to replacing', &8, by 8,+8,.

It is straightforward to extend this calculation
to all orders, always taking the &th-order term
in H, together with the 2+th-order term in H, .
A word of caution is appxopriate here. Although
it is true that in the dipole approximation the con-
tribution from H, is vanishingly small to all
orders, one should make certain that mixing terms
between H, and H, may be ignored as well. . For
exampl. e, if H, is taken to second and H3 to first
order, the resulting complex commutator ex-
pression can be reduced to

1 2

2 2 2 +A DAB DBc c'
40

~ ygg 2m~c

However, in comparison. with the term a„I"»~~,
the quantity above is about 22 orders of magnitude
smaller, so that it certainly can be neglected.

Summing the results to al. l orders one finally
obtains the retarded Lorentz-Kirkwood formula

e;' p;=«OW~- (85) 8=80 (1+F R )
'

It fol, l.ows that

g [ ~,i(~;+ )L'(e, /~, )p, ]
t&A

~~ [Vx (~;+L )pAo] (88)

as can be shown by adding to the left-hand side
the null operator —i[p„,p, „].Then (81) reduces
to

&~ ' (T~a —F~s) ' (I+ L./~()o's

as a generalization of (78). To remind the reader,
this result was obtained under the following as-
sumptions: (a) the dipole approximation; (b) ne-
glect of hyperpolarizabilities (exact for nonpolar
molecuies); (c) neglect of Doppler-type terms
under off-resonance conditions; and (d) quasi-
elastic scattering (i.e., Lu, —tu, ( «&u, ). In paper
II" several ramifications of the present formal-
ism, removing some of these restrictions, will
be discussed.
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p, , =(I/h)[0, , (sr + I —ie) '0, ], e -0', {A1)

that are implied by time-reversal. symmetry.
The discussion will. be closely modeled after that
of Landau and I ifshitz. '6 The operators 0,. and

0, are Hermitian and have mell-defined signa-
ture under time reversal. %e shall distinguish
between the two cases where 0,. and 0, have equal
(case I) and opposite (case II) sign under time
reversal. . Matrix elements of such operators are
either purely real or purely imaginary, implying

&gl o,lf & =(f I 0;Ig& "=+(fl 0;Ig), (A2)

APPENDIX A: EXTENDED ONSAGER SYMMETRY

RELATIONS

In this appendix we shal. l investigate those sym-
metry properties of matrix el.ements of operators
with the general structure

and I g) are not degenerate. For an interacting
many-body system confined to a finite volume
(broken rotational symmetry) there are no exact
degeneracies, so that (A2) may be taken to hold
generally. "

The operator P, , can now be decomposed as
follows:

ReP;, = q,', +is'...
ImP;, = —iq, , +x...

where [see Eq. (49)]

q,.', =(1/21)[[0;,P(~+I) '0, ]

(A3)

(A4)

+ [0, , P(-&v+1.) '0, ]} (A5)

(P denotes the Cauchy principal part) and

r,', =(w/2a) [[0,, 5(~+X)0,]+ [0, , 6{-~+L)0,]}
where the sign depends on whether 0; has positive
or negative signature under time reversal. This
result is only strictly true when the states I f ) have matrix elements

(A6)

&gIO;Ie&&el 0,lf&~.g &glO, Ie&&elO;If&~.,
e ef 8g

-&gl o;I e& &el 0,If &~ &gl o, I e) &el o;If&~
8 ef (d~g —(d

@&gl ~,', If) = -Q(&gl 0;le)(el O, If)5(~+~ f) —5(~+&„)&gl0,I e&&el O, if &

e

+&glo;Ie&&el o,If)5(-~+~,~)+5(-~+~„)&gl o, Ie)&el 0;If&).

(A7)

(A9)

For diagona/ matrix elements (I f ) =
I g) ) we

have in case I (0, and 0, of equal time-reversal
type)

& g I «p; I g & =& gl q;, I g ) =& g I ~;;I g), (AI(&)

&gllmp;, lg& =&glr, , lg& =&g l~, , lg&, (A11)

as a result of which

& gl p;, I g& =&gl p, ;I g&.

&gl«p;, lg) =~(gl~;, I g&=-i&gl~;;lg&,

&gl imp;, I g) =- i&gl q, , l g& = i& gl q, ;I g&,

&gl p;, I g) =-&g I p, ;I g).

(A15)

(A16)

(A17)

As special examples of this equality we have the
dipole-dipole (many-body polarizabiiity

(gl &"'(r„r,;~)l g) =&gl 8"(r„r,;~)I g&

and the dipole-quadrupol. e hyperpolarizabH. ity
[for definitions of C and C', see paper 11,"Eqs.
(48) and (49)]

& gl 0'"(r„r.;~)I g) =(gl C""(r„r,;~)lg)

In case II, we have

Equations (A12) and (A17) are typical Onsager
reciprocal relations. As an example of (A17),
we can quote the electric-dipol. e-magnetic-dipole
hyperpolarizabihty [for definitions of D and D',
see paper 11,"Eqs. (50) and (51)],

& g I D"'(r„r.; ~) I g) = -(g I
D' "(r., r, ; ~)I g&.

(A18)

Next we consider off-diagonal elements (gl P;, I f)
for which uf, «u, as is the ease in vibrotational
Raman scattering. %e shall in the following ignore
the dissipative contributions r, , For the dis-
persive contributions q ... which are dominant
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in ordinary off-resonance Raman scattering, the
symmetry relations (A12) and (A17) can be ex-
tended to (not too inelastic) off-diagonal elements
as follows:

&gl q;', lf & =*&fl q,';I g&[I+0(4)],

&gl q, , lf & =~&il q, ;I g&[ 1+0(n)],

(A19)

(A20)

where the sign + again depends on whether 0,.
and 0, have equal or opposite time-reversal sig-
nature. From Eqs. (A7) and (A8) it follows that
the relative correction terms E and g are typically
given by

(de UPeg —&d —(d~g &d~g —(d &dye

[rvey/(ides iV ) +Vee/(iuee —ui )1 rVei+uiee

f rv/(rv, f' —iv') —iv /((v„' —rv2)]

&d (d ~f —(d + (d (d~g —&d

APPENDIX 8: DOPPLER-TYPE CORRECTIONS

At several points in Secs. IV and V certain terms
are referred to as Doppler-type corrections and
are negl. ected. It is claimed that their order of
magnitude relative to the corresponding leading
term is v/c, v being the average center-of-mass
molecular velocity. The argument is based on
the structure of the resolvent Go of Eq. (65). The
I iouviilian I,„[seeEq. (58)J contains both a part
I,„r operating on the internal (electronic, vibra-
tional, rotational. ) states of molecule A and the
center-of-mass kinetic operator I.'„,

I.„-g=(I/a)[P„'/2m„, X], (B1)

where pA and m& are the center-of-mass linear
momentum and mass of molecule A. In the ex-

ui~e(rvee +race)
(A22)+ QPef —2(d

In the sum over all. intermediate states
~ c& in

(A7) and (A8) the important contributions usually
come from highly excited states ( e& with rv, e & rv,

hence $ & cv~e/rv. The same holds for rj provided,
however, that (d does not lie close to one of the
excited states ( e&, so that the denominator in

(A22) is not small for any ~
e). We can conve-

niently regard urfe/rv as the appropriate small
parameter. It thus appears that the Onsager sym-
metry relations still hold in an approximate fashion
for vibrotational Raman scattering (where»d&e«a),
but are invalid in electronic Raman scattering
(where rute ~ id). Some additional observations
are made in Appendix C about inelasticity cor-
rections of a rather different nature from those
discussed here.

pression

[li ci" e' ra (~ ~ I mr~ I cm )-l~ e-ik ' r~ ]

I~' operates only on p, & and L& only on the ex-
ponential, i.e.,
LCAl e-A& ' lg

A

=(I/2m')(p~'k e "'''"+c '"'''"pa k )

(for ease of presentation, the spatial density fac-
tors are written in the k rather than in the r rep-
resentation). Matrix elements of I,„' l„ipr oudce
energy differences that are smal. ler than or of
the same order of magnitude as ui,. (for vibro-
tational. and electronic intermediate states, re-
spectively). Provided iv,. is not close to one of
the resonance frequencies of the molecular spec-
trum, we may thus compare (B3) with a, in order
to estimate its r el.ative impor tance:

P=p k/m rv;= —"=10 '

(at room temperature). We may thus justifiably
neglect I,a in (B2), so that the exponentials can
be taken out of the commutator, as is done in Eq.
(67). The same kind of analysis leads to the ne-
glect of the commutator of Eq. (79).

Also, the neglect of the fourth term of (66),
as compared with the second one in the same equa-
tion, is justified with an appeal to the same kind
of argument. The ratio between these two terms
is essentially given by

5 T~ma Oraa
~

(rV, )e» k; ~ r.a

By use of (B3) we have, to first order in Ia,
[T~a» ( ivIi+)apa c ' ]

=(I/ra~i)l Taa» Pa ' k»/mallia c ' a. (B6)

A very rough estimate of P can be obtained by
ignoring the commutator character of the expres-
sion on the right-hand side above, doing similarly
for na (=liana/Irv, .), where p=v/c. The value
of P is even further reduced if the commutator
in (B6) is handled more carefully; namely, by
taking into account that

(I/h)[T„„p, k,./m, ]=i(k, /m, )- ~,T„„(B7)
one gets a. more accurate estimate for P, i.e. ,
P=A/mcR, where R is a typical intermolecular
distance. For a fluid of H atoms, P=2x10 '/R
(R in A), so that for liquid densities, P=10 ',
and for dilute gases, P=10 '. For heavier mole-
cules, P will be even smaller. By the same rea-



MOLECULAR THEORY OF OPTICAL POLARIZATION. . . I. .

soning, the action of G, on T(34) in Eq. (66) is
consistently ignored; mhen compared mith the
result of operating with G~ on the other (electronic)
fa,ctors, the former is of relative order of mag-
nitude P,

One should not confuse these neglected Doppler
corrections to 8 mith the contribution of the cen-
ter-of-mass motion to the low-frequency (&u, —~,)
Fourier components of the & 8(0)8(f)& correlation
function, mhieh is very essential to the interpre-
tation of light-scattering experiments. "'" This
(non-negligible) Doppler modulation derives from
the spatial 5 functions in Eq. (67). It is thus im-
portant to realize that in (67) we have extracted the
6 functions from the commutator, but me did not

neglect them altogether, so that our formalism
retains all of the basic ingredients for a correct
hydrodynamic or kinetic description of Doppler-
broadened Bayleigh-Brillouin spectra.

APPENDIX C: INELASTICITY CORRECTIONS

The algebra in the Coulomb-limit calculation
in Sec. IV is considerably simplified by the ne-
glect of the m 0 0 terms in Eq. (70). It is the
purpose of this Appendix to investigate under mhich
conditions this approximation is justified. Con-
sider a matrix element of the complicated oper-
ator expression (70),

" g (&0[[M "(l),$(-f.,/~, )" M~(3)j]( c)T"(34)&c[((-I,,/~, )[M'(4.), GM'(2)]][ b&
a=Q m=0 ~ c

+&.l0- ~./~, ).M&(3)) I c»"(34)&c] [M (I), ((- I,./~, )" [M'(4), GM'(3)])]I&&],

and note that the states
~
a } and

~ h& satisfy the
energy-conservation condition {54). The param-
eter g—= [ u„[ /&u, =( E, —E, ( /g&u, is introduced
as a measure of the degree of inelasticity in the
photon scattering event. One should distinguish
between quasielastic ($&l) and strongly inelastic
($&l) scattering. Rayleigh ()=10 '-10 '), ro-
tational Raman (f, =10 '-10 '), and usually also
vibrational Raman ()=10 '-10 ') scattering be-
long to the first category. Electronic Raman
scattering ((=1-10), on the other hand, should
be considered separately. It mill be argued that
the approximation implied by neglecting the m +0
terms in Eq. (C1) is justified in the quasielastic
ease, to mhich me nom restrict our attention.

In the first term of Eq. (Cl) an intermediate
st:ate

~ c) occurs whose energy E, might seem
to be possibly very different from &, and E~.
However, this is n«so in most eases of interest,
by virtue of the fact that Lo is diagonalized in the
molecular indices. This is most clearly seen by
taking a matrix element of the second term of
(66) to lowest order in the interaction I.,

&ul[M (I), G, M'(3)T" (34)l3 "(43)]l h&

~ us~u[p ~G~op~T~ao'a ]I&~ha&

= Z&'~~[» Go&~&as&us~ o'a'~hs&]lh~)
A~8

= Q&u~~ o'~'I4}T~s&ssloa i&a&
A v'8

where the states (a„& and (a~} of moleculesA

and 8 are not coupled (to lowest order in L,). In
most cases of practical interest (e.g. , depolarized
scattering by isotropic molecules') it is sufficient
to consider L, only to first order. In higher-order
terms, mhenever a particular molecular label
(A, etc. ) occurs more than once, the previous
a,rgument does not appear to hold a.nymore. Con-
sider, for example, the expression

Q &usual »GopzT~&s ~spy~ l&pbbs&

g & a&i p &God's~ cx& Ga
A&8 cA

x&usl o's lhs&7's~&c~l n~ lh~}, (C3)

mhere me have taken only one term of the com-
mutator bracket, Here it mould seem that the
sum over all states ( c„) also includes highly
excited states of molecule A. . Homever, in this
sum the dominant contribution comes from ( c„)
= (h„&, since quite generally &c( n(b& decreases
in magnitude as &u„{the energy difference between
the states ( b& and ~c)) increases. (The latter
property is ref 1.ected in the facts that Rayleigh is
stronger than Raman scattering and that vibra-
tional Raman scattering, in turn, is stronger than
electronic Raman scattering. ) It is thus true-
to first order in L, rigorously and to higher orders
in L, approximately —that the intermediate state
~c} appearing in Eq. (70) is no "new" state but
is composed of the same molecular states as
[a& and )h} [e.g. , in Eq. (C1), fc)=f h„as) ].

Since ~c& is energetically close to ( a) and (b),
the matrix element
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(c(I,,/u, .) [M (4), GM (2)jib)

=(~„/~, ) (cl [M'(4), GM'(2)tlf ) (C4)

occurring in Eq. (Ci) is a rapidly decreasing
function of m, so that the neglect of all terms
m ~1 is well justified in the quasielastic case.
Notice that the m =1 term corresponds to a polar-
izability current a~ =i I.„K„. In strongly inelastic
scattering, the effects of such currents could
therefore become important. In Appendix A it is
shown that under the same conditions ($ &i) the

polarizahility has an antisymmetric part (8
~ 8 ). This point seems to have been raised in
1934 by Placzek"; more recently, such effects
have been discussed and actually measured in
electronic Haman spectra of lanthanide crystals
by Mortensen and Koningstein. "'" The present
discussion suggests the possibility of observing
similar inelasticity corrections in col.lision-in-
duced scattering in compressed gases. It must
be added that these terms are absent in the usual
(classical) theories of collision-induced light
scattering.
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