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This paper presents a semiclassical treatment of the evolution of an initially inverted system into a
superradiant state in an extended, optically thick medium. In this process spontaneous emission and

background thermal radiation initiate the collective radiative decay and produce a superradiant output pulse of
intensity proportional to the square of the number of radiators. The treatment is based on the coupled
Maxwell-SchrMinger equations, modified to include a fluctuating polarization source properly constructed to
account for the effects of spontaneous emission. Computer results show that for a high-gain system only two

parameters significantly influence the evolution process: T„, the characteristic radiation damping time of the
collective system; and 80, a function of the conditions which initiate the superradiant process. In this limit one

obtains a, normalized emission curve and simple analytical expressions for the time delay, pulse width, and

peak intensity of the output radiation. These results are in good agreement with experiments. A comparison of
our model with previous treatments of superradiance is given.

I. INTRODUCTION

Superradiance, the idea that the spontaneous
emission rate of an assembly of atoms (or mole-
cules) can be much greater than that of the same
number of isolated atoms, has been the subject
of much theoretical discussion since it was origin-
ally proposed by Dicke' in 1954. In the process of
superradiant emission the atoms are coupled to-
gether by their common radiation field, and so
decay cooperatively. The intensity emitted by N
atoms is therefore proportional to N' instead of
N. Thus, superradiance is a, fundamental effect.

Historically, observations of cooperative emis-
sion effects go back at least as far as Hahn's spin-
echo experiment of 1950.' In the ensuing years
experimental observations of free-induction decay,
echos, and other cooperative emission effects
have been made in both optical' and longer-wave-
length' regimes. Such phenomena can be termed
"limited superradiance, " in that only a small frac-
tion of the energy stored in the sample is emitted
cooperatively, so that the decay of the sample is
essentially unaff ected by the cooperative radiation. '

In 1973 the first observation of "strong super-
radiance" was made in optically pumped HF gas. e

In this experiment virtually all of the energy stored
in the sample was emitted cooperatively, and so
the decay of the sample was dramatically acceler-
ated. Although the emitted radiation had all the
characteristics of superradiance described by
Dicks, the detailed behavior (e.g. , ringing, time
delay of output) differed substantially from that
predicted by the theoretical elaborations of Dicke's
work then available. ' '3 Guided by the experimen-
tal observations, a simple theoretical model was
developede'~ which accurately described the fea-
tures of the emitted radiation. The present paper

is an elaboration of that model. Recent experi-
mental observations and their analysis are pre-
sented in another paper. "*"

Dicke considered two regimes, distinguished by
whether the sample is small ("point sample" ) or
large ("extended medium") compared to the wave-
length of the emitted radiation. The description of
superradiant emission in an extended sample, such
as occurs in the HF experiments, requires a more
complex analysis, since propagation effects must
be fully taken into account. Although most theoret-
ical treatments of superradiance have used quan-
tized fields, ' "'" ' propagation effects are more
easily included in the semiclassical approach
(classical fields, quantized molecules) used by
Dicke~'2 and a few others ~ 3~~4'2 25 The model
presented here makes use of the semiclassical
approach which, as discussed below, adequately
describes a superradiant system. In fact, there
is nothing inherently quantum mechanical about
superradiance, as is illustrated by Dicke's de-
scription"' of how a collection of classical dipoles
appropriately prepared can exhibit superradiant
behavior. Later, our semiclassical results will
be compared with some results obtained in quan-
tized field treatments.

The theory developed in this paper is relevant to
several potentially useful applications of super-
radiance. For example, it may be possible to pro-
duce ultrashort superradiant pulses of large peak
intensity. " The results of this work should also
be applicable to x-ray lasers" where, owing to the
lack of suitable reflective surfaces, feedback is
absent and one must depend on single-pass gain.
Superradiant emission should also be observable
in spin-lattice systems. 2'~9

In an extremely long (or dense) sample, features
of the superradiant output may be modified. The
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maximum spatial extent of a system which can
superradiate as a whole, and the minimum dura-
tion of its output pulses, are limited by effects
such as finite transit time, diffraction, and the
nature and duration of the excitation process. These
effects are discussed in another paper"; they are
insignificant in the case of optically pumped HF
gas at m Torr pressures in samples shorter than
-10 m (about 10 times the sample length of the
experiments).

The remainder of this paper contains the follow-
ing sections: II, Experimental Observation of
Superradiance. III, Physical Principles. IV, The-
oretical Model mith Polarization Source, with sub-
sections: A, Introduction; B, Coupled Maxwell-
Schrodinger equations; C, Polarization source;
D, Blackbody radiation and "equivalent input field. "
V„Numerical Results. VI, Simplified Theory.
VII, Connections with Other Work.

Lengthy mathematical discussions have been
placed in the appendixes.
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FIG. 1. HF level scheme and schematic of experi-
mental setup.

II. EXPERIMENTAL OBSERVATION OF SUPERRADIANCE

In the experiments""" a long sample cell of
lom-pressure HF gas i.s pumped by a short intense
pulse from an HF laser operating on a single R or
P branch transition between the v = 0 and 1 vibra-
tional levels (Fig. 1). This produces a nearly com-
plete population inversion between tmo adjacent
rotational levels in the first excited vibrational
state, corresponding to a transition in the 50-250-
pm range. The infrared radiation from this coupled
transition (which is not at the same frequency as
the pump transition) is studied as a function of time.
There are no mirrors, and care is taken to mini-
mize feedback. A detailed description of the ex-
periments and their comparison with theory is
given in Ref. 15.

An example of the observed output intensity is
shown in Fig. 2(c). After a considerable delay
(-1-2 p, sec) with respect to the -100-nsec pump
pulse [Fig. 2(a)], radiation is emitted in a series
of intense, short (-100 nsec) bursts of diminishing
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FIG. 2. Comparison of observed output and incoher-
ent spontaneous emission. Time is plotted on a logarith-
mic scale. (a) Population-inverting laser pulse. g)
Output expected from incoherent spontaneous emission,
exhibiting exponential decay and an isotropic radiation
pattern. (c) Observed output, exhibiting ringing, a
highly directional. radiation pattern, and a peak inten-
sity of -10 0 times that of (b). The inset shows the time
evolution of the same pulse with a linear time scale.

size ("ringing"); the process is completed within
a fern p, sec. The radiation pattern is highly direc-
tional; almost all of the radiation is emitted into
a very small angle along the axis of the pump beam.

If the radiation emitted by this system mere in-
coherent spontaneous emission, then it mould have
a long exponential decay (the radiative lifetime of
these transitions is in the 1-10-sec range), and
the radiation pattern would be isotropic [Fig. 2(b)].
Furthermore, the observed peak intensity is ten
orders of magnitude greater than that expected for
incoherent radiation. It is therefore clear that the
process observed is not incoherent spontaneous
emission. It is also clear that the output signal is
not "amplified spontaneous emission"'o " in the
usual sense, since the pulse evolution time is much

longer than the time over which population inver-
sion occurs.

The observed radiation is also distinct from that
of an "ordinary" high-gain laser, even one which
can oscillate without mirrors, such as a saturated-
molecular-nitrogen laser (3300A)."'" In the
nitrogen system the peak output intensity is direct-
ly proportional to the total population difference
between the levels of the laser transition. There-
fore, when the length or pressure is increased,
the peak intensity increases proportionally. In

contrast, the peak intensity of the observed output
pulses in HF is proportional to the square of the
pressure. ' '" This proportionality is in agreement
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with the theoretical conclusions illustrated in Fig.
4 below.

The observed output radiation is therefore dis-
tinct from both incoherent emission and normal
laser radiation. The N' dependence and the direc-
tionality of the observed radiation agree with the
yxedictions of Dicke"" for the behavior of a super-
radiant system (Sec. III). The present analysis of
a superradiant system is based on the semiclassi-
cal formalism" which, as shown below, predicts
the same N' dependence and directionality as
Dlcke's analysis. The semiclassical fox malism
makes possible a detailed description of the time
evolution of the system and allows one to establish
the specific condltlons under which supel radiance
can occur in an extended sample. Furthermore,
in the special case of "limited superradiance"
described below, the results of the present ana-
lysis reduce to those obtained in previous theo-
retical treatments of superradiance. "'"'" The
interpretation of the present experiment as the
observation of supex radiance is based on the con-
nections of the present theory with previous treat-
ments of Dieke and others, and the agreement of
this theory with our experiments.

HI. PHYSICAL PRINCIPLES

In his original treatment, Dicke' considered
the radiative decay of an assembly of molecules
for both a point sample (where the wavelength of
emitted radiation X is much greater than the sam-
ple length I ) and an extended medium (L,»X). In
a point sample, ~ by treating the entire collection
of N molecules as a single quantum-mechanical
system, he found that an initially totally inverted
system will evolve into a "superx adiant" state
whose intensity is N'/4 times the intensity radiated
by a single molecule. This is larger by a factor
of N/4 than the intensity radiated by N incoherent
molecule s.

For an extended medium, Dicke' showed that an
array of quantum-mechanical dipoles phased along
an axis could also produce superradiant emission. "
Most of the radiation from the array is emitted
into a small solid angle along the axis. For sys-
tems in which the Fresnel number 2A/AL» 1
("disk"), the fraction of solid angle within which
the radiation adds coherently is"

f=n.Q/4v =~'/4vA,

where A. is the cross-sectional area of the sample.
In our HF system, where the Fresnel number is of
ox'der unity, the cox rect formula" gives a value
only slightly different from that of Eq. (1), and
f-10 ~. The output radiation intensity of the array
of dipoles is larger than the radiated intensity of

N incoherent dipoles by a factor Nf-10'.
The power I radiated by this array of N dipoles

can be written in the form"

where T„ is the characteristic radiation damping
time of the collective system, "

T, = r„(&v/ru'Z, ),
n N/AL, and T,~ is the lifetime of an isolated
molecular dipole. Therefore, the emitted powex'
is proportional to N'f.

In an extended molecular sample which is evolv-
ing to a superradiant state, a maeroscopie yolax'i-
zation is established over a region of space. This
polarization is equivalent to a phased array of
dipoles which can be reyresented quantum mech-
anically as coherent mixtures of the stationary
states of the molecules. " In the case of a (J„, ,
=Z+ 1)-(J'„„„=4)rotational transition of a di-
atomic molecule such as HF, T,~ is given by

n(u, /r„= —', I y, I'(u,'/c', (4)

where38

+I
=PP 2J.

and p, , is the dipole moment of the molecule. Com-
bining Eqs. (3) and (4), we have

2x 2w
Tg =

~ /J, gspL ~

where n(M) is the population inversion density be-
tween the states I g,~, ,M) and I P,„„,M ), nz is
the sum of n(M) over all M levels in g, „and

(I (M) I p) g I ~N (M) I'n(M)

Sf= -J' nr

i .(M) -=q. [(Z+ I,M)-(Z, M)].

In our HF case,

J+~
Pg=

when the excitation pulse is a P branch transition,
and

Po J+1

for an R branch excitation pulse.
Equation (2} shows that when the sample radiates

as a collective systexn, the lifetime decreases
from T,~ to -T„. T„can therefore be interpreted
as a characteristic radiation damping time of the
collective system. For the HF system, T,~-1 see
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and g-10"-10"cm ', so T~-10 ' sec. In order
for the system to decay by the collective mode
rather than as independent radiators it is neces-
sary that T~ «T,~. For a "disk" this requires
that pgA. L»1; i.e. , there must be a large number
of molecules in a "diffraction volume" A. L
=(X'/A)AL. This requirement also insures that
there are many molecules in a cylinder of cross
section A.

' and length L, so that a coherent wave
front can be properly reconstructed.

Consider next the process by which a macro-
scopic polarization builds up in an initially in-
verted system (the two adjacent rotational levels
of interest in the HF v = I level). In the Bloch
formalism" for a point sample, a totally inverted
system corresponds to a vector pointing straight
up, analogous to a rigid pendulum balanced exactly
on end. Similarly, our initially inverted extended
medium corresponds to a spatial distribution of
Bloch vectors all pointing straight up. The in-
dividual Bloch vectors of the extended medium,
which are coupled together via the common radi-
ation field, may evolve differently owing to propa-
gation effects.

Just as the pendulum is unstable to small fluctu-
ations, so the excited molecular system is un-
stable to a small perturbing field, initiated by
spontaneous emission from one of the excited
molecules or by background thermal radiation.
This weak propagating electric field induces a
small macroscopic polarization in the medium,
which acts as a source to create additional electric
field in the medium which, in turn, produces more
polarization. This regenerative process gives
rise to a growing electric field and an increasing
polarization throughout the medium [Fig. 3(a)].
Therefore, a superradiant state slowly evolves
over a sizable portion of the sample cell." This
state corresponds to the Bloch vectors pointing
sideways over a sizable region of space, at which
time radiation is emitted at a greatly enhanced
rate. This process leads to a rapid deexcitation of
that region of the medium, after which essentially
all of the population is in the lower level; i.e. , the
Bloch vectors all point downward. Deexcited re-
gions can then be reexcited by radiation from other
regions, which gives rise to the "ringing" observed
in the output radiation.

Figure 3 plots the polarization envelope 6' and
the population inversion density n, respectively,
throughout the sample at several instants of time.
These values have been calculated from a theoreti-
cal model (developed in the following sections)
based on the intuitive picture presented above.
Notice that 6' and n vary slowly in space and time
throughout the medium, giving rise to several
regions of locally uniform polarization. These
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FIG. 3. Sketch of (a) the polarization envelope + and
(b) the population inversion density n in the medium as
functions of x at t = 50', 100', 150', and 200'.
The corresponding output intensity pattern is shown at
the right of (a). The double peaks in (x) occur when-
ever the ringing is sufficiently large (Ref. 40).

spatial variations in $' and n are due to propaga-
tion effects in a high-gain medium, a crucial point
which was not appreciated in some earlier work.
The ringing in the output radiation (Fig. 3) is a
direct consequence of these spatial variations (see
Sec. VI).

The time evolution of the radiation emitted by an
initially inverted system depends on many factors,
including broadening, diffraction loss, and level
degeneracy. However, as shown in Sec. V, in a
high-gain system the major features of the output
radiation pulse are determined by TR and the loga-
rithm of 8, (described below), and a, normalized
curve can be drawn which gives the output intensity
I (T) multiplied by T~ as a function of time in units
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of T„(T is the retarded time at the end of the
sample). This curve (Fig. 4) depicts a burst of
radiation with ringing preceded by a long delay.
The scaling of the curve is such that when T„ is
halved, the system radiates twice as fast and the
peak intensity is quadrupled. This curve exhibits
the N' intensity dependence which is characteristic
of superradiant emission, since the peak intensity
is proportional to T~' and TR is proportional to
1V '. Experimental data exhibiting this scaling are
given in Ref. 15.

The shape of this curve depends on G„a param-
eter which is a measure of the conditions which
initiate the superradiant pulse [Eq. (20) below].
Whenever 80«1, the delay time TD from the time
of inversion to the peak of the first lobe of emitted
radiation is much greater than T~. This long delay
time may be understood by considering a pendulum
which is initially balanced exactly on end. The time
required for the pendulum to fall following a small
perturbation can be much longer than the oscilla-
tion period. In an analogous manner, the time
necessary for the completely inverted system to
develop a macroscopic polarization can be much
longer than the collective radiation time T„. This
point will be discussed in Sec. VI.

In the experiments, superradiant pulses are ob-
served simultaneously in both the forward and
backward directions with respect to the population-
inverting laser pulse. This comes about because
in the HF system the transit time through the
sample cell is short compared to the time needed
for the system to superradiate (-TD), so that the
electromagnetic waves can grow in both directions
simultaneously without interacting appreciably

7 I
2

Ng

T/TR

FIG. 4. Normalized output curve. This curve is the
output response to a small rectangular input pulse of
area 0p in a nondegenerate system where T2 =T2 = ~ and
&2=0. The time scales as Tz and the intensity scales
as Tz . Note that the shape of the normalized output
curve depends on Op. Ip Tz, and T~ can all be ex-
pressed in terms of Tz and &p (see Sec. VI).

during most of the pulse evolution time. (Long
transit times and different excitation configurations
are discussed in Sec. VI and Ref. 26.) This is so
because in order for the waves to interact, either
(i) they must become large in the same region of
the medium at the same time, so that the coherent
interactions which couple the forward and backward
waves become important, or (ii} the population
depletion by one wave must affect the subsequent
growth of the other wave. The former effect is
negligible because the buildup of polarization of a
given wave is confined to one end of the medium
until well after the main pulse has already been
emitted [-150T ,sFig. 3(a)]. The latter effect is
negligible because each wave depletes the popu-
lation inversion primarily at one end of the medi-
um [Fig. 3(b)]. An iterative computer solution
using the theoretical model shows that the growth
of each wave is almost completely unaffacted by
the population depletion caused by the other wave.
We therefore conclude that for systems with small
transit time the two waves will radiate essentially
independently without significant correlation, and
henceforth, we will only deal with the forward
traveling wave. A discussion of the interaction of
forward and backward waves in systems with long
transit times will be found in Ref. 26.

IV. THEORETICAL MODEL WITH POLARIZATION SOURCE

A. Introduction

In numerous treatment of superradiance the
radiation field is quantized and the molecular sys-
tem is described in terms of collective Dicke
states. ' "'"" As pointed out by Arecchi, Cour-
tens, Gilmore, and Thomas, "these states can be
used to construct a new set of states, Bloch states,
which also describe superradiant ensembles.
These new states can be treated by means of the
semiclassical formalism (coupled Maxwell-
Schrodinger equations), in which the molecular
system is quantized but the electromagnetic field
is treated classically.

One shortcoming of the Maxwell-Schrodinger
equations as they are usually written" is that
there is no mechanism for spontaneous emission,
so that an initially inverted system (such as in the
HF experiment} cannot evolve. " This problem
can be overcome by adding a phenomenological
fluctuating polarization source term to simulate
the effect of spontaneous emission. This term
can be constructed to be consistent with require-
ments of thermal equilibrium as well as energy
and number conservation.

Let us consider in more detail the initial stage
of the evolution of an inverted system to a super-
radiant state. At first the system undergoes spon-
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taneous emission in various directions at random
times. Eventually a photon is emitted along the
axis of the sample cell, leading to the excitation of
one of the modes of the inverted medium. In the
case of large Fresnel number (disk) this mode
subtends a solid angle aQ =A. '/A [Eq. (1)], de-
termined by diffraction. The average number of
photons emitted into this mode in a time t is equal
to (N/T, ~) (A. '/4vA)t = 2t/Ts, so that the first pho-
ton is emitted into the diffraction mode in a time
of order T„." Therefore, at times greater than

T„ there will be many photons per mode, so that
the radiation field can be treated classically.

Note that up to time -T~, when the medium is
starting to evolve, the number of photons per mode
is small and one can question the validity of the
semiclassical model with polarization source term
included. However, in the present problem, in
which an initially unstable system is subjected to
small perturbations, this model is a good approxi-
mation. To justify this conclusion, we note the
following:

(i) Computer results (Sec. V) obtained from this
model show that the superradiant output of the ini-
tially inverted system is insensitive to the spe-
cific form of the source fluctuations, depending
only on their sum over a time-T„. This is easy
to understand in terms of the pendulum analogy
presented previously: For a system in an unstable
initial state, the response to a rapid series of
small destabilizing forces depends only on the sum
of these forces over a period of time (here, Tn)-
and not on the form of the individual forces.

(ii) The numerical results also show that the
contribution of the polarization source term to the
evolution of the system becomes negligible for
times larger than -T~. This can be understood
by using Eq. (47) below to show that the time nec-
essary for the output resulting from a small input
pulse to become much larger than the input pulse
itself is of order T~. Therefore, for times greater
than T„, the input pulse and, accordingly, the
polarization source which gives rise to it, no longer
significantly influences the output behavior. (It
will be shown in Sec. IVD that the polarization
source of this model can be accurately approxi-
mated by an equivalent input pulse. )

Since the output radiation becomes independent
of the polarization source after a time -T„ follow-
ing the inversion of the medium, phase fluctuations
associated with spontaneous emission at subsequent
times will have little effect on the output radiation,
In other words, the first photon emitted into the
diffraction mode initiates the evolution of the sys-
tern, and phase fluctuations associated with sub-
sequent spontaneous-emission events are unirn-
portant. In effect, the first photon determines

(11a)

BT
= - (y ikv)(P +-(g,')„Sn/k +A~,

=A —yn- (I/k) Re (aP *) .
BT

(11b)

(1lc)

Here h (x, T) and (P (x, T, v, M ) are the slowly vary-
ing envelopes of the electric field E(r, t) and the
polarization density per velocity interval dv,
P(r, t, v, M), respectively. They are defined by

E(r, t) =zE(x, t) =z Re[h(x, T) e' ~0' ~' ], (12)

P( r, t, v, M) =zP(x, t, v, M)

=z Re[z(P(x, T, v, M) e' o' '
]

at position x, time t, and retarded time T=t -x/c.
The carrier frequency is assumed to be the molec-
ular center frequency u, with no loss of generality.
Note that 8 and &P are complex, and that g(x, T)
=

I 8(x, T) I
e'~ where ((x, T) is a slowly varying

real phase. In these equations, n(x, T, v, M)

the phase of the output radiation.
(iii) The delay time between the inversion of the

medium and the peak of the superradiant output
pulse, which is of the order of 100T„ in the HF
experiments [see Eq. (49)], is not sensitive to the
fluctuations of the spontaneous emission which
initiates the superradiant process. This is so
because the fluctuation time before the first photon
is emitted into the diffraction mode is of order T„.
This time is only -1% of the delay time in HF, and
can be ignored in calculating the delay time.

This explains why the semiclassical formalism
with a fluctuating polarization source included
gives a good descr iption of the evolution of a super-
radiant state in an initially inverted medium.

B. Coupled Maxwell-Schrodinger equations

Adopting the semiclassical formalism, we con-
sider a gas of two-level molecules interacting with
an electromagnetic wave. As in the discussion
following Eq. (1), we confine our attention to a
system of large Fresnel number (disk-shaped
system) where the electromagnetic field can be
approximated by a plane wave. In this limit the
two-level system is described by the coupled Max-
well-Schrodinger equations given by many au-
thors. '2 '~'" We shall adopt notation similar
to that of Icsevgi and Lamb, "extended to include
level degeneracy, as is necessary in treating ro-
tational transitions of a molecular system, and the
polarization source described previously. The
coupled equations in the slowly-varying-envelope
approximation, written in complex form, are
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=n, -n» where n, and n, are the number densities
per velocity interval dv of molecules in the upper
and lower states (J,M) of the superradiant transi-
tion, respectively; ~ is a loss term which accounts
for diffraction (see Sec. V), which can be a func-
tion of x but not of 8; andy is the decay rate of
n„n„and II', assumed equal for simplicity (i.e. ,
T, =T, =y '). A =X(z, T, M) W(v) is a source term
describing the rate of production of n, due to opti-
cal pumpmg in our'case, where W(v) is the dis-
tribution of molecular velocities, normalized to
unity [Eq. (15)]. Ap(x, T, v, M) is the polarization
source term describing the rate of production of
5' due to spontaneous emission. The exact form is
discussed in Sec. IVC. The symbol+~„„denotes
an integral over the velocity distribution and a
sum over degenerate M states of the rotational
levels:

Q f(v, M) = t dv Q f(v, M).
p

In the experiments the optical pumping process
produces excited molecules in the upper level of
an initially unpopulated two-level system (Fig. 1)
with a Lorentzian velocity distribution, "

W(v) =ul/II(v +u, ), (16)

where

u I Il p gp /fI kp . (16)

Here k& is the wave number and p.~ the matrix
element of the pump transition, and g~ is the
amplitude of the intense pump fieM. In HF, ' "
u, -10' cm/sec. The total number density of ex-
cited molecules in all Mz states is then (for R
branch pumping)

n~= n v, M,

1 Ilphp/gpl„=n, (t=o)= — ' ' u, ,
kpu/vw

(16)

tan 28(x) =(tan —,'8 ) e"o' (19)

where n~ is the total number of molecules in the
rotational level (of the v =0 vibrational state) which
is being pumped. '

Although the growth of the electric field in the
medium does not follow simple exponential gain,
the time integral of the electric field obeys an
exponential law, the area theorem. 4' This states
that for a nondegenerate Doppler-broadened col-
lisionless system subjected to an incident field
g(x =O, t) of constant phase, the pulse area 8(x)
obeys the equation

8(x)= "' 8(x, t)dt,

8, = 8(x = 0), and no is the small signal field gain
at the molecular center frequency (d„. For a sys-
tem whose linewidth contains both homogeneous
and inhomogeneous contributions,

CIoL =2IIk(II, /lf)nroLT'2, (21)

where n» is the initial total inversion density. In
the Doppler-broadened limit, which applies in the
HF system, the characteristic broadening time
T2 T2p = 1/kul. [Note tllRt lll Gill' Case~ kul ls Rll

effective Doppler width, given by Eq. (16) above. ]
Combining Eqs. (6) and (21) gives the relationship"

n, L =T2/Ts, (22)

C. Polarization source

As discussed earlier, the superradiant evolution
process is initiated by spontaneous emission from
the excited molecules and by background thermal
radiation. In our model spontaneous emission is
simulated by a randomly phased polarization source
term A~ which is distributed throughout the medi-
um. As is shown below, although A~ is essential
for initiating the growth of g, as the 5 field evolves
in a high-gain system the influence of A~ soon be-
comes unimportant. Therefore, to calculate the

so that npL is independent of the pump field in-
tensity I.

Equation (19) shows that in a high-gain medium
the area of a pulse of small initial area begins to
grow exponentially,

8(x) = 8oe~o*,

but then evolves towards m. In this process the
field envelope may develop positive and negative
lobes (ringing) whose contributions to the area
substantially cancel one another. Accordingly, in
a high-gain system the pulse energy continues to
grow even though the area remains constant.

The presence of level degeneracy does not in-
validate this conclusion, although level degeneracy
ean inhibit pulse propagation in an absorber. The
considerations of Rhodes, Szoke, and Javan' ap-
plied to an amplifier show that level degeneracy
does not prevent pulse formation, and that pulses
of increasing energy and area near m can evolve.

High gain (noL»1) is necessary for superradi-
Rllce 'to occlll': Tllls condltlon ls equivalent [Eq.
(22)] to Ts«T'2, which is necessary so that col-
lective radiation can occur rapidly with respect to
incoherent decay. The requirement npL ~) 1 also
ensures that n, L -

~I In8o ~, so that R, II pulse will
evolve [Eq. (19)]. The high-gain condition will be
discussed further in Sec. VII.
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amplitude of A~ for a high-gain system, we consider
the contribution of A~ to the growth of 5' only during
the first stage of pulse evolution, when g is small
and the field produced by A~ is sizable compared to
the field already present.

The amplitude of A~ will be calculated in the
following manner: First, starting from the cou-
pled Maxwell-Schrodinger equations, specialized
to the case of weak field and steady state, we ob-
tain an equation for the intensity I(x) as a function
of the amplitude of A~. This equation is then com-
pared to an intensity equation derived from thermal
equilibrium considerations which also holds for
linear steady-state systems. Since these two
equations are of the same form, we can evaluate
the amplitude of A~ in terms of the molecular
parameters of the system. The resulting expres-

sion for A~, which is not a function of dynamical
variables, can be used in the coupled Maxwell-
Schrodinger equations to describe a system not
at thermal equilibrium.

We consider the medium to be divided into small
regions of volume AAx (b,x«L), and time into
intervals 6 t & T~. Since the spontaneous-emission
intensity is proportional to n, (x, t) and otherwise
depends only on molecular constants (except for
a linewidth-narrowing effect in high-gain systems,
described below), A~ is proportional to (n, )'I2.
We choose the form of A~ tobe a series of pulses in
space and time with constant amplitude" (except
for the n, dependence) and random phases. " lt
is convenient to evaluate A~ at points separated by
Ax in space and AT in retarded time. Then A~ will
be of the form

f /
OO k'

A~(x, T, v, M) =B,[n2(x, T, v, M)]'~ +6(x-x&) g 5(T —T,)g 5(v —v~)e'~»»,
k=1

(24)

I(x) =I(x = 0) e "o"+Ko (e o' —1), (25)

where Q., is the gain of the system at the molecular
center frequency (L(„ I(x) =cA ) $(x) ~2/8v is the
power at position x, and

1T
2
o AB2 2 2 (1 e 2(((0 &&)

4 '~T (26)

Equation (25) holds for any linear steady-state
system, independent of the sign and magnitude of
the gain.

We require that Eq. (25) be consistent with the
Einstein intensity equation, "'"which states that
throughout the active region of any linear steady-
state medium, the total energy per mode I (x)
must satisfy the equation

where B, is a (real) constant to be determined,
x& = (j ——,') ~x, Ax =L/j, T, = l C T, v~ are k' discrete
velocities, "and pj fkQ are independent random
phases.

We consider the case where n and 8 are inde-
pendent, 8 is very slowly varying in time (s h/s T
«yS), "and n is near a constant value n, and is
very slowly varying in space and time (sn/s T
«yn, sn/8x«yn/c). " Such a system is linear
and nearly steady state (n-no). As shown in Ap-
pendix A, the coupled Maxwell-Schrodinger equa-
tions [Eqs. (11a) and (lib)] for such a system may
be integrated to give an intensity gain equation

Eq. (27) is consistent with the requirements of
thermal equilibrium, since when I (x) =k(d/(e "
-1) and n, =n~e " ~, Eq. (27) simplifies to
dI (x)/dx =0.] To compare Eq. (27) with Eq. (25),
Eq. (27) must be rewritten in terms of the power
per unit frequency interval I(&u, x) in the plane-
wave direction. As shown in Appendix B, for a
system with Fresnel number not signficantly less
than unity, Eq. (27) becomes

(28)

The integration of Eq. (28) in a high-gain (c(,L
»1) linear steady-state system with finite band-
width is performed in Appendix C. In such a system
the linewidth of I((c,x) decreases as vox increases
("gain narrowing"). For a high-gain system in-
teracting with a broadband field of input bandwidth
d, (d»(Td2) '(v/2c(oL)' ' centered at frequency (v,
(where 1/T', is the bandwidth of the gain profile),
the total output power I (x =L) can be obtained by
integrating Eq. (28) as in Appendix C:

l(d L) = Jl(td, d L(d==
I((d„x = 0) + ' (T', )4

Sg —Ply
(27)

where c(. ((d) is the gain at frequency co. [Note that

x e2noL (29)

We can compare this result with the high-gain
limit (e "0»I) of Eq. (25) to obtain~
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I(x = 0) = I((u 0, x = 0) (T', )
' (w/2u L) ' 2

n~ ni 2Q0 L 4~

(30)

(31)

( =o, )I'= 4",
'

or, equivalently,

2v((u„/2m) 2

C

(34)

(32)I(x = 0) =I(vo, x = 0) (n to) ff,

where (n&u), « =—1/(T2), ff =(T2) '(«/2noL)' ' is the
mathematically derived effective bandwidth of the
input radiation which interacts with the gain pro-
file of the high-ga, in system. This gain-narrowing
effect can be explained physically by noting that in
the early stages of growth, a high-gain system
preferentially amplifies the central portion of the
frequency profile.

Inserting Eq. (31) into (26), we obtain B„and if
nx is chosen such that n, n, x el (as in the case of
our computer program), Eq. (24) becomes"

Equation (30) tells us what the input power I(x = 0)
in the intensity gain equation [Eq. (25)] must be for
a high-gain system in order to be consistent with
the Einstein equation. Equation (30) can be re-
written in the form

X
ku 1

4«A 2«(2o, L/v)'I2 (35)

The factors on the right-hand side of Eq. (35) are,
respectively, the background thermal radiation
energy per mode, the number of modes of one
polarization per unit value per frequency inter-
val h v, the solid angle factor f, and the gain-de-
pendent effective bandwidth (in units of n v). Using
this value of

~ $(x = 0, T)
~

as an input boundary con-
dition, and using Eq. (33) for A~, Eqs. (11) can be
numerically integrated to obtain the output radi-
ation intensity. Examples of these computer re-
sults are given in Figs. 3 and 5.

Alternatively, spontaneous emission in a high-
gain system can be described by repla, cing the
distributed polarization source by an "equivalent"

Aq(x, T, v, M)

4aT hx n2AL 0.5 1.0 1.5

j i k

5 x -x& 5 T —Ti 5 v —vk e&~fske.

(33) 0.5 1.0 1.5

Note that A~ is proportional to p, , and depends on

the total number of excited molecules n,Ahxh T
associated with one point in the space-time grid;
the square-root dependence occurs because the
radiation from independent spontaneous-emission
events adds incoherently.

D. Blackbody radiation and "equivalent input field"

In the computer model background thermal radi-
ation is simulated by an input field of randomly
fluctuating phase, the intensity of which depends
on the bandwidth and the solid angle of the input
radiation which interacts with the system. The
result of Appendix B can be used to convert the
blackbody power per mode I (x = 0) =h~/(e" I"
-1) to the plane-wave blackbody power per unit
frequency interval I(u, x = 0) = (Ku&/4v)/(e"~ "' —1).
As described above, the effective bandwidth of
radiation which interacts with a high-gain system
is neo, « —- («/2ao L)'I /T', (see Appendix C), so that
the total input power which must be used in order
to correctly apply Eq. (25) to this case is

(n 0.5 1.0

cI)

I

1.5

p

Kl
K
cE

C/1

4J
p

0.5

0.5

i
1.0 1.5

(e)

1.0

0.5 1.0
I

1.5

0.5 1.0 1.5
r(~ seC)

FIG. 5. Computer results showing the influence of
parameters on output intensity. The same intensity
scale is used throughout. (a) A theoretical fit with param-
eters Tz=6.1 nsec, T2 =330 nsec, T2 =5.4 @sec, ~L
=2.5, J 1, „=2. All parameters have the same values
as in this curve except when stated otherwise. (b) No
level degeneracy, &2= T2 =, KL=O. (c) Tz=. (d)

T& ——™.(e) KL=O. (f) KL=5. (g) No level degeneracy.



input electric field. The input field (of constant
amplitude) which would produce the same output
intensity as the distributed source (see Appendix

C) for a high-gain system, which combines the
contributions of blackbody radiation [Eq. (34)J and

spontaneous emission, ls

(d o O'Q» / Q(go/Q7 'l ma»+(e4«(2o, L/«)'~' +2 ng-

pulse. Comb111111g Eqs. (3), (4), and (36) with this
expx'ession yields

»

8= ' (o. L) '' + (36)
n n-t ~0&&'

For our system, 8 -10, a d in order for the
output to evolve to a pulse of area -«, n, L [Eq.
(19)] must be &20. This is readily achieved in

the exper iments.

V. NUMERICAL RESULTS

8 QS «Ts/h (37}

can be chosen to be the area of the effective input

84p 0 2
(

n(uo/ar I)-z
2T„W~ (2~,L)~~~ n. -n,

(36)

The validity of the "equivalent-input" approxima-
tion can be understood by noting that in a high-
gain system the spontaneous emission which oc-
curs near the input face is most important in ini-
tiating the supex'radiant evolution process. Al-
though all of the output radiation curves in this
paper (and in Ref. 15)wel e fitted using the distrtbu-
ted-polarization-source model, essentially iden-
tical computer curves are obtained using the equi-
valent-input-field approximation. This finding
strongly suppoxts the validity of the equivalent-
field approach and confirms the interpretation and
analaysis of Ref. 6.

Since thedlstl ibuted soul ce ean be x'eplaeed by
an effective input field and since phase fluctuations
in the input field do not significantly affect the
computer curves (as explained in Sec. IV A and

verified by the computer results of Sec. V below),
the results of the area theorem [Eq. (19)] may be
used for a qualitative understanding of the behavior
of the system. o This makes it possible to derive
an effective input area 8„which can be used in the
area theorem and for obtaining simple analytical
expressions for the delay time, pulse width, and

peak intensity (Sec. VI). Owing to the exponential
nature of the growth of the area [Eq. (19)], the
parameter vrhich enters into these expressions
is a logarithmic function of 80. Because I ln8O I »1,
the expx'essions are insensitive to the exact nu-
merical coefficient of 8,.

As stated earlier, the influence of the effective
input field on the evolution of the supex radiant
state is only significant for a short time after the
system is pumped into excitation, and since the
output iield more than doubles in a time T~ after
excitation [Eq. (47)], the input field can be ignored
after a time T~. Therefore, to a good approxi-
matlOn

y

The coupled Maxwell-Schrodinger equations [Eqs.
(11)]have been integrated by computer, with level
degeneracy taken into account in pump and super-
radiant transitions. Computer-generated curves
obtained using input conditions appropriate for the

case»4's are in good agreement with experi-
mental results. For example, decreasing the
sample cell pressure or pump intensity reduces
the output intensity and increases the delay time
and the width of the output pulse. A detailed com-
parison of theory and experiment can be found in

Ref. 15.
The following general features are evident from

the numerical results, and confirm the qualitative
statements of Sees. III and IV:

(i) The effects of relaxation are unimportant as
long as the homogeneous relaxation time T, exceeds
the pulse delay TD. %hen T~ becomes comparable
to TD the pulses are reduced in size and the ringing
is cut down. At the mTorr pressures of the ex-
periments T„determined by collisions, is alvrays
much longer than TD.

(ii) The influence of the polarization source A~
is limited to the first fe% Tz's. In addition, the
output is unchanged vrhen the polarization source
[Eq. (33)] is replaced by an input field whose amp-
litude is given by Eq. (36}. This verifies the ef-
fective input-field approximation presented in Sec.
IVD and the value of g,«given by Eq. (36).

(iii) The effect of a weak input field (to simulate
blackbody radiation) is limited to the 1'irst few
T~'s. The output is insensitive to the exact shape
and phase of the input field. Delta function, step
function, Gaussian pulses, and pulse trains of
varying phase all give output pulses of about the
same shape and size, as long as their input areas
are equal. Also, the presence of random jumps
in the phase of the input field has no significant
effect on the output pulses.

(iv) The area of the output pulse is determined
'by the gain noh and the size of the input pulse eo,
in accordance with the area theorem [ Eq. (19)J.
Since in our case ]9,-10 ', n, L ~20 is needed for
appreciable pulse buildup. Such gains are available
in HF at mTorr pressure.
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(v) The time scale of the pulse evolution process
(i.e. , delays, pulse shapes) is almost completely
determined by T„and H„as long as noh»1.

(vi) The output pulses are insensitive to the
specific time dependence of the population excita-
tion. This is true for excitation pulses of duration
approaching the superradiant pulse delay. (Effects
of longer excitation pulses are discussed in Ref.
26.)

(vii) Two forms of the loss coefficient x [Eq.
(lla)] might be important under different experi-
mental conditions: the case of linear (constant)
x, as was used in R.ef. 24 and our previous work"";
and the case of diffraction loss, where the plane-
wave g field can be modeled as a Gaussian beam,
in which case x =x/(x +L 6), with L6 =A/X. " For
the same value of the total loss (xL in the linear-
loss case; Jxdx =-,' in[1+ (XL//I)'] in the Gaussian-
beam case), the two models give virtually identical
output pulses.

(viii) Replacing each of the different matrix
elements (l1,)„ in a degenerate system by the
average value p, , defined by Eq. (7) does not sig-
nificantly affect the behavior of the output pulse;
i.e. , the effects of level degeneracy are negligible.

(ix) The output intensity at a given superradiant
transition depends on the pump transition branch
used (P or R), in agreement with the experiments.
This dependence is due to the different matrix
elements and widely different populations of the
ground-state levels selected.

In summary, as long as aoL»1, for a given
T„homogeneous and inhomogeneous broadening,
level degeneracy, and moderate variations in the
value of vL change the results in only minor ways.
The weak influence of these effects on the output
pulse can be seen in Fig. 5, which shows the
changes in the pulse shape and delay caused by
varying these parameters. The simple results
obtainable by setting 1/T, = I/Tg =x =0 and neglect-
ing level degeneracy may be used for a qualitative
understanding of the behavior. This simplified
model gives the normalized emission curve of Fig.
4. (Other effects which occur in very long samples,
but which are not relevant to the HF experiments,
are discussed in Ref. 26.)

VI. SIMPLIFIED THEORY

As indicated by the computer analysis of Sec. V,
most of the parameters of the system have very
little effect on the superradiant output pulses (Fig.
5). If we set y =ku =A =A2=K=0 in Eqs. (11) and

ignore the effects of level degeneracy, a set of
simplified equations is obtained:

(39)

(40)

n =n6cosg,

os'
(42)

(43)

where

g(x, T) = (i1, /8) S(x, T') d T' (45)

is the "partial area" of the pulse, so that g(x, T
=~) =8(x). From Eqs. (42) and (43), it can be seen
that P may also be interpreted in the geometrical
representation" as the "tipping angle" of a Bloch
vector" of length n, which evolves in the 2-y [n
—(S/i1, )] plane. Note [Sec. III] that an extended
medium must be represented as a distribution of
Bloch vectors whose spatial variations are deter-
mined by Eq. (39). The initially inverted system,
corresponding to the Bloch vectors all standing on
end (n =n„S = 0), gradually evolves into a super-
radiant state (n =O, S/i1, =-nJ; the evolution of
the individual Bloch vector at any point in space is
described by Eqs. (42) and (43).

Combining Eqs. (39) and (44) gives an equation for
q ( Tx)

22,63.

8 g sing
sx s (T/T„)

This equation was studied for the ease of an ab-
sorber by Burnham and Chiao" and others, "'"
who showed that for a 5-function input field, the
time dependence of P(x, T) and therefore [Eq. (44)]
of Tsg(x, T) was a function of T/T~ only. Our case
is that of an amplifier, and the time dependence of
the 5-function response is again a function of T/Ts
only, from which follows the sealing property of
the normalized emission curve of Fig. 4."' Further-
more, since the effective input field is only impor-
tant during the first-T, any input pulse of small
effective area 8o gives the same response as a 5-
function input pulse of the same area. [A more

en gS
9T

Here, 8=-6' and n, 8, and S are all real. Note
that in this simplified model, in which A~ =0, the
effect of spontaneous emission (which initiates the
superradiant evolution process in an. initially in-
verted system) can be included by means of the
effective-input-field approximation. In the dis-
cussions of this section, an effective input pulse
[ as given by Eq. (38)] will be used as an initial
condition.

Equations (40) and (41) have the solution
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formal statement of the scaling properties of Fig.
4 is that the transformation T-T/Tn, b-T«8 in
Eqs. (39)-(41) leaves these equations unchanged
and does not affect the area of the input pulse (the
boundary condition). ] This simple scaling property
holds for "end-excited" systems in which the
system is excited by a pulse propagating through
the medium at velocity c, so that all molecules
are excited at the same retarded time. It also
holds for "side-excited" systems (in which all
molecules are excited simultaneously) unless the
transit time L/c ~2(Ts/4) [In(8, /2«)]'. In the
latter case, spontaneous emission in different
parts of the medium causes the sample to break
into a number of independently superradiating seg-
ments as described by Arecchi and Courtens" (see
Ref. 26 for further discussion).

The computer results also exhibit these scaling
properties, even when all of the refinements of
the theory are included (Fig. 5). The main require-
ment for the validity of the normalized emission
curve is that T~ be much shorter than all other
times associated with the system (Tn«T', ), so
that superradiant emission can occur before de-
phasing or relaxation processes set in. It im-
mediately follows from Eq. (22) that this condition
is equivalent to a, L, »1, so that any sufficiently-
high-gain system will undergo superradiant emis-
sion when suitably excited.

As a consequence of the long delay times which
result from small effective input pulses, g re-
mains small for almost all of the pulse evolution
time. Accordingly, in the expression for 8(x, T)
the small-angle approximation (sing = P) can be
used. (In the final stages of pulse evolution, g
approaches «and this approximation breaks down. )
Also, since the exact form of the effective input
field does not matter (Sec. V), a step function can
be chosen. A number of useful results can be
derived from this model.

Consider first the delay TD from the time at
which the sample is inverted to the time of the
first peak of the emitted radiation. ~ In the small-
angle limit a solution of Eq. (46) can be found using
the transformation w =2(xT)'Im, which gives Bes-
sel's equation in w. For the initial condition of a
small step-function input electric field with en-
velope 8 (x = 0, T &0) = 8 „which corresponds to
8(«) = 0) =(g„ the output field at x =L is of the form

8(I., T) =S,I,(u),

wheleI„(x) 1s'the nlodlf1ed Bessel fllIlctioll of
order n, and u =2(T/T~)'I'. Then 4(T) =g(x =L, T),
the partial area atx =L, is given by

where 8o=p, ,SOT«/h. A property of solutions of
Eq. (46) is that for 8,«1, C(T~)-«." Setting
C (ID =«) in Eq. (48) and solving for TD in the limit
T~»T„, one obtains

TD=(Ts/4) [ln(8, /2«)]'. (49)

(51)

Although both L,«and L',«have the correct func-
tional dependence, the choice of L,« leads to much
better agreement between Eq. (54), below, and

Note that Eq. (49) was derived under the condition
of small 0,. However, since 4 only deviates from
Eq. (48) during the last few T„before T =T~, only
a small error in calculating TD is made by using
Eq. (48) to approximate C (T~).

In the experimental system, 0,-10 ', so
~ In(8, /2«) ~-20 and TD is insensitive to changes
ln &0 Theref ore TD - 100 T~ is a convenient esti-
mate of the time r equired for the superradiant
state to evolve. Since T~ is proportional to T~,
T~ should be inversely proportional to the ex-
citation density, and therefore, the pressure, in
the sample cell. This inverse proportionality and
the estimate of TD, Eq. (49), agree with experi-
mental results. "

An estimate of the width T~ of the first lobe of
the radiation pulse can be obtained from the 1/e
width of O(T) at T = TD, i.e. , by solving the equa-
tion O(T1, —T~/2) =C (TD)/e for T~:

(50)

since T~«T~. Equation (50) predicts a pulse
width -20T~ for our system, which is somewhat
smaller than the observed pulse widths of
-(20—40) T«. 15 This is expected, since the growth
of 4 (T) near Tn is actually slower than that given
by Eq. (48).

It was explained above that because the sample
is optically thick (i.e., o(,L»1) the polarization
envelope $'(z, T) varies over the medium and under-
goes changes jn sign [Fig. 3(a)]. Since 8
=2«k Jd' dx, regions of 6' of opposite sign tend to
cancel and the output radiation at a particular time
can be considered to originate from a single spatial
region, of width L',«. Accordingly, L',ff and T+ the
duration of one lobe of the superradiant output, are
related; T~ is the "effective" T„of a sample of
length L',«, T~ = T„(L=L,'«) =8nT, ~ /nXBL,'«, 'from
which L.'« =I./~ In(8, /2«) ~. Comparison with com-
puter plots of 6'(x, T) [Fig 3(a)] sh.ows that L,'« is
approximately the half-width at half-maximum of
a spatial region. The total extent of a region of
polarization (between points of (P = 0) is several
times larger. %e define
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computer results.
Equation (51) indicates that a fraction -4/

~ ln(8, /
2w)

~
of the medium contributes to each lobe of

ringing in the superradiant bursts. This suggests
that the normalized emission curve should contain
-~ ln(8, /2v) ~ /4 lobes. This is confirmed by com-
puter results, which give this number of lobes
(up to the 1/e point) for various values of 8,. Sys-
tems with finite T', will have fewer lobes.

The total energy of the first lobe E~ is
4 S(g)on AL

~
1 (8 /2v)[

(52)

and the total peak radiation intensity I~ is approxi-
mately the total energy of the first lobe E~ divided

by the width of the first lobe T~,

8 1—
t (n)„+ ((n —T,A))„=——Re[8(d'*)„]1

2
(57)

(58)

using Eq. (56). An expression for the total popu-
lation difference N =f nA dx is then readily ob-
tained":

d 1—(II)„=— ((II —T,AAL) &„
2

2 L
I(L) l(0) ~ 2 -Ikr), (59)

@(d() 0

Ep Buon AL, ft-I,=
TI'

4tIh(uo/T„4 h(u, An' &' L

) ln(8, /2v) (' [ ln(8, /2v) ('

(53)

(54)

which has an obvious interpretation in terms of
number conservation.

Equations (56) and (59) are exact. To simplify
Eq. (56), we set v = 0, neglect Doppler broadening
and level degeneracy, and assume that 5 and 5'

have a constant phase. "'" Differentiating Eq. (56)
with respect to T then gives

and is proportional to L' (Fig. 4). As anticipated
in the qualitative discussion of Sec. III, the peak
radiation rate is enhanced from &K&u, /T, ~ by a
factor proportional to T,~/Ts. Note that in terms
of the peak value of the electric field, S~, Eq. (54)
gives

2 ()2I Qg Q(p +

(doA BXBT 8 T BT (60)

2I aT T, 8
+ ~ nl hl' —SA

(61)
(V&p/@) (~w/4) =1, (55)

using Eq. (lib). Then, using Eq. (56),

VII. CONNECTIONS WITH OTHER WORK

Some previous treatmentsiz, i2, i7 of superradiance
are based on equations of motion written in terms
of the variables I(t) and n(t), the time-dependent
intensity and inversion density. To compare the
present work with these treatments, consider the
approximation in which Eqs. (11) can be rewritten
in these two variables, rather than the five real
quantities g, 5', and n.

An equation for sl/Bx can be obtained by multi-
plying Eq. (lla) by (cAS*/8v):

—= —2K I+ (&u,A/2) Re [8*(6')„],aI
(56)

which is a statement of energy balance. An ex-
pression for Bn/Bt can be obtained by integrating
Eq. (llc) over velocity:

which shows that the ringing of the superradiant
output can be viewed as a form of Rabi nutation. "

The formulas for I~ [ Eq. (54)], T~ [Eq. (49)], and

T~ [Eq. (50)] agree well with experimental data, "
computer predictions, and the normalized emission
curve (Fig. 4). For extremely long samples (in the
HF case, ~10 m), the considerations of Ref. 26
must be taken into account.

"d I 1 BI 9I 1 ()I 2nIT.
BxBT 2I aT Bx T, Bx n LT„

(62)

The last term in Eq. (62) is obtained by replacing
the source term $A~ of Eq. (61) by 4+0K, /u, AT„
where the form of K, depends on the gain of the
system [Eq. (31) or Ref. 61]. This substitution is
consistent with the averaging procedure used in
Sec. IV in deriving the polarization source. Note
that in the equilibrium limit, where sI/st = 0, Eq.
(62) reduces to the usual expression for intensity
gain [Eq. (A13)],

2 I + 2(yoÃ0
dI nT,

X no

the term in parentheses being o,
Equation (62) is exact, subject to the stated as-

sumptions. A system which satisfies these con-
ditions can be described by two real equations,
Eqs. (58) [or (59)] and (62), in two unknowns (n and

I), rather than by Eqs. (11). Note that the in-
fluence of spontaneous emission is included in
these equations. In general, they must be solved
subject to appropriate initial conditions on I and
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n. For simplicity, in the following discussions
we will assume that the input field is negligible.

Equations (5S) and (62) are a useful starting
point to connect the present analysis with some
previous treatments~ ' 2 7 which developed equa
tions appropriate to a regime which we would like
to call "limited superradiance. " This regime is
characterized by the conditions

(64a)

OL ~~1

In the limit of T,*-~, these equations are of the
same form as the others. "

These three sets of equations [(66), (67), and

(66)] essentially agree with Eqs. (65), which are
derived in the thin-sample limit and do not apply
o ~OL»1

In Hefs. 11, 12, and 1V, these equations are
solved in the limit where 2I/T, is negligible com-
pared to 4IN/ST„N, . The solutions for I are then
hyperbolic-secant-squared functions of time. How-

ever, the ratio of the first term to the second
'tel'111 ln Eq. (65a) ls

4l.e. y

2I /T, 3 No

4IN/STsNo 2noL N
' (6S)

T2 && TR (&T P . (64c)

In this limit, spatial variations in 6' and g are
negligible throughout the sample, "and Eq. (62) can
be integrated to obtain

dI 2I 4IN Sm„
T2 3TRNO WT2 TR

where, henceforth, I =I(L, t) Simila. rly, Eq. {59)
becomes

dN 1 2I
(N —T,AAL) —g.

2 S(go
(65b)

d I 2I 4IN 4I
dt, T

(66a)

dN 1 2I
(N - T,AAL)— (66b)

(They did Ilot assu1118 Tl = T1.)
Equations (4.10) and (4.11) of Hehler and Eberly"

can be differentiated to obtain equations similar to
ours (they assume T, '=0):

As will be seen below, solutions of these equations
are very different from those obtained in the high-
gain case and from the experimental results (dif-
ferent delay times, no ringing, etc.).

Equations {65) are almost identical to the super-
radiant rate equations of Bonjfacio, Schwendimann,
and Haake, '2 which in our notation become

In the thin-sample limit, in which Eqs. (65) are
valid, IIOL =T, /T„«1, and since I Nl &N, always,
the magnitude of this ratio mill always be much
greater than 1. As a result, the 2I/T, term may
not be neglected, but the term 4IN/ST„N, is neg-
ligible and may be ignored. Therefore, the hy-
perbolic-secant-squared intensity solutions of
Refs. 11, 12, and 17 are incorrect.

The approximate solution of Eqs. (65) may be
obtained by neglecting the second term of Eq.
(65a):

I(L, t) =I(I, , t = 0) e "Ir1+ (RId, /411T„)(1 —e "Ir1),

N= ' (e "I '-e 'Ir1)+N(t=0)e 'Ir2
S(g)0

+ T1AAL(1 —e -lira) (70b)

I(L, t = 0) = (cA/BII) (Sn'tIL il no sing)

= (NKId, /4T„) isbn. (71)

where N(t = 0) is the initial population inversion
and I(L, t = 0) is the initial output intensity, "pro
duced by the population existing at t = 0 in a medi-
um having initial conditions n(t =0) =n, cosg and

(P (t = 0) = tI gno 8111$ (col'I'espoIldlllg to 811 lllltlal tip-
ping angle p of the Bloch vector):

dN 2I
dt kQpo

(67a)

(67b)

The second term in Eq. (70a), which is due to
the source term of Eq. (65a), is only important
when I(I., t =0) is negligible (efface, /4IIT„). In this
case incoherent processes initiate the evolution
of the system, and Eq. (70a) becomes

Similar equations obtained by Hessayre and
Tallet~v include finite Doppler broadening:

guIO
(1 2II„) Nokrdo X1

(
1,I~)

4r TR
'

Tsp 32m2A

(72)

dN N —T2A AL 2I
dt T2 +(d

exp —,68a
Here I(t) is proportional to n, and decays expo-
nentially in the usual fashion.

The first term in Eq. (70a) is the free-induction
decay of I(L, t =0). For f(L, t =0) aK&go/4IITz , the.
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second term in Eq. (70a) is negligible, and l(t) is
proportional to n', (coherent emission). This so-
lution is a decaying exponential with decay time
T, /2 =aoLTs/2«Ts, rather than the hyperbolic-
secant-squared solution of width -TR of Refs. 11
and 12. Therefore, collective radiation occurs
for a time much shorter than TR, after which the
excited-state population will have decayed. Inte-
grating 1(t) =(Nh~o/4T„)e " r2sin'p over time,
the total energy radia, ted coherently is at most

(NK&uo /8) (T, /T„), so that only a small fraction
T, /8Tn =u, L/8«1 of the energy is radiated co-
herently. The decay of the system is determined
by ordinary incoherent processes.

Experimental techniques such a,s free-induction
decay and photon echos, ' which study the collective
radiative decay of a system in the limited super-
radiance regime, are useful for measuring inco-
herent relaxation processes. In fact, these ex-
periments must be performed in the thin sample
(noL «1) so that coherent emission does not affect
the decay rate. In the regime of limited super-
radiance, the coherent emission acts as a probe
of the state of the system, without significantly
affecting its state.

Although limited superradiance can be considered
superradiance in the sense that TR«T, ~, so that
collective effects are important [as is seen in the
n', dependence of Eq. (71)], only a very small frac-
tion of the energy is radiated coherently since
T,«TR. This is in sharp contrast to the regime
of strong superradiance studied in the HF experi-
ments, which is characterized by the conditions

TR«T P (73a)

Qo L.&) 1
~ (73b)

l.e. ,

T2» TR (73c)

The latter condition implies that the sample can
superradiate before decay processes set in. Ac-
cordingly, in the strong superradiant regime es-
sentially all of the energy stored in the sample
can be emitted coherently. [The condition of Eq.
(73b) for strong superradiance can be made more
precise in some cases. '4]

The long delays preceding the observed output
pulses deserve further discussion, in light of the
fact that the conditions for strong superradiance
[Eqs. (7)] only require T,*»Tn, not Tg&TD. (How-
ever, T,&TD is necessary. ) For example, typically
TD-100TR, whereas T,*-50TR, so that TD&2T,*.
It is remarkable that fully developed pulses with
ringing can evolve over such long times, despite
the presence of dephasing processes. This be-

havior is unique to high-gain amplifiers, where
the high gain can overcome dephasing during the
early stages of pulse evolution. The system
eventually dephases, but the effective dephasing
time is increased to noLT2*, as can be established
by considering the response of a high-gain inhomo-
geneously broadened amplifying medium to a short
input pulse of small area 8,. (A small step-func-
tion input pulse gives similar results. ) Analytical
expressions have been given by Crisp. " For a
Lorentzian line shape the output 5 field is of the
form

TD in(8, /2v)
(78)

which is always smaller than unity for a high-gain
system (where noL»1). Therefore, an inhomo-
geneously broadened system of sufficiently high
gain will always superradiate before it can de-
phase. "

In a recent series of papers, Bonifacio and
Banfi" and Bonifacio and Lugiato"'o have devel-
oped equations in terms of 8, (P, and n (rather
than I and N) for the cooperative radiation from
an initially inverted two-level system, which they
call superfluorescence. In our notation, the semi-
classical equations which they obtain" can be
written in the form

1
+ —+ 8(x, t)c Bt, Bx, 2L

1
+ 8(x, T)Bx ~ 2L

27T(d o' 4'(x, T) expc 2

(77a)

8

T 6'(x, T) = ' ng exp
2

(77b)

S(ALT)= ~ ( )
T

x exp 2 — L, (74)
TR TRaoL

for an input pulse of small area 8, = pl, Tn/&.
Initially the square-root term in the exponential
dominates and 5 increases. Its maximum value
is reached at T=T2noL, after which exponential
decay due to dephasing sets in. Therefore, the
effective dephasing time is

(75)

When this expression is compared with Eq. (49)
for the delay time, one finds that
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a 1
n(x, T) = ——Re(8*(P) expeT ' h 2

(77c)

where T =t —x/c. Although these equations are
similar to Eqs. (11) above, they contain iwo major
differences: (i) The term (1/2L) in Eq. (77a) has
been included to account for "the irreversible es-
cape (propagation) of the total Maxwell field from
the active volume to the outside. "" However,
wave propagation is built into Maxwell's equations
(the s/sx terms) so that the 1/2L term appears to
be incorrect and was added unnecessarily. (ii) To
account for inhomogeneous broadening, in Eqs. (77)
the factor exp(- t/2T2i') is included. This factor
arises from the assumption" that there is no cor-
relation between frequency and position during the
evolution of the superradiant pulse, an assumption
which we believe is incorrect. Henceforth, we
restrict ourselves to the case T,*=~, in which
case Eq. (77) agrees with Eq. (59).

In Ref. 19, Eqs. (77) are solved by neglecting
the (s/sx), term. This incorrect approximation
is justified" by the argument that in the case of
"uniform excitation" (side pumping), Eqs. (77)
are spatially invariant for all time. However,
since the inverted medium is finite in length, this
is not the case —the initial condition is spatially
constant only over a finite region of space. There-
fore, after a time of order L/c spatial variations
will have developed throughout the sample. Com-
puter solutions also substantiate this point.

In summary, we doubt that any optically thick

(a,L»1) superradiant system can accurately be
described by any set of differential equations which
ignores spatial variations. We also doubt that the
pendulum equation of Ref. 19 [Eq. (11.12)] applies
to strong superradiance. "'

Another recent paper by Bonifacio, Hopf, Meys-
tre, and Scully" deals with the evolution of steady-
state pulses. This work is an extension of and in
the same spirit as discussions of this subject in

Refs. 22 and 24. This work with steady-state
pulses is applicable to a system in which the loss
coefficient ~ is sufficiently high so as to suppress
ringing [the decrease in ringing for large ii can be
seen in the xL = 5 curve in Fig. 5].

clear the simple nature of the superradiant pro-
cess and places it in perspective with other co-
herent phenomena.

As shown in this paper, in the optical region
spontaneous emission initiates the pulse evolution
process and greatly influences the time delay and
other experimentally observable features of the
output radiation. The quantitative agreement of the
semiclassical treatments with experiment is largely
due to the fact that in a high-gain system the effects
of spontaneous emission can be combined into a
single parameter 80 which enters the equations
logarithmically, so that the exact details of the
spontaneous-emission process become unimportant.
Nevertheless, the need still exists for a quantized-
field treatment to substantiate the semiclassical
results and to explore quantum-mechanical features
of superradiance such as fluctuations. Since it is
now generally recognized that a semiclassical de-
scription is adequate once the pulse evolution pro-
cess is under way, the quantized-field-theory
treatment can be restricted to the small-signal
regime, where important simplifications occur.
Several recent papers" have made useful advances
along these lines. It is our hope that the present
work will stimulate further research in this direc-
tion.
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APPENDIX A: DERIVATION OF INTENSITY GAIN

EQUATION FROM COUPLED MAXWELL-

SCHRODINGER EQUATIONS FOR A SYSTEM NEAR

THERMAL EQUILIBRIUM

VIII. CONCLUSION

This paper has developed a semiclassical de-
scription of the evolution of an initially inverted
system into a superradiant state, and shown that
the inclusion of a properly constructed fluctuating
polarization source in the coupled Maxwell-Schro-
dinger equations gives rise to output pulses which
quantitatively agree with experimental results
and have all the features expected of a super-
radiant system. The success of this model makes

We consider a linear steady-state system.
Schrodinger's equation [Eq. (lib)] can be rewritten
in the form

[g er()' iH ] +s ng er(y &r) +A &T-()' iB--
eT

(Al)

where I' =kv and A~, which includes level degener-
acy and velocity dependence, is given by Eq. (24),
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A, {x,T, U, M) =B,[n2(x, T, v, M))"
OO

xg 5(x -x, )g ()(T —T, )
Qg 2Fkp, g

Bx
0

1/T —2I'

[Eq. (lla)] in the case of no linear loss (which is
the case of interest), we obtain

(A2)

where xi ——(j ——2') Ax, Ax =L/j ', T, = I n, T, and the

v, are k discrete velocities. Then integrating Eq.
{Al) over T from —~ to T gives

5 (T)e")'-'"= "'
ll nae"()' '"dT'
~ oo

x By n2, x, T, v, M ' ' 5 v —v~ e' j~»
t). N

+B1 e jl»gx x' ~ v vk

('7
6{T -T, )(22,)"

x e"'~" '"'dr'.

xB) [)2 (x, T, t), M)] /2eio/&2)i

(A6)

Since the imaginary part of the coefficient of g in
Eq. (A5) vanishes when integrated over velocity,
and the real part is the gain at line center n„Eq.
(A6) becomes

In the case where n and 5 are very slowly varying
in time and n is approximately constant, we can
replace the populations n(x, T, v, M) by their equi-
librium values n, , and Eq. (A3) becomes

p g tl08
h 1/T —I''

+Bi()2„)'/2g gg e'o))2x u(T —T,) 6(x -x, )

x5(v —v, ) e

(A4)

where M(t) is the unit step function, and n~ is the
equilibx ium value of n, .

Substituting this result into Marvell's equation

e OO2 —[pe OO&]
Bx

-&s&»2 „T
x 5(x x;)B2 e'o/»&, - (AS)

e-&7'-~)~~~2 g T

(AB)

for j = 1,2, 3, . . . ,j . Simultaneous solution gives

where B2(v2, M) =2wkB, [n22(2)„M)]' '. Integrating
along a path of constant T from x = (j —1)hx to
x =jhx gives

g(j ax) =8{(j—1)hx) e 2 ~'

j
h (L T) g(0 T) &eIo+ Q Q Q B Q ceo(j-1/2)Exu(T T ) e (r ri)/r2eioi)2)i-- (A9)

I(L, T) =)S(L, T) I2
' =)S(0,T) )'e'"2' '

+
' g g gg lB2I'e(2' " o~'ii(T —T ) e '" '2)/"--

+ (terms containing random phases) .

For noix &I and n. T/T2&1, no single terms domi-
nate the sum of random-phase terms, and the sum
of these terms (which individually average to zero)
will be negligible compared to the other two terms I{x,T) =f(0, T) e' 2*+K, (e2"2* —1), (All)

in Eq. (A10). Then Eq. (A10) can be written as the
intensity gain equation of the text [Eq. (25)],
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where

m (u2 AT0 2 (I 20(0 62) 1II2p=2 c

x pg v M (A12)

SI{(d&x)
( ) ( )

h(0 n,

Integrating Eq. (Cl) over x gives

I((u, x) = {e'" * —1)I„{(d)+I{(d,x = 0),

(Cl)

[Note that Eq. (All) is the solution of the differen-
tial equation

dI = 2&p~+ 2&p+p y
(A13)

I„(0))=I{(d,x =0)+
n, -n, ' (C3)

which is therefore an equivalent intensity gain
equation. ] Examination of Eq. (A12) shows that if
the effects of level degeneracy and velocity depen-
dence were eliminated by choosing one velocity
and by assuming M =0 for a.ll molecules, we would
obtain the same result,

0 2 {1 2(20Ex)-(II2 (x 7 )

that would be obtained by summing n20(2)2, M) over
i'2 and M. [Here n„(x, T}=g, p„n20(()„M).]

The total power at x =I. can then be obtained by
integrating over ~:

Jp

4p
d(dI„((d) (e'"( '~ —1) .

For a high-gain system [(2(0) =0)0) I. ~20], the ex-
ponential factor in Eq. (C4) is very sharply peaked
near (d =0)„so that I„((d) can be replaced by I„((d0)
and removed from the integral. Also for a high-
gain system, the first integral can be neglected,
being much smaller than the second integral.
Equation (C4) becomes

APPENDIX B: CONVERSION OF INTENSITY PER MODE

TO PLANE-WAVE INTENSITY PER UNIT BANDWIDTH

The Einstein intensity equation'0 [Eq. (27)]

I(l.) =I„((00) d(d (e'"' ' —1) . (C5)

where the first factor is the number of modes of
appal polarizationsx in the active region in a fr
quency interval dv =d(0 /2v and the second factor
is that fraction f of the sphere over which plane
waves contribute coherently. In the plane-wave
limit, valid for a system with large Fresnel num-
ber (a "disk" ), f=e(Q/4v =A.2/4' [Eq. (1)]. If we
define I((0,x) by I(x)=JI(01,x) d(&), the-n I((d, x)
= (I/42)I (x), and Eq. (Bl) becomes [Eq. (28)]

BI((d q x)
2 ( ) I( )

)2(0 )22 (»)

APPENDIX C: BANDWIDTH NARROWING IN LINEAR

HIGH-GAIN SYSTEM (REFS. 31 AND 39)

The intensity gain equation for the plane-wave
intensity I((d, x) per unit bandwidth is [Eq. (28) or

dl(
(&(

Ken,
BQ Plj

gives the total energy I (x) per mode in the active
region of any linear-gain medium. To convert
I (x) into an intensity I((0,x) per unit bandwidth in
the plane-wave direction, we note that the total
power I(x) in the plane-wave direction is

To find I(l.), an integral of the form
f(~ OO t&2 OO

d [ 20(0S C((d) —1']= d (
20(0 ro(~i —1}

where (20 = o(((d =0) and G((0) =(2(0))j(2„must be
solved. Expanding the exponential in a power
series and interchanging integration and sum-
mation gives

j (0( &)'~ (C'I)

=O' o G (d p dhl. (C8)

For our system, the gain profile is Lorentzian

For G(0)) that occur in slowly varying physical
systems, such as I.orentzians and Gaussians,
[G((0)] d(d=[G((d)] "d(d for J»l, so that the ratio
of term J to term J' —1 of Eq. (C7) is approximately
2(20I /Z. Therefore, for (20I.»1 (high-gain sys-
tem), the terms which contribute most to the sum
will be those for which J=2npL. %e can therefore
approximate the factor J [G((0)] d(0 appearing in

Eq. (C'I) by J [G((d)]2"02d(0 to obtain

I,=g; [G(0))]'"0~d(0
oo
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[ see discussion above Eq. (15)], with G((d) = (ku, )'/
[(&u —&u, ) +(ku, ) ]. Then,

words, a high-gain system described by the in-
tensity gain equation

I, = (v/2o. ,L)' 'ku, e'"0~,

and we obtain the result of Eq. (29),

(C9) d I(x) = 2noI(x)

and an input intensity

(C11)

(C10)

where (a(d)„t =T'2 (v/2n, L)'I', as in the text.
Examination of the form of I„(&o) [Eq. (C3)] or

of I(L) [Eq. (C10}]shows that in a high-gain sys-
tem, a distributed source can be replaced by an
"equivalent" intensity source at the input face
which will give the same output intensity. In other

4m n, -n, e" o

(C12)

would give the same output intensity I(L) which we
derived [Eq. (C10}]using our distributed-source
model. In a high-gain system, therefore, the
distributed source of Eq. (Cl) can be replaced by
an equivalent input field.

*Work supported in part by National Science Foundation,
Research Corporation, and U. S. Army Research Office
(Durham) .

)Alfred P. Sloan Fellow.
~R. H. Dicke, Phys. Rev. 93, 99 (1954).
2E. L. Hahn, Phys. Rev. 80, 580 (1950).
3FID: R. G. Brewer and R. L. Shoemaker, Phys. Rev.

A 6, 2001 (1972); R. L. Shoemaker and R. G. Brewer,
Bull. Am. Phys. Soc. 17, 66 (1972). Echoes: N, A.
Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.
Lett. 13, 567 (1964); I. D. Abella, N. A. Kurnit, and
S. R. Hartmann, Phys. Rev. 141, 391 (1966); C. K. N.
Patel and R. E. Slusher, Phys. Rev. Lett. 20, 1087
(1968); J. P. Gordon, C. H. Wang, C. K. N. Patel,
R. E. Slusher, and W. J. Toml. inson, Phys. Rev. 179,
294 (1969); B. Bolger and J. C. Diel.s, Phys. Lett. 28A,
401 (1968); R. G. Brewer and R. L. Shoemaker, Phys.
Rev. Lett. 27, 631 (1971). Other cooperative emission
effects: R. L. Shoemaker and R. G. Brewer, Phys.
Rev. Lett. 28, 1430 (1972); N. Tan-no, K. Kan-no,
K. Yokoto, and H. Inaba, IEEE J. Quantum Electron.
QE-9, 423 (1973).

A. Abragam, The Principles of Nuclear Magnetism
(Oxford U. P. , London, 1961);R. M. Hill, D. E ~ Kaplan,
G. F. Herrmann, and S. K. Ichiki, Phys. Rev. Lett.
18, 105 (1967). Other references are given in J. C.
MacGurk, T. G. Schmal. z, and W. H. Flygare, Adv.
Chem. Phys. 25, 1 (1974).

Other cooperative effects, including optical nutation,
self-induced transparency, and coherent pulse propa-
gation in absorbers, have also been studied experimen-
tally. These effects are not primarily processes for
releasing stored energy; i.e. , they are not primarily
emissive as are the effects mentioned in the text.

N. Skribanowitz, I. P. Herman, J. C. MacGill. ivray, and
M. S ~ Feld, Phys. Rev. Lett. 30, 309 (1973).

V. Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).
G. S. Agarwal, Phys. Rev. A 2, 2038 (1970).

9R. H. Lemberg, Phys. Rev. A 2, 883 (1970); 2, 889
(1970).
D. Dialetis, Phys. Rev. A 2, 599 (1970).
N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735

(1971).
R. Bonifacio, P. Schwendimann, and F. Haake, Phys.
Rev. A 4, 302 (1971);4, 854 (1971).
F. T. Arecchi and E. Courtens, Phys. Rev. A 2, 1730
(1970).

'4I. P. Herman, J. C. MacGillivray, N. Skribanowitz,
and M. S. Feld, in Laser Spectroscopy, edited by R. G.
Brewer and A. Mooradian (Plenum, New York, 1974).

5P. T. Ho, J. C. MacGillivray, S. Liberman, and M. S.
Feld (unpublished) .
We have recently l.earned of a new observation of near-
infrared superradiant emission in sodium by M. Gross,
C. Fabre, P. Pil.let, and S. Haroche, Phys. Rev. Lett.
36, 1035 (1976).

~7E. Ressayre and A. Tallet, Phys. Rev. Lett. 30, 1239
(1973).
G. Banfi and R. Bonifacio, Phys. Rev. Lett. 33, 1259
(1975).

' R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507
(1975).
R. Bonifacio and L. A. Lugiato, Phys. Rev. A 12, 587
(1975).
R. H. Dicke, in Proceedings of the Third International
Conference on Quantum Electronics, Paris, 1963,
edited by P. Grivet and N. Bloembergen (Columbia
U. P. , New York, 1964), p. 35.

22F. T. Arecchi and R. Bonifacio, IEEE J. Quantum Elec-
tron. QE-1, 169 (1965).
F. A Hopf and M. O. Scul. ly, Phys. Rev. 179, 399 (1969).

24A. Icsevgi and W. E. Lamb, Jr. , Phys. Rev. 185, 517
(1969).

25R. Friedberg and S. R. Hartmann, Phys. Lett. 38A, 227
(1972).
The limits of superradiance as a process for producing
ultrashort pulses of large intensity are discussed by
J. C. MacGillivray and M. S. Feld (unpublished).

27See, for example, F. A. Hopf, P. Meystre, M. O.
Scully, and J. F. Seely, Phys ~ Rev. Lett. 35, 511 (1975),
and references contained therein.
W. J. Brya and P. E. Wagner, Phys ~ Rev. 157, 400
(1967).
C. Leonardi, J. C. MacGillivray, S. Liberrnan, and



1188 J. C. M acGI LLI V RAY AND M. S. FELD 14

M. S. Feld, Phys. Rev. B 11, 3298 (1975).
3 L. W. Casperson and A. Yariv, IEEE J. Quantum Elec-
tron. QE-8, 80 (1972).
J. H. Parks, in Fundamental and Applied Laser
Physics: Proceedings of the Esfahan Symposium,
edited by M. S. Feld, N. A. Kurnit, and A. Javan,
(Wiley, New York, 1973), and references contained
therein.
G. I. Peters and L. Allen, J. Phys. A 4, 238 (1971);
L. Allen and G. I. Peters, J. Phys. A 4, 564 (1971).
D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).

34A. Yariv and R. C. C. Leite, J. Appl. . Phys. 34, 3410
(1963).

~~The connection between Dicke's formalism and the
semicl. assical approach has been discussed by F. T.
Arecchi, E. Courtens, R. Gilmore, and H. Thomas,
in Fundamental and Applied Laser Physics: Proceed-
ings of the Esfahan Symposium, edited by M. S. Feld,
N. A. Kurnit, and A. Javan (Wiley, New York, 1973).

3 A more detailed description of Dicke's work as it re-
lates to both a point sample and an extended medium is
given in Ref. 15.
Various definitions of collective damping times are
discussed by R. Friedberg and S. R. Hartmann, Phys.
Rev. A 13, 495 (1976).

~ C. H. Townes and A. L. Schawlow, Microwave Spec-
troscopy (McGraw-Hill, New York, 1955), Eq. (1-76).
F. Bloch, Phys. Rev. 70, 460 (1946).

4 The double peaks in 6'(x) of Fig. 3(a) canbe explained
as follows: Combining Eqs. (42) and (43) gives that

(S/p, )'+n is constant over space. The dip between
the double peaks in + (x) then corresponds to a region
where the ringing is large enough so that n(x) crosses
n =0 [Fig. 4]. When the ringing becomes sufficientl. y
damped so that n can no longer become positive, the
dip disappears and the doubl. e peak becomes a single
peak.

4~Accordingly, in the preceding discussion the l.ength of
the dipole array could be considered to be the length
Luff (&L ) over which the polarization envelope is approx-
irnately constant. See Eq. (51) below.
See, for example, Ref. 24.

43In the far infrared, the background thermal radiation
intensity exceeds that due to spontaneous emission and

becomes the primary mechanism for initiating the
superradiant process [see Eq. (36)].

44S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457
(1969); Phys. Rev. Lett. 18, 908 (1967).

45For a comprehensive list of references, see G. L.
Lamb, Jr. , Rev. Mod. Phys. 43, 99 (1971).

4 Distinguishing between T& and T2 is of no consequence
here since the superradiant decay rate is much less
than y.

47This formula is a consequence of the optical pumping
process and is not basic to the superradiant pulse
evolution process.
If the system is pumped by a P branch line, nrp must
be multiplied by (2J + 3) /(2 J + 5) .

4pR. Friedberg and S. R. Hartmann, Phys. Lett. 37A,
285 (1971).
C. K. Rhodes, A. Szoke, and A. Javan, Phys. Rev.
Lett. 21, 1151 (1968).

~~It is convenient to assume a constant amplitude for
A& (other than the n

2 dependence) because when contri-
butions to + from A in different regions are added,

the summation of random phases will be more impor-
tant than small ampl. itude variations in the individual
contributions.

52A similar expression for h without spatial dependence
was used by J. A. Fleck, Jr. [Phys. Rev. B 1, 84
(1970)l. In the present case, spatial dependence of
A& must be included, since in a high-gain system
spatial variations are essential to superradiant behav-
ior.

5~The discrete velocities should be chosen to optimize
the convergence of Eqs. (11). See Ref. 24.

54"Very slowly varying" should not be confused with
"slowly varying" (8/'dT«uo, ii/Bs «coo/c}, which has
already been assumed in the derivation of Eqs. (11a)
and (lib). Note that 8 is not necessarily very slowly
varying in space, even near thermal equilibrium;
i.e. , we do not require 8$/Bz «y$/c.

5 These conditions hold, for example, near thermal
equilibrium. Note that the presence of delta functions
in A& is not inconsistent with very slowly varying n

and 8; although Q has delta functions, the source
terms for n and b do not.

5 A. Einstein, Phys. Z. 18, 121 (1917);Verh. Dtsch.
Phys. Ges. No. 13/14 (1916).

'M. W. P. Strandberg, Phys. Rev. 106, 617 (1957).
For systems which are not high gain, the gain-depen-
dent factor (m/2npL) would be replaced by 1, so that
K

p
- [n 2/ (n2 i)]™p/47rT2.

5PThere are some errors in the numerical factors in
the corresponding equations in Ref. 14.
The derivation (Ref. 44) of the area theorem assumes
a zero-phase external field incident upon a nondegen-
erate medium with no distributed sources.
This follows from the expression for the cross section
of a divergent Gaussian beam. See, for example,
M. Sargent III et al ., Laser Physics (Addison-Wesley,
Reading, Mass. , 1974), p. 369.
R. P. Feynmann, F. L. Vernon, Jr. , and R. W. Hell-
warth, J. Appl. Phys. 28, 49 (1957).

6~D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667
(1969); see also G. L. Lamb, Jr. , Phys. Lett. 29A,
507 (1969); Ref. 45; and F. T. Arecchi and E. Courtens
(Ref. 13).

6 ' Note added in proof. The normalized emission curve
is obtained from Eq. (46) using the substitution
w=2(xT), as in Ref. 63. One obtains d g/dw
+ (1/w) dg/dw = sing/&T&, which for the initial condi-
tion P(w =0) «1 gives the normalized emission curve.
This initial condition is equivalent to a D-function input
b field, which is approximately equivalent (Sec. V) to
any other input pulse of equal small effective area.
If the population excitation time is appreciable, T~
should be measured from the central part of the ex-
citation pulse. See Ref. 26.

65 This can be seen from the figures of D. C. Burnham
and R. Y. Chiao (Ref. 63).

6In the derivation of Eq. (49), the argument of the

logarithm depends on T~ and is of order ~p/m; the
chosen numerical factor provides a very accurate fit
to the numerical results of Sec. V.

"VFrom these approximate expressions a picture emerges
in which the normalized output emission curve is sirn-
ilar to a damped sine-squared curve, l (T)
=I e D cos [p$& (T —T~)/44], of frequency

(@gal /44) [=T~I ln(&p/2n')I = T~] and decay constant &



14 THEORY OF SUPERRADIANCE IN AN EXTENDED. . 1189
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