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Eikonal approximations to thermodynamic Green's functions are introduced into the functional representations

of quantum statistical mechanics. In terms of summations and quadratures over an instantaneous interparticle

potential, one obtains explicit representations at reasonably large temperatures for quantum corrections to
classical cluster integrals.

I. INTRODUCTION

The functional formalism of many-body problems
in quantum statistical physics has a. history as old
as that of conventional relativistic field theory.
Over the years, in the latter subject there has ap-
peared a collection of techniques and approxima-
tions collectively described by the word "eikonal, "
in which the soft components of real and virtual
meson excitations are explicitly summed, pro-
ducing coherent and important effects in scattering
and production amplitudes; the word "soft" here
means meson frequency components k small (in
some appropriate relativistic sense} compared to
the 4-momentum P of a set of distinct scattering
particles.

The purpose of these remarks is to attempt a
similar analysis for problems of nonrelativistic
many-body physics. Here, the word "soft" shall
refer to the size of Fourier components k of the
transform V(k) of an instantaneous interparticle
potentia, l V(r, —r, ) compared to the typical thermal
momentum P of a particle in the medium. For
simplicity, the present discussion is restricted to
nonrelativistic situations, although this is not
crucial. Eikonal approximations in this context
lead to the explicit summation of all such soft
degrees of freedom, for appropriate thermody-
namic functions; one is able, e.g. , to exhibit quan-
tum cluster integrals in terms of summations and

quadratures over the soft portion of elementary
interparticle potentials. Since soft excitations, in
this sense, correspond to long-range potentials,
and since the latter are attractive in gases, one
might intuitively expect these techniques to have a
certain relevance to condensation phenomena;
however, at temperatures large enough for these
approximations to be valid, one is close to the
classical domain, and the sum of all cluster inte-
grals is necessary. To my knowledge the eikonal
methods used in this context are new, while only
the barest indication of possible application is de-
scribed in this paper. These methods provide, in

the limit of high temperature, an independent
derivation of the classical cluster expansion'; at
finite (but sufficiently large) temperature, one ob-
tains explicit quantum corrections to the classical
expressions.

The plan of presentation is as follows: In Sec.
II there appears a brief review of basic formalism,
wherein the generating functional of the grand
canonical partition function is compactly expressed
in terms of certain functional operations which are
themselves quite familiar from field theory usage.
In particular, cluster decomposition properties
foll.ow easily from this analysis, as do familiar
Hartree-Fock results based upon the simplest of
approximations. Section III describes explicit
representations for G,„(x,y ~A), the thermal Green's
function defined in the presence of an arbitrary
source or potential A(z, zo); it is this material
which is at the heart of the paper. Beginning with
a standard form for the real-time imaginary-tem-
perature free-particle thermodynamic Green's
function G,&"(x- y}, a representation is defined for
G,„(A) a.nd explicitly obtained in the soft or Block-
Nordsieck (BN) approximation. Application of
Gth"IA] to the calculation of the cluster coefficients
is outlined in Sec. IV, with detailed results written
only for the simplest nontrivial cluster integral.
Compact expressions for all of the classical clus-
ter integrals are easily obtained. Finally, a brief
summary is given in Sec. V.

II. REVIEW OF THE BASIC FORMALISM

A brief review of the basic functional formalism
will first be presented to fix the notation and
establish continuity with existing BN approxima-
tions. Essentially every item in this section was
devised years ago in the work of many authors, in
particular that of Martin and Schwinger' and of
Fradkin, ' which papers contain numerous refer-
ences to other, original efforts. The functional
techniques employed here are quite elementary,
were invented years ago by these and other au-
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x V(x-x')){(x', f)g(x, &),

where V(r) represents an instantaneous interpar-
ticle potential. Standard equal- time commutation
relations fox' bosons and anticommutation rela-
tions for fermions will be assumed,

[y{%,f },y'(x', f)],=d(x- x').
The forrnal calculation of Z may be begun by

first rewriting (1) in the equivalent form

(4)

Z= Q(n„, 0( ~e" (n„, 0),
(a)

where H H —ill, the index (o}and its summation
refers to all states of the system containing n
particles, and the same res, l-time (t =0) index has
been appended to each state. With the imaginary
temperature continuation P -jw, and the identifica-
tion of the matrix element ( I&, 0

~
e ""

( a, 0) as the
probability amplitude ( II, t ( a, 0) for the develop-
ment of the system described by the Hamiltonian
H, one then has the continued partition function ex-
pressed as

thors„and have been conveniently summarized
elsewhere. The functional notation of Ref. 4 will
be followed everywhere in this paper.

The essential quantity of interest is the partition
function

Z[p, p]=Tre-'o'- "',
where P and p, are the standard inverse tempera-
ture and chemical potential, respectively, while
H and H represent the complete (Heisenberg)
Hamiltonian and number operator for the system
of interest. Attention is here restricted to the
nonrelativistic many-body system specified by the
LRgx'RQglRQ deQslty g =@0++

go =if 90$ —(I/2m)vg ~
veal

1
Z =-- d'x d'x'q'(x, f)q'(&', f)

[d/dj(x), j(y)] = d(x- y) = d(%- y)d(x, - y, ), (S)

and their inclusion in (7) generates the source de-
pendence of the states in (6). If quanta of the p
field are fermions, (7) is to be replaced by

Z =20+2'+P, P P+q P+g q,
where q, q are anticommuting e-number sources,
anticommuting with themselves and with all other
fermion quantities,

I&/~I)b. ), II(y)j= &(~- y) . (10)

«&)'i) g& ,., ~=& ., o), «, (», »)=&)«, «&,

(11)

and employs the action principle to write

&

«„4)',))=$ ( ., « I&"(*)I«., »), (»&

., (
s~{j",jJ=Q n(„, r(q( )x~n„, 0), (12)

I lb' X (»)

where it is understood that the time coordinates
x~ of (12) and (13) must lie in the range I' ~ w~ ~ 0
if the right-hand side of each expression is not to
vanish identically. Again, the states of (12}and

(13) depend on the sources. Repeated functional
differentiation may be carried out, generating a
Taylor expansion which serves to demonstrate that

« i)', ))=p(., ~~(«««&)'&+»)&) «. , »),

Spin indices hRve been completely suppx'essed.
For convenience of notation, explicit manipulations
Rle performed fox' the cRse of bo8ons, and corre-
sponding fermion results are then appended.

The methods of conventional field theory may
now be invoked to obta, in (6). One defines a thermo-
dynamic generating fuQctlonal

Z[iI', ll] = (n„, T ~n„, 0),
(a

which is in the appropria. te form to apply elemen-
tary action principle considerations.

The system now considered is specified by the
Lagrangian density

Z =20+2 '+ P, P 4+ j*g+g j,
where the introduction of the chemical potential
leads to a boson system described by II, and where
boson sources j (r, f ) and j*(r, t) have been intro-
duced in order to provide the basic ealculational
tools. These boson sources satisfy the commuta-
tion relation

r d&0
0 0

The sylnbol ( )+ detlo'tes collvelltlollal 'tlllle order-
ing and the states and operators of (14) are now
independent of the sources. The range of integra-
tion over all subsequent time eoox'dinates will be
understood to be limited, as in (14).

The action principle may be used to calculate
s~(j*,j] directly, by replacing g ' by gg', obtaining
a differential equation for the g dependence of p~,
and expressing the latter as a particular functional
operation upon Sdi,

) =—Su ( ~. Or one may calculate
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differential equations for the quantities of (12) and
(13) and their solutions, using an alternate but
equivalent set of manipulations. Either method
quickly leads to~

„&(oj(&t &~ (15)

Such formal solutions are quite well known„but
there is one further point that sould be discussed.
The functional operations of (12) and (13) are quite
clear as they stand, but subsequent differentiation
generates an ambiguity concerning the order of
differentiation at equal space-time coordinates.
The point is that it is not simply sufficient to re-
place, in the derivation of (15), thermodynamic
averages of the products r/i (x)(j)(x) by equivalent
functional differentiation

1 $ 1

i 5j(x) i 5j*(x) '

for the latter operations commute while the opera-
tor fields do not. A prescription must be defined,
analogous to the use of normal-ordered fields in
the Lagrangians of conventional relativistic field
theory. In the present case, for the explicit g' of
(3), the following procedure wiII be adopted:
First, g' is rewritten in terms of the combination
(i (x)(j)(x), as is always possible using the relations
(4); one then rewrites this combination in terms of
its symmetric and antisymmetric parts,

(17)

Only the symmetric part of (17) is identified with
the functional differentiation operations (-i5/6j)
x( i5/5j*) T-he rema. inder, 2[/, ft], is b—y

—(4)
just the infinite c number —~5(5), which may be
identified in a variety of ways, e.g. , as
—&(0~ /A~0), or as Iim~G,'0)(x -y), where G,'"
denotes the conventional free-field particle px'op-
agator

G'."(x-y)=-i(0 ((p, ( )4'.(y)), ~0).

In this nonrelativistic context, one may write

G,'"(x —y) = —i 8(x(, -y, )(0~ )j'j,(x))f",(y)
~
0), (19)

"&e (j*.i )I
where g has been replaced by unity and the depen-
dence of g '((j), g) on its arguments is given by (3).
Had fermion fields g~, p and sources q, g~ been in-
volved, (15) would be replaced by

where U(x) —= V(x) 5(x,), and each equal-space time
product P P is then replaced, in the formal solution
(15), by —(5/5j)5/5j* —iG,'"(0). These extra, in-
finite factors will always cancel in the final, ex-
plicit solutions; they are a nuisance to retain
throughout a calculation, but it is really necessary
for an understanding of their origin.

Similar considerations may be carried through
for fermions, where only the antisymmetric part
of p g is to be replaced by (5/5)7)5/5I}t, while the
I'e111allllllg syI11IIietl'Ic quaIltlty ~Qf p] ls 'tile 111-

finite c numt)er —,'(O~((t', (j)~O) =-,'(O~ g'~O). This
last identification is corx'ect only if the vacuum
state

i
0) corresponds to the state of zero fer-

mions, rather than that state representing a
completely filled Fermisea, andforpresentpur-
poses this shall be assumed. Using the appro-
priate anticommutation relations, those parts of
the action operator analogous to (20) have the
same signs as in (20), and it is to be understood
that in the formal solution (16) each (j)IP combina-
tion is replaced by (5/5II)5/51}t+ i G,"'(0).

Before exhibiting a functional construction of the
remaining portion of the formal solution (15)

o„'(j',jj=ooo(-' j'oj,"j)ojo(o,oj, (21)

where@(o)(0, 0] =Z,[ir, jI], the free-particle par-
tition function, it is most convenient to extract
all p. dependence from these forms and insert it
at a later stage. Dix'ect application of the action
principle is the simplest way, for it leads to the
differential equation

=i+ n. ,r
(e)

&'*o'(*)o(*) ., o) i +ai&0

d'x, , „+iG,'"(0),„(j*,j], (22)

with solution

and use that definition of the step function 8(e) (as
the limit of a sequence) in which 8(0) =——,', so that
G',"(o)= ——.'5(0).

It is in this sense that (15) is to be understood:
using (4) one first rewrites the interaction part
of the action operator as

J x Px
'j y(0} 'j

0 0

7 T

d'x d'x' Pt(x)(i)(x)U(x -x')
2 0 0
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3,„(j*,j}=exp f-]j „, 5) 5j*

xexp[]j~QG(0](0)]s,„g*,jj~,„()

where 0 represents the total volume f d'x. Re-
moval of the infinite G,(0) phase factor will occur
automatically later on. For the moment, we just
consider the p, =0 functionals, which will turn out
to be related as given by (21},

with ail time variables ranging between 0 and r,
V1Z:

r
1' 'r

j*G,"',"' = d'x d'yj*(x)G',"(x-y) j (y) .
0 0

Extracting this factor, it is convenient to define

0[j,j]-=exo(vj Jic'e&j)ef'& (i„j]~

=Tr exp i tj exp i j*tt)0 e~ o,

(24}

where 3',hP „pf0, Oj = Z 0[i0, 0].
Calculation of s(D0I„0(j*,j] proceeds most sim-

ply from the observation that

(29)

and to determine the differential equations satis-
fied by Q. The quantity

f 5jz(x)

=Tr exp i P0'~'j tt)0x exp i j*$0 e

= P(„v l(exo('Jl fj oeo&j])'l ,e„o),

(25)

with all states and operators of (25) represented
by free-field quantities. An alternate expression
ls

may be transformed by passing the $0(x) operator
through the factor exp(i f Pp'~)j), using the cyclic
property of the trace and the time-translation pro-
perty of H„ to yield

f(-exv((O». ,)] —,
O, , „p= 0"'(»- )i())0,1

(30)
where

~j)0 ~+

using the continuation P —iT, as convenient. The
free-field operators satisfy simple differential
equations,

[iso+(1/2m)v']P(x, f) = 0,

while their corresponding causal (and in this non-
relativistic situation, retarded) propagators satisfy
the related inhomogeneous equation, with solution

0"'(»-V)= [&j'(V), (e(»)l=-j(xv) ' f4'Ov"'*".

Equation (30) [together with a related equation for
6Q/5j(x)] has the immediate solution

pfi'j]=0[o, o]exo(-, Ji ()[exo((oe. )-(I'

x 0"'( —v)j(v)),

d4p
G,'"z =

(2w)' p, —e(p)+ie

f (f](z )
x ejD z 'lo(j&)zpd'p

(2w)'
(27}

x exp —i d4u d4vj* u
0 0

xp»'„„( —v)j( )),

(31)

with p'z —= p'z —ppp and e(p)=p'/2m.
Because the field operators of (26) are free, the

time-ordered bracket there may be rewritten as
the product'

with

d3p ~ e ~G(0) (z) — f P e]D D-]4(D)zp
thv)e~ (2x)3

x (e(z, ) + 1/(e "D' —1)], (32)

=exp —z j*G,'"j:exp' I j*g,+tt) j:, 28

a well-known result' in which the nonground-state
or finite-. emperature part of this thermal Green's
function has Fourier components on the energy
shell only. '
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Finally, we may pass to the p. 00 forms by calculating the interaction-free version of (23),

it',"[j',j]=e"" * "'exp —in —. . exp(- 'fj G;'' „j„)Q[0,0]p ~ ~ gTQC ~ p ~

=Q[0, 0]e"'" * "'exp(- ' fj G,"„'j)exp[-Trln(le nG',"„-,)], (33)

using the well-known Gaussian combinatoric4

exp —i —.A . exp i j*Bj

=exp j j B(1—AB) 'j)exp[- Trln(1 —AB)].
J[

Here, the Green's function G,"„'—= G(G&)„~ [1
+ i(G(G„',~] ' satisfies the same differential equa-
tion as does G",„'„~, except that the latter's e(P)
is everywhere replaced by e(p) —g =Q(P),

G(p)( )
~

]

j (3 z (Q(jr)B-()d'p

the familiar ideal-'Bose- gas result. Combining
(15) and (33), one obtains the generic result

Z[P p], 1 5 1 6

Z, [ll, p] I ej' '
ej )

& exp —i j*G,"„'g

(36}

For the pa.rticular interaction (20), this ratio
may be written as

)((8(z )+1/(ej)Q(jl) 1)].

The determinantal factor of (33) is

(34)
exp -- —. . U

x e p ——' p(0) f (
0. 0„)

Jp
T P

d'x dp, 'G(3 p (x —x), (35)
x exp —i j*G,"„'j

i ~ 2

(37)

explicitly indicating, in (35), the i( dependence in
the Green's function of (34}over which one is in-
tegrating. Equation (35) splits into two terms,

d'p-rQG' '(0)+i Q7" dp, '(e '" ' " '-1) '
0 (2(()3 y

the first of which just cancels the infinite phase of
(33), while the second yields the difference

iTQ 3
—-ln(1 —e ' G )+-ln(1 —e ')d'P 1 s«» 1 -s6

(2v)' P P

Comparing normalization factors in (31}and (33),
there follows the identification

lnZ [P )j, ]=Q)t ln(1 — ~" ' "') 'd'p
0 1 (2v)3

if only one remembers to replace each (6/5j)5/5j*
combination in (37) by (6/6j)6/5j*+ iG,"'(0). An
immediate example of the cancellation of the as-
sociated phase factors is provided by the action
of the last operator of (37)

exp ——V 0 —. . exp —i j*G,"„'

=exp —i ' j*G,"„' p. +-,'V 0 j
x exp[Tr ln(1+ BV(0)G(G')). (36)

Here the Green's function denoted by G,'0'[)j + —,
'
V(0)]

is just that of (34}with p replaced by )j, + —,'V(0),
while the trace-log term again splits into

T

—Tr ln(1+-, V(0)G,",') = ——,
' V(0) d)( d'xG, „[x—x; p+-, V(0)]

3 V(0)&QG (0) + V(0)&Q P d)((e3(0 (B)-G-z j 3 v(o ) 1 1)-1
C (2x)' (39}
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x exp —i j*Gt„' p, +,V 0) j ~ . 40
t

It is most convenient to shift 1], in (40) by the
amount -a V(0), and so calculate

Z[iw, p ——,'V(0)] i 6 5

Zo[iv, p, ] 2 5j 5j* 5j 5j *

x exp -i j*G,„j (41)

where the thermodynamic Green's function ap-
pearing in (41) is that of (34). A subsequent shift
or renormalization of the chemical potential,
p, —p, + —,V(0), is to be made at the end of any
computation. The + iG,"'(0) additions to the com-
binations (5/5j)/(&/5j*) still remain to be per-
formed.

As a final preliminary, (41) may be rewritten
using the method of equivalent boson excitations, '

Z[ir) p, ——,'V(0)] i 5 5

Z,[i pr] 2 5A 6A

xexp i —.A

x exp —i j~Gtn'i . .*j 'I

A~O

Carrying through the j,j* operations first yields

Z[ir, p ——,V(0)] i 5

Zo[ir, g] 2 6A 6A

)(exp[ —Tr ln(1 -AG,"„')][, , (43)

With the exception of an infinite quantity linear in

A, contained in the Trln term of (43) and canceling
against the omitted iG,"'(0) dependence of (41), Eq.
(43) represents the essential formal solution to this
problem. One may explicitly show the necessary
cancellation by defining the boson loop function

T

LIh~)[A] = -Tr ln(1 -AG,'„') —G,"'(0) A,

or

The first term of (39) cancels against the + iG',"(0)
factor, which should have been included on the
left-hand side of (38); and elementary integration
of the remaining part of (39) just produces the
difference

ln Z,[iv, 1(+ —,
'
V(0)] In—Z.[ir, 1],],

leading to

Z[ir, ] ]
Q[ZT, )( + 2 V(0)]

(45)

For spin--,' fermions, an exactly analogous dis-
cussion goes through, yielding a relation of form
(45), except that the fermion loop function is now

given by

7'

L I~h)[A] = Tr ln(1+ AG I'„'&) —2G,"'(0) A, (46)
0

where G,'» includes dependence on spin indices.
In a conventional, relativistic -field-theory cal-

culation of the sum of all vacuum-to-vacuum am-
plitudes, L,„[A] would represent the sum of all
closed loops over arbitrary numbers of source
insertions A, while the effects of radiative cor-
rections are given by the "linkage" operations
induced by the functional differential operator.
Statistically, the combinatoric situation is the
same; the only differences are that the loops are
built out of thermodynamic Green's functions,
rather than causal propagators, and that each "ra-
diative correction" here corresponds to a potential
interaction between a pair of particles, or the
same particle, in the medium.

Many applications within this class of statistical
problems may be obtained by suitable modeling of
(44) or (46). The heart of any such method is the
appropriate approximation of

G(h(x yl»=(xlGI )[I -AGI ] 'I» (47)

the thermal Green's function defined in the pres-
ence of an external field A(a). The material of
Sec. III represents one attempt to do this for a
particular physical situation.

Results of the so-called Hartree-Fock approxi-
mation are easily obtained from this formalism,
by retaining only linear and quadratic A depen-
dence of L,„[A]. For example, if in the boson sit-
uation one approximates L,„[A] by L,"„'[A]+L((h)[A],
where

'r T

I.,"„'(A]= —'lv J A, I'']A] =
2

A. K,*„,"„'A,
- 0 0 0

with

P (e])(6(P) 4) 1) )1
0 (2a)'

Z,(2„)(x,y) = iGIO„)(x-y)G&o„)(y- x), (48)

the functional operations of (45) correspond to the
summation of all tadpoles and simple bubbles,

1 'r

L,'„'[A] = dA. d'xA(x)[G, „(x,x l](A) -G,(~)(0)],
0 0

(44)
and so obtain the divergence-free result

Z[i&, p —2V(0)] i 5 5
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(49)

again using the Gaussian combinatoric. %'ith a
real- time imaginary- temperature Fourier- series
representation for G~+)(z), given in Sec. III, it is
not difficult to show that the logarithm of (48) may
be rewritten as

, )n[( +ac. (()v(gl

"LIh[&I]' ' 'LIh[&.] ..
A]v

(52)

where

2
—niPV(0) 1+ P(0) —Ã, (50)

Bp,

)(.0)=,, f 2, . p ['~.- )(p (e)) '-
fft=~'x)

&[[0 +(d, —Q((f)1

and (dl —= 2)II/v. . The first i:erm of (50) represents
'the complete suIII of ring dlagraIIls (pIctl11'ed on
the book jacket of Ref. 5), while the second may
be interpreted as a kind of "unitarized" Van der
%aals potential. These results, quoted here for
a boson system, are the essence of the Hartree-
Fock approximation.

More generally, it is a straightforward matter
to employ the "connectedness property" of field
theory in order to display the cluster decomposit-
ion properties possessed by the logarithm of (45).
With

one may write4

[P
&

(0)]
Z[I'I, iI- 2 V(0)]

z.[Ir, [I]

e@AeL,„(A)
00111k
A~O

then one ean write

CIh[P, iI gV(0)]= Q C„-,

where the subcript "conn" is an instruction to re-
tain only the connected parts of all terms, in
particular those that arise in the expansion of the
L,„[A] exponential. If the symbol Z', h[~] Is used to
represent that closed loop which contains all "self-
linkages, "

T118 opel'a'tiolls sllow11 ltl (52) I'ef81' to co11118c'ted

linkages between different loops, and provide a
functional representation of the quantum cluster
integrals. In Sec. IV a calculation of C, will be
performed by summing over all appropriate soft
linkages, and it will then be appax ent that the T
—~ and/or g -0 limit of that quantity is just the
simplest classical cluster integral. In fact, the
entire sum of classical cluster integrals follows
easily from (52). From an operational point of
view, however, the only possibility of actually per-
forming the functional operations of (52) is re-
stricted to those situations where I.,h[A] is not
more complicated that the exponential of a linear
or quadratic functional of A; and it is precisely
the simpler of these possibilities that appea, rs
when the restriction to soft linkages is made.

III. REPRESENTATION OF 6th [A )

In this section, a fairly conventional Fourier-
series representation is first given for G,"„', the
free-particle thermodynamic propagator. This
is followed by a similar representation for G,„[A],
which suggests an appropriate version of the no-
recoil BN approximation.

A. Fourier representation Of 6th

Because the time coordinates of 6~0 are limited
to the range O-t, with a familiar periodicity over
the range 7', it is useful to introduce a Fourier-
series representation for these variables. Fol-
lowing Matsubara, a we introduce the complete
set (xJn) = I "~' e ' ~ "(), and expand

G[„"(x,y;x„y,) = Q (x)n)G[~"(x, y)n, I)
n l=-~

(53)

Of course, the fact that 6,„' depends on coordinate
differences simplifies matters considerably, and
one easily inverts (53) to obtain a representation
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for G(to)(sin, I), or for (53) itself,

z ~ d pG"'(z)=- — e"'' ' ""G (p)th T (2x)s

with

G„(p) =[~.—e(P)+@+st)] '. (54)

The periodicity condition GI„')(z, z,)l«,
= G(,„')(z, z, + r)l, „„follows directly from (34),
and has as its consequence the restriction (d„
=2'/r, with n =0, s 1, s2, . . . . With contour
integration around an infinite number of poles
lying on the real axis, the validity of (54) is easily
verified; in fact, G„(P) can have either a positive
or negative imaginary part. The use of this rep-
resentation in (48) and (49) leads directly to (50).

advanced) propagators; thus one may construct

G,„(x,ylA) =G. (», y)A

+[exp(spa, )-I] '

x[G, (x, ylA) —G-, (x, ylA)],

if onlyA(z) =A(z). If A depends on z„however,
(56) is wrong and there does not appear to be any
simple way of relating G,„[A] to G, [A] and

G,—[A]. This is discussed further in the Appendix.
The relation (47) satisfied by Gth[A] is similar

to that satisfied by G, [A] (except for the time-
coordinate restrictions),

G (x, ylA)

8. Exact representation for 6th tA] = G(')(x —y)+ d'z G(')(»- z)A(z)G (., ylA),

The central object of concern in this functional
formalism is the thermodynamic Green's function
in the presence of a, source A(z). If A is inde-
pendent of time, G,„[A] may be written down im-
mediately, by repeating every step of the cal-
culation leading to (31) and (34), just as one found
(for the boson ease) (32), or

where the limitation on the range of the dummy

z, variable, following the derivation leading to
(43), is explicitly shown in (57); it is understood,
also, that the xo, yo variables are to exist in the
same range. %e now introduce a double Fourier
representation, analogous to that of (53),

+[exp (iPS, ) —I]

x[G("(x-y) - G( )(x- y)],

where G, and G—, represent causal and anticausal
(or, in this nonrelativistic situation, retarded and

G,h(x, ylA) = (x,ln) (x, nl G,„[A.] I y, I& & I I yo&
ff s

(58)

using an obvious notation. With ( xl p& = (2)[) ') '
xe'I'' ", (57) becomes

(s„ ls„(sIIi&., )) =()., &Rls)s. ts, ) Q f t, .s.(s)&. .(s, -4) &tt, mls, „(&]lit., )),

where

1 '
Z tq s z+~~ g

~t(}

where, as in (54), we choose the smali positive
imaginary term, and write the representation

(p. , nl G,.I.A]l p„ I&

In momentum space, G,„ is diagonal, whileA
is Hermitian. E(luation (59) is a nontrivial in-
tegral equation, which one must solve or approxi-
mate in some tractable way.

Previous experience with eikonal approxima-
tions suggests a particular form of representation
for

&p„ IG [A]l p„f& =&p„ I [(G",,') '-A] 'lp„ I&
where

= —i&p» l
ndse"[(G~ ) ")Ip„ /&

()

= —i dse"" ~ p n Fs p„/

(60) ty(S) =e is(G th ) ei [(G-tt, )s-A )(0) . (0)
(62)

Since Gth is dlagollal, so ls (G ~ )

& p, nl (G'") 'I p', I& =&pip'&6. t(G. (P)) ',
It is slightly more convenient to multiply through

by+„Ps, &p nI y,zys& and consider
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(p, lo,„(A]Iy,y.&
= —' I sse'""""(p,

I p(s)le, y.&.

In order to determine $(s}, one constructs the equation

—„&p,nl 6'(s)
I y) = -i&p, nl s "'""'As""~ ' &(s) I y&

=-i g g A, (k)exp is-sr, + — (p-k, n —ll 6'(s)ly),
2m pp1

k

obtained by inserting a complete set of (k, I) states. It is useful to guarantee proper normalization at s=0
by defining

&p nl 0(s)ly)-=(Ply)(sly. &f(s;p, n;y),

and so obtain the corresponding equation for f,

sf k' p ~ k
Bs
—(s; p, n; y) = iQ A, (k)-exp ik y - ioo, yo —is o&(+ — f(s; p -k, n —I;y),2m m

k p&

with f(0;p, n;y)=1. So far, all is exact

C. Eikonal approximation

Incorporating the s = 0 boundary condition, (67)
may be written

%e now define the soft excitation, or eikonal
approximation relevant to this statistical situation,
by recalling that the source dependence A in X~[A]
is subsequently to be acted upon by the operator

fBN(sy Py ny y)
S
ds'~A y+s' —e ' ~'o+"

r
m

xfBN(s';p, n- l;y),
i 6 5 i d'k 6 - 5

2 5A 5A 2r ~ (2B}'6A„(K) 6A „(-E)'

where
with the iterative solution

S

fs„=l —i ds' B(y+s'v(p))

If one is interested in an approximation where the
effects of all soft k are correctly extracted —and

by soft one means
I kl &

I pl, where p represents a
typical thermal momentum of a particle in the
medium —then it will be permissible to neglect
in (66) all k compared to p, for the particle mo-
menta p appearing in these combinations are al-
ways to be subsequently averaged over typical
thermal distributions. Thus (66} is replaced by

ol

S

+ (-i)' ds' B( y+ s'v(p))
0

S

x ds"B(y+s"v(p))+ ~ ~ ~

S

y.,(s;p, ;y)=esp(-S Ss'p(y s' lp)),

8

s sfBN(sy py ny y)

=-'PI'A, (l) sp 'k
y ~ s —}—', (y, ~ s)

m
k

where v„(p) =(p/m, 1}and

B(@)= P A (z)s ' ( o.

xfBN (s; p, n —I; y)

= i I x, (y+s p e-" '""y,„(s;p; -) y).

(67)

Note that B(g)=—A(z) only if Isol& T; and that fB„ is
independent of n.

Substitution of (69) into (63), or its configura-
tion-space equivalent, then yields the soft-exci-
tation thermodynamic propagator
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d pGIN (» ylg) ~ P ed p (2-y} ((0„(2()-)t()} ds e(AL td„(])(2}3exp ds' ll( t ~ s'e(d))), (70)

where again tI}(p)-=e(p) —}2; and in which the typically simple eikonal source dependence, the exponential
of a linear form, again appears. The A dependence may be made more explicit by rewriting the s integra-
tion, using s = 8 + 6, with 0&4& v, and summing over all positive integers l,

ds T(s) = g J de T(te+ S),
l=o

G])N (» l
~) 2 ' *-y}~ ds ~ -' „*—o-(}}&-'o(2}( +z}f

(2)y) 2 SN
~-o

(71)

If z, =», —y, &0) then y&za and I zo- sl ~7', so that the closure sum over the states n may be performed,

-l ~.&dO-(]} =

If z, &0)
l
6- z, —yl &yt and one must use

id)et(d()+T (]} y{}(z + y ()])

In this way»

0'"(x, t]A}=-i J t, e't' pe '"e[S( )
e f,„(lt~ ') 'e( e)eee"e"-'f,„((l'+t)t+x)].

J=O
(72)

Rewriting 8(-z,) in (72) as 1 —8(z,) and combining terms, one obtains

~ d P k Z f9+ -j(l+ j.)7'QGz" (»tyl&)=G0"(»-y)fate(z. ) -f
2

2&"' ' 2 g & '"'"'og (((+I)y+z ) (73)

d'k go

In/ ((I+ I)y+z ) f ~ J {k)@(k
' y (tdtt))0 Q ds e((k tt }(littst)+5} T+ de el(k ' 0 (ttx)f(t+ 1} +8}T

SN () z~ (2 )2I2 tl

yff=o 0

(74)

Note that in the limit A-O, (73) reproduces the free thermodynamic propagator G(~2), while for constant
A one obtains |"~~~ with a. shifted chemical potential.

The terms in large parentheses in E(I. (74) are just

At (k ~ v)
g{)

gjlI{k ~-~~}+ 47 (1+x}g~ v
d& &~fI)&g ~ ~-~„)

~ (k. &~) (I &(T()+ 1}k'0)(I &(T k v)-l.

for z0-0, the situation of subsequent usage,

Ac'"(x, x}A)-=0'"(x,x]~A) —dt't(0} =-t' j 0 ), Pe'"'"'e "tees -i+ „,A„(ft)f, , (tt, x), (ls)
l=()

7'

y (k n) ft (k, ~V)&((k x-0)„xt)) de e(e(k v-td„}

From (44), one sees that the combination (kG22," is
precisely the function that enters into the finite-
loop expansion; for this boson case,
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LBN [A] =
1 7

dh d'xA(x)aGat„"(x, xi L4) . (76)
with

7

foe (k n) ei(k. x-w„xo) da e
—i0 (79)

gG "( x ~A) = i P (e' to~&~+ ~& 1)
d3p
(2v)' 7 (77)

where

18 da g gg2 A (k)
n

&& e&(k x —~„~0) e !8(k v - ~„)

Substitution of (76) into (45) shows that the mo-
mentum argument of A„(k) in (75) is to be set
equal (in magnitude) to the k coordinate of V(k);
if the restriction

~
k~ &

~ p ~

is kept, the correspond-
ing condition in (75) is that (l+ 1)(P/m)~ k ~

p~ & 1,
or A, (k ~ v)- i+1. This permits a slight simplifi-
cation of (75),

The reason for the latter approximation is that such
terms always correspondto lengths RSv-O(hpv)
-O(lb), which are then combined with dummy variable
length parameters x themselves of range of the poten-
tial; and these h factors maybe discarded in the clas-
sical limit. (Alternatively, they can be dropped in the

high-temperature limit. ) In fact, remembering
that corrections to the BN approximation always
involve' further shifts of these configuration co-
ordinates by amounts proportional to l, one
sees that (78) and (79) provide a simple represen-
tation for the classical thermodynamic Green's
function. A glance at (79) shows that it reduces to

e' '', so that

or
T

8 = — ds A(x+ev(p}, x, + 6 —r) .
7'

aG '(x x~A}= i -" s o'~'ed3p
(2v)'

P -8~0(x)

IV. EIKONAL APPROXIMATIONS TO CLUSTER INTEGRALS

Examination of the representations (75) and

(76), and the way in which (52) indicates that they
are to be employed, shows that the functional
operations defining the nth cluster integral can,
in the eikonal approximation, be carried through.
After first exhibiting the complete classical clus-
ter expansion as a special limiting case, we shall
calculate in detail C, and C„although there is
little difficulty in extending the analysis to arbi-
trary C„.

A. Classical cluster expansion

As a preliminary computation, we first extract
the complete partition function in the classical
limit, where the only factors of 8 permitted appear
in the definition of the available phase space and
later enter into the definition of thermodynamic
wavelength k = (2v8'/mKT)"'; the classical (CL)
expansion is given in ascending powers of f/k',
where f represents the fugacity, P = e8". This
limit may be reached from the approximate BN
functions of Sec. III by retaining only the l=0
Maxwell-Boltzmann-like contributions of (75),
and by discarding the iek ~ v(p) term in the def-
inition there of f, , (k, n):

exhibiting the dependence of hG~" upon

A, (x) = — dx, A(x, x,)
1
T 0

only. The corresponding closed-loop functional
(76) is then

1

L,z [A] = ——, d'xAO(x} dX e
0

1

dA. — d xeP 3 —BA (x)
0 BA y (81)

while the non-self-linkage operator to be used in

(52} is just

and it is interesting to note that in this classical
limit L~ has the eikonal form of a four-dimen-
sional problem.

Substitution of (81) into (82) then generates all
of the classical cluster integrals directly, after
the necessary replacement of g by p+ —,'V(0).
Note that only the n= 0 dependence of the linkage
operators is now relevant,

i d'k 5 — 5

2r (2x}' 5Ao(k) 6Ao(-k)

x exp -i g ~&2A „(k)
d 'A,'

xfcL, (k, n), (78}

3 5
xf d xm g~ (~ )

5
xV(x, —x ) (- )



14 EIKONAL APPROXIMATIONS IN QUANTUM STATISTICAL MECHANICS

with ihe now-useless subscript 0 [of A~(x}) sup-
pressed ~

%e fixst calculate C,", involving self-linkages
only:

1
C'"{P i —-'V(0))= P u — d'xe-"- '"«»'

X3
0 8/}

C, "(P, p, ) =(Qp/X'}(1 —e " ').
Since (51) generates

and the second term of (82) may be recognized in
this classical limit as C,"(P, p, ), there follows

(88)

The only effect of C, " is to provide the necessary
shift of chemical potential. More generally, non-
trivial quantum corrections are contained in C„
such as the so-called exchange terms correspond-
ing to the simplest particle self-energy graph
and its generalizations.

The simplest nontrivial classical cluster in-
tegral is obtained from

C, (p, g- —, V(0))= —exp —— —V—1
2! 2P M 5A.

d3X1 d X2 dy dA. 2

y e )t1QA{x1)e X2QA(x2)

2

0 d'x dX
9 ' 8 2)t1g V{0)/2e" )tg V{0)/2 )t1)t2g V(x12)

2! x' 12 1 2
0 1 0 2 conn

fl d3~ [e-BF(o) (e-BF(x ) 1)+ (e-8F( 0&/2 ])2]
2

2! 12 )
conn

0& conn

(84)

C, (Pp}=—,—r 0 d x»f»,cz 1
2! w

(85)

writing out each step explicitly. But that last
term of (84) containing no V(x, —x,) dependence
is disconnected and must be discarded, yielding
the canonical result

with f„-=e a~'"~ *2' —1.
In this way, one may calculate all of the higher

classical cluster integrals, Cc"(P, g) = (1/1!)(f/X')'
x b„ finding that the proper chemical potential re-
normalization always multiplies the totally con-
nected parts, which themselves may be expressed
using the pleasantly compact representation

b = d3x ~ ~ ~
1

8 9
dA, dX, exp —P g X,X, V(x, —x,.)

O
' ~~1 O

(86)

For example, from (86) there immediately follows

3 1 2 3 12~23~31 f12 23

8. Quantum cluster integrals

We now consider the eikonal approximation to
the quantum cluster integrals describing methods
which permit the calculation of all C„. Somewhat
different formulations of this approximation are
possible, however, generating somewhat differ-
ent results, and it is useful to distinguish these

situations�

.
The simple substitution of (76) into (52), with

the understanding that each potential t/(k) is to be

replaced by an appropriate V, (k), where all fre-
quency components k are treated as soft, k&p,
is the obvious way of approximating all of the C„.
One here imagines that the fundamental relations
(45)-(52) are rewritten with V—= V, + Ve, and an ex-
pansion is then performed in powers of V„, so
that the leading terms in the eikonal expansion
have effectively V replaced by V, . A typical and
convenient choice, previously used in a nonthermo-
dynamic eikonal formulation of potential scatter-
ing, ' is

V(I ) =e-' V(a}+(1—e-' )V(t )

-=v, (a) + v„(z),



H. M. FRIED

with the constant a here represented by (P')-'
—P/m. For all reasonable potentials V, only soft
frequency components effectively appear in V„
with the converse true for V~.

It is interesting to note that the Fourier trans-
form of V, corresponds to a potential

t t-I=(")-' J~"vt-*I.-"*' -"
if one uses a = —,

' vP/m. This has the qualitative
features

V, (r) -v(r),

V (r) (V)„, r«X,

(89)

where the average of (90) is performed essentially
over the volume of radius X. A physical interpre-
tation of this eikonal approximation, with its re-
placement of V by V„ then follows. The statisti-
cal output of the method should be reasonable if
V and V, do not differ in essential form. In the
typical ease of strong short-range repulsion for
r & r„and weak long-range attraction for x &r„
this situation is realized for sufficiently large
temperatures, such that y, » X. For actual sub-
stances, this is essentially the classical regime,
in which quantum corrections may be expected to
be small. Hence the output of this eikonal approxi-
mation is terms which differ by small quantum
corrections —although not in the form of a per-
turbation expansion in A —from the classical re-
sults. As pointed out by Lieb,""small" can

mean up to 30%. For lower temperatures, the

expansion of cluster coefficients in powers of VH

presumably becomes important.
Another method of calculation, for technical rea-

sons somewhat simpler, is to begin with the ex-
act forms (52), write a simple parametric differ-
ential equa, tion for each C„, and introduce the ap-
proxirnate BN forms only at a later stage. This
method effectively generates a modified pertur-
bation expansion, wherein a, certain finite nurn-
ber of potential interactions have both hard and
soft components, while all of the remaining po-
tential interactions are soft; essentially, one
takes a simple skeleton diagram, built out of a
few V(g) exchanges, and laces it with an addition-
al, infinite number of soft V, exchanges. This
latter method will be used to compute C„and to
sketch the construction of C, , while the more di-
rect substitution operation will be used for Cl.
Simple and obvious generalizations exist for the
calculation of all higher C„.

The direct substituting of (t6) into the n =1 term
of (52) requires the evaluation of the one function-
al operation simpler than Gaussian, and charac-
teristic of each eikonal computation,

exp — —V —exp j fA.

fVf2

In the present case, one readily obtains

C,[i7, p —
& V(0)]

d'p 1(d X

(2w)', , „(2v)'d'x dh, e" "-' "oV(- q)

x p e "~'+"o'~'Zf, ,(-q, —n)exp — p 2, f, , (k, m)V(k)
i A. d

3=0 C4

xf, ,(-k, —m)

d3
C, [p, g ——, V(0)] = —p, 0 p A. dae e'""o~,V(q)It, (q ~ v)

$-{) 0

xexp —~,V(u)R, k v)A, (-k v), (91)

where again v = v(p) =p/m. Each potential V enter-
ing into (91) is to be replaced by V„ in accord-
ance with the above discussion, as in the —, V(0)
terms used in the subsequent "renormalization"
of the chemical potential. If each gi', , (k v) is sim-
plified by the replacement leading from (75) to
(76), one finds

g 3p, ~ &-~(~+»l~(~) —v l

C[p p] —-0
( ), Q

l=o

y +8(l+ l)v (0)/2

-g(&+ l ) V(0)/2)
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From (51) and the definition of Z,[P, u. ],

lnZ[p, u, ] = lnZ, [p, u + 2 V(0)]+ g C„[p, u],
n=&

which may, in this approximation, be written

»z[P, u] = g c.[P, u]+ cl [P, u],

with

d 3p ~ ~-g(l+ 1)Q(P)
c,'[P, u, ] —II

(2 )3 Q

& e Sl(&+ j.)V(0)/2

Only the I = 0 term, the Maxwell-Boltzmann (MB)
contribution of (92), is independent of V(0); for
higher l, there is a residual V(0) dependence.

At first glance, this latter result is perhaps
surprising, for one might have expected the V(0)
dependence to cancel for every l, and C,' to re-
produce simply the complete quantum-mechanical
(in this case, boson) lnZ, ; this would be the case
if the V(0) terms of (92) were neglected Appe. ar-
ing here, however, are residual "self-energy"
effects, which are interwoven into the specifical-
ly quantum portion of these distributions. Such
quantities correspond to an incoherent self-energy
averaging process: if, as in the method of inter-
action, any particle may emit "excitations" which
have a statistical probability of being absorbed by
other particles in the medium, there is no reason
why such excitations cannot be reabsorbed by the
same particle. Of course, one here is not referr-
ing to any self-energy effect of the specifically
causal (T =0) part of the thermodynamic propaga-
tor, since that was long ago removed in passing
to the definition (44).

Taking such statistical self-effects seriously
has an interesting consequence for the particular
case of hard-core potentials, where V(0) is large
and positive. [It is always possible to choose a
short-range repulsive potential which is con-
strained to vanish at the origin, although one then
runs the risk of introducing spurious bound states.
In this case, however, V(0)- V, (0), which, by
(90), does not vanish. ] Specifically, one sees that

C,' receives a sizable contribution only from the
MB /= 0 term, with all higher-/ (quantum sym-
metry) terms vanishing exponentially as V(0) in-

xX,„[A,] X,„[A,]
0, conn

where a prime has been appended to the U (cross-
linkage) term explicitly appearing in (93), and a
factor of A. inserted as well in order to generate
a differential equation; at the end of the computa-
tion, O'=U and A. =1. One observes that

5C,[~U''] i ~
5U'(a)

d'x d4y a(x —y —z)

x exp ~A. U'

5X,„[A,] 5X,[A, ]
5A, (x) 5A, (y)

and hence that the relation

sC [~U']
~A. "0

d4 ,
( )

5C, [XU']
5U'(a)

may be used to construct C„
"'

dA. 5C AU'

where the BN forms are inserted into the forms
of (95),

5I„h[A I/~A(x)= ac ~ (~, ~IA) "n,G '"(x, ~IA) .

The self-energy terms are now independent of the
A. integration, and one finds

creases. Similar effects will be seen to occur
for the remaining C„. That the "exchange" terms
represented by the quantum portion of C,' vanish
in the limit V(0)-~ is perhaps reasonable in view
of the work of Lieb, ' who showed that these con-
tributions to the second virial coefficient are
bounded by an exponentially decreasing function
of T, and hence may be neglected in any numeri-
cal computation.

The second method, corresponding to a modi-
fied perturbation expansion, will now be illus-
trated for C, . Without any approximation, from
(52) one has

C [~U'1= C'"-'[P, ! —l V(0)]

1 . 5, 5
2lexp iA

A
O'

A

I-1 & d3~ d p2C.[U] = PII JI «-' ', g e[x-p( p, +I)QI( )p- 'PV] '-, g-exp[- p(I, + I)Q(P, ) —'PV;]-
l~=0 l2 =0

d'k 1

V(~)exp -~~ 2', ~, ~) d(e" ." — "-'~, (k v, }
0
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where

d'k
Vp=,V(k)R, (k ~ v)R, ( —k ~ v) .

Because of the explicit factor of U'(z) = V'(z) 5(z,)- V(z) 5(z, ) in (95), which contains both hard and soft
components, the time coordinates of both Green's functions in sC, /N. are the same; and it is this feature
which permits some technical simplifications alluded o previously. Renormalizing the chemical potential,
and retaining only the MB l, = I, =0 terms of (96), one obtains (explicitly inserting h factors)

C [)l, p. ]= —PQf' ' e '~
&

' e ' 2' dA d'z V(z)exp —PX d $ V,(z+ETfi(p —p )/rn)
(2mb )' (2mb )' S 1 2

(97)

as the simplest eikonal approximation to the sec-
ond cluster integral. In the limit T-~ (or h -0
everywhere, except in the phase-space normal-
ization), one immediately recovers the classical
expression (65). Equation (97) should provide a
good representation of the second virial integral
for a hard-sphere gas near its classical limit.

This second technique may be easily to extended

to the construction of all of the higher C„, although
the actual computations become more tedious as n

increases. For example, to construct that ap-
proximation to C, which involves two V factors
containing both hard and soft components plus all
possible soft V, interactions, one may proceed
from the definition (suppressing chemical poten-
tial renormalization)

5 5 . 5 5 . 5

and build the quantity

D I«„,uU„, U ] = d'zU (z) &'nU„(u) ' "' "' " =x —y. —C,[«„,p, U„, U ]. (98)

Integrating the A. , p. dependence of (98), and re-
taining only connected terms, one finds

C, [V, U, U] =
dA, —(D,[«, pU, U]

0

+2D,[«, pU, 0]) .

(99)

Substitution of the BN forms (75) into (99) then
generates the stated approximation.

V. SUMMARY

The main thrust of this paper has been to
develop a method of eikonal approximation to the
functional equations and representations of quan-
tum statistical mechanics. By essentially kine-
rnatic restrictions on the supposed relevance of
relatively low-frequency excitations introduced
into the basic Green's functions of the theory, one
is able to provide explicit representations for
quantum corrections to the classical cluster in-

tegrals in that semiclassical domain where such
corrections are anticipated to be small. Possible
extension of these techniques to phase-transition
phenomena remains an open question. It is sure-
ly a tantalizing question, for much recent work"
on the latter topics applies approximation methods
of functional integration to the explicit extraction
of low-frequency effects. Other approximations
to the functional formalism used here are of
course possible; e.g. , the application of special
kinematical restrictions, different from eikonal,
to the basic G, [A] of (57), followed by the func-
tional operations of (45), can be used to study
associated statistical models.

ACKNOWLEDGMENTS

It is a pleasure to thank J. D. Walecka for ex-
tending the hospitality of the Physics Department,
Stanford University, where this paper was begun;
and to thank the staff of the Service de Physique
Theorique, Centre d'Etudes Nucleaires de Saclay,
for their hospitality, where it was completed.



EIKONAL APPROXIMATIONS IN QUANTUM STATISTICAL MECHANICS

APPENDIX

Equation (55) of the text will no longer be va. lid
if A depends on z„and no simple method of relat-
ing G,„[A] to G,[A] and G;[A] presents itself. One
possible conjecture, generating G,„[A] in terms of
G [A] and G [A] in the nonrelativistlc situation (or
in terms of the four independent G [A], with o.
= c, c,R, A, in the relativistic case) is suggested
by an alternate way of building the BN Green's
function (75).

Define

G,'„(», yiA) =G,(», yiA. )+ [exp( —Ts, ) —1] '

&& [G,(», yiA) -G;(», ylA)],

and ask under what circumstances G,'„(», y]A) and

Ggh (»& y iA) can satisfy the appropriate differential
equation, that of G, [A], in either variable. The
crucial question of boundary conditions is sup-
pressed for the next few sentences.

Expand the operator [exp( —TS, ) —1] ' as

and test to see if G', h satisfies the differential
equation from the left-hand side,

[i&,,+&',/2m -A(»)]G,'„(», yiA) =5"'(» —y) .

Clearly, this will be true only if A(», », ) is inde-
pendent of x„or if it is periodic in g0 with period

A(x, »zk T) =A(x, »0). This latter case ls quite
outside the spirit of the analysis leading to solu-
tions of (57), where the range of the time coor-
dinate of A lies between 0 and 7. Here, one
places no restriction on that variable, nor indeed
none (yet) upon those of G, [A] and G;[A.].

With A(x3) chosen periodic in x„one has a solu-
tion of the necessary equation to which boundary
conditions must be appended, as well as choosing
the particular integer X, in any quantity
A(z, zo+Nr), buried in the A dependence of G,[A]
and G —,[A]. A prescription without further justifi-
cation ean be found for the special ease of BN
solutions in nonrelativistic field theory,

where 6 =c (c) for the upper (lower) sign. The
prescription is as follows; Write Q',„, as above,
in terms of G',"[A] and G —, [A]; replace the para-
metric s integrals, using

usa(s)= p j' des(& ~ sI,

and transform the time coordinate of A, using the
assumed periodicity, so that this total argument
satisfies i z, i

~ r. The resulting expression for

&G',„[A] is then identical to the &G ",„N[A] of ('l5).
It would be most interesting to know if thexe

exists a more genex al method for the constx'uction
of G,„[A] in terms of the G [A]; surely the conjec-
ture that works for the BN situation —choose A
pel lodlc, and adjust 1ts time eoor dlnate to be
is too simple to be true in the general ease. Know-
ledge of such a prescription could be most useful
for the construction of statistical models based
upon soluble or semisoluble models of field
theory.
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