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A Landau-Ginzburg free energy is presented that yields a nematic to smectic-A (NA) transition, a nematic to

smectic-C (NC) transition, and a Lifshitz point (at the boundary between the NA and NC transitions).

Fluctuation enhancements of the Frank elastic constants are calculated. For the Nc transition, all three elastic

constants K, , K„and K, diverge as (', where g is the correlation length for fluctuations of the smectic order

parameter. At the Lifshitz point, K, and Kz diverge as in) whereas K3 diverges as (.

I. INTRODUeTION

In the nematic liquid crystalline state, long bar
molecules are oriented on the average with their
long axes along a preferred direction specified by
a unit vector n, called the director. "' The mo-
lecular centers of mass are, however, free to
diffuse throughout the system so that translational
invariance is not destroyed. The nematic state is
shown schematically in Fig. 1(a). In the smectic-
A phase [shown in Fig. 1(b)] the molecules segre-
gate into two-dimensional planes while maintaining
translational invariance along the planes. In the
smectic-C phase [shown in Fig. 1(c)]the molecules
are tilted at an angle 8 to the normal to the smectic
planes. Phase transitions between all of these phases
are possible. The nematic to smectic-A(NA) transi-
tion has been the most studied. ' '0 If director
fluctuations are ignored, it can be a second-order
transition with helium exponents. ' 6 Theoretical
considerations indicate that director fluctuations
cause the transition to be first ordex. "'" Though
specific-heat and volumetric measurements'0 in-
dicate a first-order transition, careful light scat-
tering experiments show no indication of a first-
order transition. The smectic-A to smectic-C
(AC) transition can be second order""" and is
believed to have helium exponents. e There can
also be a direct nematic to smectic-C (NC) tran-
sition. '" This has been the least studied of the
transitions. In this paper, we present and study
a model which has the potential to include all of
these transitions. For compactness, we will refer
to this as the nematic-smectic-A-smectic-C
(NAC) model.

Our starting point will be the observation that
the x-ray scattering in the nematic phase (single
crystal) in the vicimty of the NA transition shows
strong peaks at wave number q„=a&,n o'x' show
in Fig. 2(a). Near an NC transition, these two

peaks spread out into two rings at q,
= (~q„, q, cosy, q, siny), ""shown in Fig. 2(b).
The latter observation prompted de Gennes' to
introduce an infinite-dimensional order parameter
4'„=p(q, q, cosy, q, siny) for the smectic-C state
where p is the center-of-mass density. In our
model the NA and NC transitions can be described
by the same free energy with different parameters.
For the NA transition, the free energy is mini-
mized if the center-of-mass density is periodic
with wave number +qon; for the NC transition, it
is minimized if the center-of-mass density is
periodic with wave number q, . The de Qennes and

NAC models, though motivated by the same ob-
servation, predict different behavior. In particu-
lar, near the NC transition the de Gennes theory
predicts that the Frank elastic constants' K„K„
and K, diverge as $2~', where $ is the correlation
length, while the NAG theory predicts that all
three elastic constants diverge as $'.

Models similar to the NAC model have appeared
in other contexts. In particular, the NAC model
is very similar to those used to describe transi-
tions from the paramagnetic state to helical spin
states'"20 and to that used to describe the Benard
instability in a cylindrical cavity. " All of these
models have the common feature that fluctuations
are a maximum at wave numbers ~q ~

=q„where
q, is an m-dimensional vector in a d-dimensional
space. Mean-field theory predicts a second-order
transition for these models. Fluctuations, how-
ever, are believed to lead to a first-order transi-
tion when m=d or ns=d —1.'"" The NC transi-
tion has d=3 and m =2 so the transition is ex-
pected to be first order. " Nevertheless, pre-
transitional effects can be important, and the
mean-field calculations presented in this paper
are expected to be valid in some temperature
range above the first-order transition. It is un-
clear whether a crossover from mean-field be-
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where P =1/kT. H contains terms up to second
order in the order parameter:

PH = — dV am'+D„[(n V)'m]'
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where n is the nematic director which may vary in
space. The summation convention on repeated
Cartesian indices is understood, 5,&= 5,&

-n, n& is
the projection operator onto directions perpen-
dicular ton, and V' = 5;,V;&&. a= a'[(& —2'„„)/Tg~]
changes sign at the NA transition tempexature
&„A. H„ is the Frank free energy" for distor-
tions in the nematic director:

FIG. l. Schematic representation of the position and
orientation of molecules in (a) the nematic liquid phase,
(4) the smectic-A phase, and (c) the smectic-C phase.

havior to some quasicritical behavior mill occur
befox"e the f1rst-order transltlon occurs. To date
there is no satisfactoryx'enormalizationtreatment
of this model showing fixed points with first-order
runaways. The boundary between the NA and NC
transitions is a special point representative of a
class of transitions recently considered by Horn-
reieh, Luban, and Shtrikman. " This transition
is second order with anisotropie scaling and can
be treated using the renorxnalization group.

Section II introduces the model and Sec. III pre-
sents perturbation calculations of the elastic con-
stants for the NA and NC transitions and at the
Lifshitz point.

pH = — d r E V.n'+K'n' V~n

+ Z', [n x (»& n)] '], (2.4)

where E'„E'„and K', are the unrenormalized
Frank elastic constants. H, is the fourth-ordex'
term needed to stabilize the ordered phase:

PH, =u d'r m'(r).

The partition function for this model is calculated
in the usual may by taking the functional integral
of e ~" over all configurations of n, (r) and m(~):

II. THE MODEL

In the smeetic phases, the center-of-mass den-
sity p(r) becomes periodic with fundamental wave
1111111beI go (2 tf ~~ Qi) (q, = 0 in the smectic -2 phase).
We mill, therefore, take the part of p with wave
numbers in the vicinity of qo to be the order pa-
rameter m(r) of our theory:

(2.1)

PH=PH +PH +PH,

m(r)=,e'"'~p(k),
211

where p(k) is the Fourier transform of p(r) and D
is a two-part domain (excluding k= 0) centered
ai 01111d (+ 1f

~
0 0) and large enough to contain the

circles n„=+q„,
~
f1,

~

=
~
q, ~. The model 1.andau-

Ginzburg Hamiltonian can be written as a sum of
three parts

FIG. 2. X-ray intensity. Region of maximum x-ray
scattering intensity in the vicinity of (a) the nematic to
smectic-A transition and (b) the nematic to smectic-C
transition.
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with a correlation length

2CI/a (T —T„„)' if C~&0,
$2

. 2C„/a'-(T —T„c) ' if C,&0.
(2.10)

and correlations in directions perpendicular to
n die off with length

jC,/a-(T —T„„)' if C,&0,
$2

I.2
~
C,

~

/a' - (T —T„) ' if C, & 0.
(2.11)

Equations (2.8), (2.9), and (2.11) yield the usual
mean-fieM critical exponents y= I and v=,'-. Equa-
tion (2.2) can also be minimized in the ordered
phase in the usual way. The resulting phase dia-
gram is shown in Fig. 3(a).

The model presented here does not show a smec-
tic-A to smectic-C transition as a function of
temperature. Such a transition is easily produced
as shown in Appendix A by adding a term propor-
tional to

m'(r) V,m(~) V,m(~)d'r.

FIG. 3. {a}Phase diagram for the NAC model showing
nematic {N}, smectic-A {A}and smectic-C {C}phases.
{b) Phase diagram for the modified NAC model presented
in Appendix A.

Addition of this term, however, does riot affect
the elastic constant calculations presented in Sec.
III.

Equation (2.2) reduces when C,& 0 to the model
introduced by de Gennes"' to describe the nematic
to smectic-A transition

Z= ' S)n, (r)&m(r)e~" (2 6)
PH =

~

d'xA '+
v' V

In the nematic phase, H4 can be neglected in. the
mean-field theory, this leads to an x-ray intensity
in the vicinity of qo of

+
2M I

(& —I 0")PI )
pH4 = —Q

(2.12)

f(k) -(p(k)p(- k)) =-(m(k)m(- k))

1
a+ D„(k'„-qj'j)'+ Cjk', + D, k', '

where q'„= C„/2D„When C,& 0. , f(k) has peaks at

Il +g(} corresponding to fluctuations 1nto the
smectic-A phase. When C, is negative Eq. (2.'t)
can be rewritten

1
a+ Dii(k ii

—q ii)'+ D~(ki qi)"—
where q', = ~C, ~/2D, and

a = a'(T —TNc)/TNA

TNc = TN~+ CP~~/4D. a'.
Thus for C,&0, f(k) is a maximum on the two
rings (+q„,q, cosy, q, siny) as required in the vi-
cinity of the NC transition [cf., Fig. 2(b)]. Cor-
relations in the directions parallel to n die off

where 6n is the deviation of n from its uniform
equlllbrlum d1rectlon

y

m(r) = (2) '~'[e"~~'P(r)+ e "~~'g*(x)],

where z=n r and

A=-, a, C, = 1/M„, C =1/2M„.

(2.13)

III. ELASTIC CONSTANTS

In the smectic-& phase, bend and twist distor-
tions of the director, even of small wave number,
create large separations of the smectic planes.
Thus these distortions have a finite rather than a
vanishing energy at zero wave number in the g
phase. Above T„„,fluctuations into the 3, phase
will, therefore, cause K, and K, to grow and final-
ly diverge at T„„. Splay deformations on the other
hand have energy going to zero with wave number,
even in the A. phase. Therefore, no divergent
anomalies are expected at 7„„.Calculations by
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5n=(523„5n„(1—[{5n,)2+ (5n, )2]p"-1)
—(532„533„-—,

'
[(5n, )2+ (5n2)']).

We ean now expand PH in powers of 5n:

PH =PH3+PH, +PH +02((5n) ), 3

(3.1)

(3.2}

where PH, is given by Eq. (2.3) with n replaced by
P and

PH, =, „( ),F,(k, q) n, (-k) m(-q)m(q+ k),

de Gennes' and by Jahnig and Brochard, "in fact,
predict that K, and K, diverge as the correlation
length $ and that K, undergoes no violent change at
T». A number of experiments"' have verified
that K, and K, diverge and that K, is relatively
well behaved at T„„, though agreement on the
critical exponents for g has not been reached. In
the smectic-C phase, all three directox distor-
tions lead to large separations of the smectie
planes. One would, therefore, expect Ky K2 and

K3 to dive rge near T„c. There is some experi-
mental evidence that this is the case." The
de Gennes theory' of the NC transition predicts that
K„K„and K, diverge as $'~2. The theory we
present here predicts that all three will diverge
as $' in three dimensions.

Our calculations are a straightforward pertur-
bation expansion in the director-order-param-
eter couplings. In equilibrium, the director is
uniform in space: n(3') = ~n. For convenience, we
will take n' (a unit vector} to point along the third
axis. Deviations from equilibrium are expressed
in terms of

(3.5a)

1-{} p(Z', f;+Z',f2)' (3.5b)

When the coupling to m is included, D&j satisfies
Dyson's equation D,.3J(k) = (D';z) '(k) -w, ~(k}. The
long-wavelength forms of D» and D» are the same
as in Eqs. (3.5) with E'„R„and K'3 replaced by
the renormalized elastic constants K„K„and
K3. The lowest-order diagrams for v,.&(k) are
shown in Fig. 4. In Appendix 8, we derive a Ward
identity which shows that Fig. 4(b} exactly cancels
the zero-momentum part of Fig. 4(a). The dia-
grams in Fig. 4, therefore, yield

3

&,,p)= 2, q), &r,.{k,q)r, (k, q) G {q}G (q+k)

—F&(&,q)F, (6,q) [G'(q)]'].

(3.6)

This is in fact the most divergent contribution to
v, &

when a (or a) goes to zero.
Evaluating Eq. (3.6) we obtain the elastic con-

stant enhancement near the NA and NC transitions
and near the I.ifshitz point.

A. NA transition

D,.~(k) = (5n, (k)5n~(- k)).

When H is replaced by H„G(k) reduces to G'(k)
given by Eq. (2.7). D, ~(k) has two independent com-
ponents. If k is chosen to be in the 1-3 plane and
the coupling to m is ignored, they are

d k2
P 2 (2 )3 (2 }3 I (2 )3 3J { 1& 2lq

x n, (-k, ) nq(- k, )

(3.3) kT 2 C, k7'.
2 24 ill (2G )\/2

kr 2C '~' kV'
3 24 0 II 24 e II ~ ()

{3.'1)

Xm(q) m(- q+ k, + k,),

(3 4)

There are no divergent contributions to K, as ex-

1',(k, q) =D„[q,q„(q+ k)'„+ (q+ k), (q+ k)„q„]

2 (GII+ GJ)( 4ilfll lg~ll qll~()

-D Jq&e„(q+ k)l+ (q+ k)&(q+ k}e'l.

The expression for I",&" is rather complicated.
Since it will not be used directly in any calcula-
tions, we will not reproduce it here.

We now introduce propagators for the order pa-
rameter and the director:

G(k) =(m(k)m( k)),
FIG. 4. Diagrams contributing to the fluctuation en-

hancement of the Frank elastic constants.
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pected. Equations (3.7) are in agreement with the
calculation of de Gennes"' as corrected by Jahnig
and Brochard. "

B. NC transition

9kT q(( I C J I D(( 2

6~ (Dl
~ [

D7 ) a D)
4 9

d+(a
I
el'+ C

I
V„e I'+ C.

l
V,e I'+D,

l
V,3yl3

+ 3
I y I

'+ b[
I y I

'(v,
I

t('
I
)'+-,'

I
t(' I'

I
v,@ I ]},

(AI)

with Igl constant and y=k, r, . Equation (Al) is
minimized when

9kT, ~~ 2

4 li

3kT q(( I CJI ' 2 D((
64r (D3D,)'~' a 9 D (3 9)

(c,+ I'I & I'+D.u,')u', = o.

Hence an A to C transition occurs when

c,+blyl'=o,

(A2)

(A3)

2 &i'

kT 3 D(( ' '
I CJI kT

5K.=12,q'
D

-' =24, q'q
a

All three elastic constants diverge as $' in three di-
mensions. 5K,/5K3 = 3 is not special to the third di-
mension. It holds in any dimension near the NC tran-
sition.

C. Lifshitz point

where

(a'/6a)(&„„—&)/&„„. (A4)

Equation (A3) is solved to give the phase boundary
between the smectic-A phase and the smectic-C
phase. For b&0, we have

= &„„[I—(6a/a'
I

& I)c,]. (A6)

The resulting phase diagram is shown in Fig. 3(b).

APPENDIX B: DERIVATION OF WARD IDENTITIES

kT DJ A kT 2C A
5K, =—q2 ln —+ ln —,

2C g 32m D, a '

kT 2 C '~2 kT

(3.9)

1 5G '(x„x,) (Bl)

In this appendix we will derive Ward identities
for the vertices coupling n, to m which can be used
to show that perturbation theory maintains rota-
tional invariance. There are two vertices cou-
pling n, to m that are of interest:

K, diverges as the correction length in the third
direction, $„, while K, and K, are only slightly
divergent.
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APPENDIX A: IMPROVEMENTS ON THE MODEL

»

I' (k q)= d'(x -x )d'x, e "'"i *3'

x e '~'*3I', (x„x„x3),

I',&(k„k„q)= d'(x, —x, ) d'x, d'x,

X ( -&Ce(x~-x2) -f& 'x3le

(B3)

In order to modify Eq. (2.3) to allow an AC tran-
sition we include a nonlocal term

&& e +3'"4I',&(x„x„x„x4)].

1 d'r b m'(r) V,m(r) q,m(r) Combining Eqs. (Bl)-(B4), we obtain

(B4)

in PH4 with b&0. The effect of this term is to
drive the coefficient of k,' negative as the smectic
order parameter m grows in the smectic-A phase
as the temperature decreases. It thus has the po-
tential to induce an AC transition. In terms of the
de Gennes order parameter g=

I PI e" the resulting
free energy is

limI' (k )
1 BG '(q)

a-0
i

Itm - - - »'G'(q)
a, q -OF4~(k~, k3, q)= —,

4 ~sg ~BJ

(B5)

(B6)

But G '(q) depends only on q'„= (n q)' and q', = q' —q,', .
Therefore we have
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BG ' BG-' BG-' BG-
(o, )=2

3 q, qj.

(B7)

Br, Br,I',,(0, 0, q)= —q,.
' —q,2 Bq3 Bqq

(B8)

Equations (B7) and (B8) can be used to show that
the contribution to m, , from diagram 4(b) (m,'&') can-
cels the zero momentum contribution from dia-
gram 4(a) (mI~&'):

m", ,'= I';, O, O, q G q, i,j =1,2;

1 . Br, Br,
m]~ ——

~ q] -q, G

1," BG BG

3 q,

q, —q, I'~G2

I'; O, q I'~ O, q G'q =-m,"~' q=O.

(B8)
This result is used in Eq. (3.6).
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