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We present a theoretical treatment of the coherent three-level b
of a Do ler-

ree- eve eat signals occurring in the transient response
o a opp er-broadened molecular system with coupled clos 1 d 1 1

'
g

' '
tensec se y space eve s resonating with an intense

monochromatic cw laser field. When the deen e egenerate levels of the molecular system are suddenl s lit b
means of an external Stark or ZeZeeman field, the transmitted laser radiation exhibits decaying beats at
frequencies related to the level splitting or Raman frequenc Th' ff h
t eoretical anal ses but som

n requency. is e ect has been the subject of earlier
1 y, e relevant aspects such as the velocity integration, were not taken into account. A

perturbation treatment, complete to third order in la f ld h,
'

ci y-in aser ie strengt, is used to calculate the velocity-
integrated induced polarization and the corresponding reradiated f ld. Thera ia e ie . e calculation takes into account both
Raman-type processes, which lead to transient oscillations at the Raman fre uenc co a
saturation effects. In a

a e aman requency co», and population-
n particular, population-induced transient oscillations at half the Raman f

are redicted. Th
a a e ama requency, 0)»/2,

detunin and other
p . The relative importance of the various oscillations i 1 d f'

ns is ana yze as a function of the laser
etuning and other parameters, including velocity-changing collisions. Th 1 t' h' be re a ions ip etween the three-level

beat signals and the well-known quantum-beat eAect studied in fluorescence is explored.

I. INTRODUCTION

Recently a variety of transient phenomena have
been observed in the optical-infrared region.
These include optical nutation, ' free-induction de-
cay, 2 photon echo,"quantum beats, 4 and Dicke
superradiance. ' Several of these are optical ana-
logs of effects first explored in the microwave
region. e Their extension into the optical range of
the electromagnetic spectrum has created the
possibility of measuring radiative and collisional
relaxation processes in atomic and molecular sys-
tems in the time domain. The new techniques
complement the laser saturation techniques, which
have been used to measure relaxation processes
in the frequency domain ''8

The present paper presents a theoretical treat-
ment of an effect' developed by Brewer and his
collaborators in which the transient behavior of a
Doppler-broadened resonance with level degen-
eracy interacting with an intense monochromatic
laser field is studied after a small Stark or Zee-
man field has been applied to break the degeneracy
of the levels (Fig. l). The sensitivity of the experi-
ments is enhanced by studying the heterodyne beat
between the applied laser field and the transient
radiation signal. The coherent three-l. evel beat
then manifests itself as an exponentially decaying

signal modulated at the Raman frequency ~,i cor-
responding to the splitting between the closely
spaced sublevels produced by the Stark or Zeeman
field (Fig. 2). The effect has been called two-
photon superradiance and coherent Raman beats,
but in this paper we shall use the more general
term coherent three-level beats to include beat
phenomena occurring at other frequencies related
to (d„.

Theoretical interpretations of this effect have
been presented in earlier papers"" which showed
that three-level beats are caused by Raman-type
processes, "as manifested in the transient re-
sponse of p», the density matrix element coupling
the closely spaced levels ("Zeeman coherence")
after the applied static field is switched on and

p» approaches its new equilibrium value. How-
ever, in these analyses the details of the transient
response are not fully taken into account, and im-
portant contributions such as those arising from
velocity dephasing have been neglected. For exam-
ple, after velocity integration, terms which con-
tained velocity-dependent time factors cancel with
velocity-independent terms, showing that the am-
plitude of the beat signal is not independent of
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FIG 1G. 1. Experimental setup for observing coherent
beat signals. The Stark field is applied at time t =0.

t&0 t&0

FIG. 2. Three-level systeIn considered in the theoreti-
cal analysis.
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Doppler dephasing. This velocity integration,
which has not been performed in the earlier stu-
dies, '0" must be carried out in order to assess
the relative importance of the different contribu-
tions to the three-level beat signal.

Other processes not of the Raman type also con-
tribute to the transient beat signal. In addition to
the well-known effects of free-induction decay and

optical nutation present in a two-level system, the
present calculation predicts a transient oscillation
at frequency &(d». Such an effect is partly due to
the p» coherence and partly to population-satura-
tion interactions between the coupled transitions.
The latter contribution. would follow from an ordi-
nary rate-equation treatment, which ignores
Baman-type processes.

The present paper gives a complete third-order
analysis of the coherent three-level beat effect.
It is divided into five sections. Section II presents
the equations of motion both for the electromag-
netic (em) wave and the molecular medium. The
solution to the density matrix equations of motion
are given in Sec. III, along with a physical inter-
pretation of the results. The velocity integration
is discussed in. Sec. IV, where the various contri-
butions and cancellations are analyzed. The final
expression for the reradiated field is discussed in

Sec. V and compared with expressions obtained
in earlier studies. The relationship of three-level
beats to the quantum-beat effect' is also explored.
Some details concerning the velocity integration
are given in the Appendix.

II. EQUATIONS OF MOTION

We now proceed to calculate the transient polar-
ization and the corresponding reradiated signal
induced by an intense cw laser beam resonating
with a three-level molecular system with degen-
erate levels which are suddenly split. " The levels
are numbered ) =1,2, 3, with E,. the energy eigen-
value of level j (Fig. 2). Level 3, the common
level, is coupled to levels 1 and 2 by electric di-
pole matrix elements p, » and p, », respectively.
From parity considerations p. » =0. The 3-1 and
3-2 transitions are centered at frequencies ~»
= (E, —E,)/I and &u» -- (E, —E,)/ti. Initially, levels
1 and 2 are degenerate, so that the center fre-
quencies of both transitions coincide at ~0. At
t =0 this degeneracy is lifted and ~» and ~32 are
split by an amount &u» ——(E, —E,)/h, which is not
necessarily small compared to the Doppler width.

The theoretical problem is to calculate the tran-
sient component of the em field produced when the
initially degenerate levels are split. The problem
may be solved conveniently using the ensemble-
averaged density matrix equations and the wave

equation. In this approach one uses the density
matrix to calculate the macroscopic polarization
induced by the applied field on a group of mole-
cules moving with a given velocity component. The
net macroscopic pola, rization is then obtained by
integrating over the entire velocity distribution.
This polarization acts as a source term in the
wave equation for the transient em field.

A. %ave equation

The three-level system under consideration is
shown in Fig. 2. The incident cw laser field is of
the form

E,(z, t) =Re(h, e '& ' ""),
where 80, the amplitude of the incident field, is a
constant quantity which may be taken to be real.
Within the gaseous medium, the F field can be
written in the form

E(z, t)=E,(z, t)+Re[8(z, t)e " ' "'],
where $(z, t), the envelope of the reradiated em
field, is assumed in the following discussions to
be slowly varying, i.e.,

g gg—«cu8 and —«&8,
Bt ~Z

conditions which are well satisfied in the experi-
ments. The macroscopic polarization induced in
the medium will then be of the form

P(z, t) =Re[6'(z, t)e " ' "'],
where the envelope P(z, t) is also slowly varying.

In the slowly-varying-envelope approximation
the equation for an em wave propagating in the +z
direction is given by'4

9 1 9 274 (d—+ ——S(z, t) =+ (P(z, t).
C 8t C

According to Eq. (2), at z =0 we have g(0, t) =0,
so Eq. (4) can be expressed in integral form as

$(z, t) =+ 6'(z', t+(z' —z)/c)dz'. (5)
2 tt'z Go

Since 6' also depends on 8 via the density matrix
equations to be introduced below, the most gen-
eral solution for 8 and + must be obtained in a
self-consistent manner. However, in an optically
thin sample, another condition well satisfied in the
experiments, the fraction of incident power ab-
sorbed is very small; thus the reradiated field
will be much smaller than the applied field
(ISI«b, )." Therefore in determining the total
field E(z, t) may be approximated by E,(z, t).
Then, since 80 is a constant, the envelope of the
induced polarization obtained from the density



14 THEORY OF COHERENT THREE-LEVEL BEATS 1153

matrix will be uniform along the cell, that is,
6'(z, t) is z independent.

In integrating Eq. (5} over z', the time depen-
dence of (P(t} gives rise to a phase-matching condi-
tion for the reradiated field. However, in the case
of a short cell of length L, another condition which
is satisfied in the experiments, the phase mis-
match of the various waves propagating through the
cell is negligible [((()' —(v)L/c «1 and yL/c«1,
where (d' is the frequency of a component of the
reradiated field and y is a characteristic decay
rate of the transient polarization]. With this ap-
proximation the factor z'/c appearing in the time
argument of 6' in Eq. (5) may be neglected and d'

can be removed from the integrand. Therefore
after the cell 8(z, t) is given by

h(z, t}=+(2vi(k)L/c)(P(t —z/c).
The corresponding output intensity is given by

I = ( /c411)(E'(z, t)),
= (c/8)t)($', +28, ReS+i Si'), (7)

where ( ), denotes time average over an optical
period. The first term on the right-hand side of
Eq. (7) is Ik, the intensity of the applied field. The
intensity of the heterodyne beat signal, I„ is given
by the second term. Note that since 6' is of the
order of the optical susceptibility times 8„

applied field the population density for level j is
p', , (v), and we may write

pk&,.(v) =N, G.(v),

where N~ is the total population density of level j
and G(v) is the normalized velocity distribution
(see the Appendix}:

J
+ co

G(v)dv =1. (10)

(lib)

The above P(z, t) is the polarization, whose
slowly varying envelope 6'(z, t) we insert into Eq.
(6) to obtain the transient field. Except for small
antiresonant contributions the solution of Eq. (8)
is of the form"

The near-diagonal density matrix element p» de-
scribes the phase coherence between levels 1 and
2. The off-diagonal elements of p are related to
the induced polarization due to molecules moving
with axial velocity in the interval between v and
v+dv by

P(v, z, t)dv =2Re(p»p13+p„p„)dv. (11a)

The total macroscopic polarization is obtained by
considering contributions from all velocities:

I~ 4nuL t
Im =gL«1,

Io c g, e&(~t-&I) ~ j(~t-kz)
&13 13 23

—023e

(12)

where g is the linear absorption coefficient per unit
length. Consequently, the third term on the right-
hand side of Eq. (7) can be neglected, since it is
smaller than I~ by another factor gL.

B. Molecular medium equation

In order to obtain the macroscopic polarization
envelope (P(z, t) needed in Eq. (6), we consider the
interaction of the electromagnetic field with mole-
cules having a velocity component along the propa-
gation direction of the laser field in a narrow inter-
val between v and v+dv. For convenience we use
the formalism of the ensemble-averaged density
matrix. The equation of motion for the p;, element
(i, j =1, 2, 3) is given by"

(
9 9

+ V + 2 (d(~ +p~~ pig

iE(z, t) ~
ll Zi (p(k pk ' p 'k pki ) +y; j p';, 6(, , (8)

where p„.= p,*,, and where y„ is the decay rate of
p, ~. The diagonal elements of p describe the level
population densities per velocity interval for a
particular velocity group v. In the absence of the

8

Bt 11 yl( 11 11} o( 13 13}i (13)

8

Bt 22 y2( 22 22} I ( 23 23} 1 (14)

a

Bt
—

o33 +y, (o„—833) = i (z(o13 —o13) + i t (o23 —o23),

8
(1 ~ „—) |„)„= („„) 3

(15)

(I 6)

c
8——i (kv +(v32 —(d)+y23 (F23 =i P(v„—o, ) —i o(o,*, ,Bt

(17)

where the o, , 's are envelope functions which are
slowly varying in space and time. Inserting Eqs.
(12) in Eq. (8), taking the space and time deriva-
tives as indicated in Eq. (8), equating the slowly
varying envelopes of terms having like exponential
space-time factors, and neglecting the small terms
on the right-hand sides with rapid space-time
variations, we obtain a set of coupled linear equa-
tions for the slowly-varying-envelope functions":
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' ~21 + y12 ~12 = ~ ~~23 ~ ~~13

with

+ij +ji y

where

n = p, „h,/M, p=p„S,/2h .
The phases of states I and 2 may be conveniently
chosen to make n and P real. Note that the thin-
sample approximation mentioned in Sec. II A was
made by neglecting $(z, t) as compared to So in

the right-hand sides of Eqs. (13)-(18).
In these equations the diagonal elements a'jj rep-

resent the level populations. The off-diagonal
elements o» and o» describe the coherence be-
tween optically connected sublevels. The near-
diagonal element o'» describes the coherence be-
tween nearby sublevels, sometimes called "Zee-
man coherence. " This term is responsible for
Raman-type coupling between the 1-3 and 2-3
transitions. In Eqs. (13)-(18)y, , is the decay con-
stant of o„, and for convenience we have set y;,
=y, . For radiative decay and for hard collisions

y;, =2(r;+y, )

However, in the ease where those collisions which
destroy the nondiagonal elements of a' but leave
the level populations unaffected are important, we
will have

r() a (r( +y, )

Note that in going over from the p representation
to the o' s, the rapid space-time variations have
been removed ("rotating frame") and the o;&'s are
all slowly varying functions of space and time.

The expression for the reradiated field follows
directly from the velocity-integrated solution of
Eqs. (13)-(18). Equations (3), (6}, (11), and (12)
give

n in n, P. It is easy to see that the expansion for
the populations o„and the near-diagonal element
o„contain only even orders of n, whereas the off-
diagonal elements o„and o» contain only odd
orders .The solution of Eqs. (13)-(18)to third
order in n, P is expected to describe the main
physical features of the three-level beat signals.

A. Initial conditions

+oo =o3s oII =os' o22 =+oG(v) ~ (22)

where G(v) is the normalized velocity distribution
and No is the total inversion density. Introducing

In order to solve the equations in the transient
regime (t& 0) we have to specify the initial con-
ditions at t =0, when the Stark field is applied.
For t &0, when the levels are degenerate„we may
assume that the system has reached a steady state,
so that the o;,. are all constant (So/St =0). The
components of o may be determined in successive
orders of a, P by means of an iterative scheme.
The zeroth-order (unperturbed) solutions are
o",.o' = o „, the background populations, and o,', ' = 0.
The first-order coefficients are obtained by re-
placing the a„on the right-hand sides of Eqs.
(16) and (17) by their unperturbed values. The
steady-state solutions to Eqs. (16) and (17) then
give the first-order optical-polarization envelopes
o,",' and a',",'. In the same manner, inserting the
first-order eoeffieients on the right-hand sides of
Eqs. (13)-(15)and (18), we then obtain the second-
order corrections to the level populations o,' and
the near-diagonal element o,',". These values may
then be inserted in the right-hand sides of Eqs.
(16) and (17) to give the third-order coefficients
o"' and o"'

13 23
Assuming that in the absence of the laser field

the populations of levels 1 and 2 are equal, we
define the population inversion density between
levels 3 and I, and 3 and 2, by

4vi uf
C OQ

(g „g,*, + p„cr,*,) dv . (20)

III. SOLUTION OF THE EQUATIONS FOR MOLECULES
IN A NARROW VELOCITY BAND

We seek a solution to the system of Eqs. (13)-
(18}for t & 0, after the molecular levels have been
split. An approximate solution can be obtained
using a perturbation expansion of o in powers of
n/y and P/y, the saturation parameters for the
two transitions:

f.o =y, , —i ((u, + kv —(u), j = 1, 2,
we have for the initial conditions

o„=&a,', +Do, (e'/y, )2Re(1/I. ,'),
Qo ~2 P2

~33=~33 2 Re Lo + ~oy3 1 2

nP I 1
O'12 =DO'

Lo + pg

o ~ —D + 2Re

(23)

(25)

(26)

(n)

n=p
(21)

where o,'. j' is a homogeneous polynomial of order
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The corresponding solutions for v22 and o» are
obtained by interchanging o. with P and 1 with 2

in o» and v», respectively. The order to each
term in the solution is evident by inspecting its
power in o, P.

B. Solution

Once the initial conditions have been found, the
solution of Eqs. (13')-(18) for t &0 can be obtained
using the same iterative procedure described
above. This time, in each order to perturbation
we look for the general solution (inhomogeneous
plus homogeneous) which matches the previously
determined boundary conditions at t =0. The den-
sity matrix equation for the nth-order contribution
to a',

&
is of the form

(complex} "natural" frequency of the system and
not at the laser frequency.

(b) The remaining terms of Eq. (29) describe
the response of the system to the excitation at
complex frequency ~', and may be classified as
optical nutation terms. The excitation gives rise
to contribution at the driving frequency &' ("in-
homogeneous" term). However, the buildup of
each term is determined by the natural response
of the molecule, and so is accompanied by a tran-
sient contribution which decays at the natural fre-
quency of the system.

The solutions for the o",&', I'&0, can be directly
obtained using Eq. (29}and the initial conditions
given by Eqs. (24)-(27). To write the solutions
we introduce the notation

(28)
L, =y„—i .((o,~ + kv —(u), (30)

(31)

where the driving terms on the right-hand side
with complex frequency ~' are obtained from the
solution of the equations of the next lower order,
n —1. [The summation in Eq. (28} is over the
primed quantities. ] As can be seen from Eqs.
(13)-(18), for the off-diagonal elements & =-i(&u»
—&u+kv)+y„, whereas for the diagonal and near-
diagonal elements, ~ =y, and i~21+y», respec-
tively. Also note that B' and ~' may be functions
of velocity. The general solution of this equation
is

e- L1t 1 e- L1 t

a,",'(v, t) = i nn. a, , +
1 1

(33a)

For the zeroth-order solution of Eqs. (13), (15},
and (18) we have

a,",'(t}=a», a,",'(t) =a,'„a,',"(t)=0. (32}

The population densities are given by their back-
ground values, and there is no coherence between
levels 1 and 2. The first-order polarization en-
velopes a,"3' and 0,",' are given by

e- x't
a,',". '(v, t) =a,'", '(v, 0)e '+Q B' e- L2t 1 e- L2t

a,",'(v, t) =i Pd.a, , +
2 2

(33b)

(29}

where the initial condition aI&'(v, 0) is obtained
from the steady-state solution (t&0). Let us exa-
mine the structure of Eq. (29):

(a) The first term on the right-hand side de-
scribes the free decay of 0,'",.' from its initial value.
This term is associated with the transient response
of the molecular system, which occurs at the

In the first-order response the system behaves as
two independent two-level systems. The first
terms of Eqs. (33) correspond to the free-induction
decay of the initial polarization [a,",'(v, 0)]. The
second term describes the buildup of the steady
state, the exponential term being the first-order
contribution to the optical nutation signal.

For the second-order contributions we obtain

1 -e~1
a,", '(v, t) =2na, n'Re, + +

—y1 I yl 1
(34a}

e y2 1 —e-y2t e- L2t e-y2t 1 1
a,",'(v, t) =2n.a, t}'Re, + +

y2 2 2 2
(34b)

e»' 1 —e y3' e 1' —e y3' 1 1

—y3 1 y3 1 y3 1 1 1

' ey3' 1 —ey3' e 2' —ey3' 1 1
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!
e~~' 1 1 1-e~&' 1 1

R 1 2

e-I~i e-l, ~t 1 1 e-L2 & e-I gt 1 1
Lo L L Lg LOW J 4 (35)

The first term in Eq. (34a) describes the free de-
cay of v,",'(u, 0). The second and third terms are
nutation (driven transient) contributions, leading
to the steady state. Note that the free decay of the
first-order element 0,",' gives rise to a nutation of
the second-order element v,'~2' (I', contribution in
the last term). This type of contribution is a.

cross term not present in ordinary optical nuta-
tion, where initially (t&0) there is no em field
present. In mhat folloms me shall refer to aB
driven transients as nutations, in contrast to the
free-decay transients, keeping in mind that for a
coupled three-level system and our type of initial
conditions there mill be many more contributions
to the nutation signal than in the usual case of a
tmo-level system mith no field present until I; =O.'9

It should also be noted that, being a perturbation
calculation the resulting optical nutation contribu-
tions will exhibit only exponential behavior and not
the ringing characteristic of optical nutation in a
strong field.

For v»3' [Eq. (34c)] there are also free-decaying,
nutating, and steady-state contributions. Homever. ,
since level 3 is the common level, both transi-
tions can influence its population, the 1-3 transi-
tion giving rise to the o.' terms and the 2-3 transi-
tion to the P' terms. The v,",' term [Eq, (35)] is
a coherent contribution due to the simultaneous
interaction of the laser field mith both transitions,
and is therefore proportional to o.P.

For the third-order terms me get

"-'" (-', —„-',)(':-',) '"', —;,
"'

&3 &3 —L i J-~ J-a

&s- L~

1 1 1 e ~ —e
J g Jo+ J

P' 1 1 e ~2' —e ~~', 1 1 1 1 e ~2' —e ~~'

y„ I.', ' J.,'* J.„L„'I.,' J.„-J., J.',

(36a)

v,",' = i Phv (v—. tl, 1—2—), (36b)

l.e. the same as v~~~ butwith~ replacedby p(pby n)
and 1 by 2. (Note that &u»

——-(u». ) The first term
of Eq. (36a) in curly brackets corresponds to the
free-induction decay of v,',"(v, 0) from its initial
value. The second-term contains the steady-state

(t- ~) value and part of the optical nutation con-
tribution leading to that state. The other terms
are transients driven by second-order contribu-
tions to the level populations and the near-diagonal
matrix element. The latter contribution is respon-
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sible for the appearance of the beat signal at (d»,
the Raman frequency.

where the A„'s are velocity-dependent amplitudes
and the ~„'s, n =1-9, are the corresponding com-
plex eigenfrequencies.

In the first-order solution, Eqs. (33), we have

A, =0,

L, = —s ((u —-&u„- kv) —y„,
A =-I, = i(&u —(u —kv) —y-

(37)

(38a)

(38b)

The ~0 contribution is due to the inhomogeneous
source terms and describes the steady-state be-
havior of the system. The other contributions are
associated with transient effects, as described
in Sec. III B.

In the third order, Eqs. (36), additional eigen-
frequencies appear in o'j3.

3e4e5 yls2s3 &

6 ~R ~2l yl2 ~

=-iu —y7 R 2I l2&

g =-L,* =i ((u —(u„—kv) —y„,

L,* = i (&u —&u„- -ku ) -y„.

(40a)

(40b)

(41a)

C. Discussion: Emission frequencies from molecules
in a narrow velocity band

Let us now examine the solution obtained in this
section in more detail. The rotating-wave approxi-
mation of Eq. (12), in which the slowly varying-
envelope functions v„were introduced, led to a
set of coupled linear differential equations [(13)-
(19)] describing the total system, molecules plus
applied field. The solution of such a set of equa-
tions may be obtained by finding its normal modes,
each one having a particular eigenfunction com-
posed of amplitude, frequency, and decay rate.
Since our system is described by nine coupled
equations [Eqs. (13)-(18)plus the complex conju-
gates of Eqs. (16)-(18)], there will be nine normal
modes, each one oscillating at a given eigenfre-
quency. " In addition, the background populations
0'„., which act as inhomogeneous source terms in
Eqs. (13)-(19), give rise to constant terms in the
a, &

solutions.
In the perturbation solution obtained in Sec. III 8

approximate values for the eigenfunctions were
obtained, and their amplitudes were established
by matching the initial conditions. Let us inspect
the normal mode frequencies of o'l3 and v» more
closely. The o»'s obtained are of the form

The first, second, and third contributions, Eqs.
(39) and (40), are due to the coupling of the polar-
ization to the molecular level populations and the
sublevel coherence o'l2. The last two contributions,
Eqs. (41a) and (41b), are due to the couplings of
the optical polarization components v» and v» with
their counterrotating parts v,*3 and o,*,.

As shown in Sec. II [Eqs. (12) and (20)], the in-
duced polarization and, consequently, the reradi-
ated field, is proportional to

i (~t-kg)i"»P~3+i 23p23 (&is is+&n 2s)

A. + s(d = sQ~ —X~ .

Using the values of ~„we have the following re-
radiated frequencies and damping constants:

Q() =CO Io =0

Ql =~»+~ ~l =y»

Q2-~32+~ ~ -2-y23 ~

Q. ..=~, I;=y„r, =y„ I; =y„
Q8 = CtP —&2ly

Q7 = (d +(d2l~

Q, =2' —co„—kv, 1", =y„,
Q9 =260 —(d32 —~U

~ 9 y23 '

(43)

(44a)

(44b)

(45)

(46a)

(46b)

(47a)

(47b)

These emission frequencies may also be inter-
preted in terms of the quantum process depicted
in diagrams of the type shown in Fig. 3, which
represent the exchange of energy between the em
field and molecule in its rest frame. " These pro-
cesses involve both the laser field, which in the
molecular rest frame appears Doppler shifted to
frequency ~' = ~ —ku, and the forward-scattered
light wave, at frequency Q„' =Q„—~ in the molecu-
lar frame. In each process the frequency of the
reradiated field follows in a straightforward way
from the conservation of energy of the total sys-
tem, molecule plus field:

(a) The normal-mode frequencies 0, and 0, re-
sult from emission processes in which a molecule
in energy state F3 undergoes a transition to state
E, or E„accompanied by the emission of a single
quantum at frequency 0' [Fig. 3(a)]. Energy con-
servation (in the molecular rest frame) then re-
quires that k O' =E, —(E, or E,), leading to emis-
sion in the laboratory frame at frequency

Therefore the corresponding real frequencies Q„
and decay rates l„of the induced polarization and
reradiated field (as viewed in the laboratory frame)
may be obtained by adding i~ to the ~„'s listed
above:
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(b)

E) or Ep

Ep

(c)

Ep orEi
Q'

E)or Ep

'Eg

or E,

in which the molecule makes a transition between
states 1 and 3 or 2 and 3 accompanied by the ex-
change of three photons with the radiation field,
the absorption of two laser photons, and emission
of a third photon at frequency Q' determined by
energy conservation:

hQ'+E, —(E, or E,) =2k'&'.

This leads to emission at frequencies

Q, =2' —co„—kv and Q, =2' —co„—kU.

FIG. 3. Typical diagrams depicting the quantum

processes responsible for emission of radiation in the

transient regime. Laser photons, frequency ~' =~ —kv,
and reemitted photons, frequency 0' =0 -kv, are denoted

by straight and wavy lines, respectively. The frequen-
cies in the diagrams, given in the molecular rest f~ame,
may be converted to the laboratory frame by adding kv.
See text for details. (a) Emission process leading to
radiation at the molecular natural frequencies Q' =u3j
and ~32. (b) Elastic scattering process leading to emis-
sion at the laser frequency 0' =co'. (c) Raman-type pro-
cess leading to emission at the Raman frequencies

(d) Three-quantum process leading to em-
ission at 0' =2~' -~3& and 2~' -~32.

Qg = (d —002~ Q7 = (d +(82& .
(d) The normal-mode frequencies Q, and Q9 re-

sult from the quantum process shown in Fig. 3(d),

+kV =Q)3~+kV,

Q2
——Q2+kV = +2 +W,

(b} The normal-mode frequencies Qo, Q„Q„
and Q, result from elastic scattering processes
of the type depicted in Fig. 3(b), in which two pho-
tons are exchanged with the radiation field, a laser
photon being absorbed at frequency ~' = ~ —kv and
a scattered photon being emitted at frequency Q'
=Q —kU, leaving the molecule in its initial state.
Energy conservation then requires that

Q„=u, n=0, 3, 4, and 5.
(c) The normal-mode frequencies Q, and Q, re-

sult from the Raman-type processes depicted in
Fig. 3(c), in which the molecule makes a transi-
tion between states 1 and 2, accompanied by the
exchange of two photons with the radiation field,
absorption of a photon at the laser frequency, and
emission of a photon at a frequency determined
by energy conservation:

k Q' =h(()' s(E, —E,).
This leads to the well-known velocity-independent
forward scattering at frequencies

In each process, the frequency spread of the
scattered photon is governed by the decay con-
stants associated with the initial and final states,
and leads to the decay rates of the corresponding
field component &„, as given by Eqs. (43)-(47).

IV. VELOCITY INTEGRATION OF THE
INDUCED POLARIZATION

To obtain the net macroscopic polarization and
other observable quantities, it is necessary to
integrate o,.&(v, t) over the velocity distribution
G(v):

((x,) = o,.&(v, t)dv . (48)

(49)

where F(v) is a typical term of o,&(v, t) which has
a resonant denominator at v„, and such that F = Gf.
Thus the velocity integrals depend only on f (v},
and not on the exact form of G(v), as long as G(v)
js br oad 22

Velocity integrations of the type (49) can be con-
veniently performed using contour integration, by
considering f(v) as an analytic function of the
complex variable 8 with poles in the complex v

plane (Fig. 4}. The path of integration is then the
real axis of the complex v plane, and the contour
may be closed at +~ and —~ in either half of the
complex plane. As can be seen from the expres-
sions for o... Eqs. (33}-(36), in some terms the
velocity dependence appears not only in resonant
Lorentzian denominators but also, in some terms,
in the time-dependent exponentials. In the latter

In the fully Doppler-broadened limit, where the
natural or homogeneous width is much smaller than
the Doppler (inhomogeneous) width, G(v) is a broad
function of velocity which is slowly varying corn-
pared to the velocity dependence of 0. According-
ly, in doing the integrations one can remove G(v)
from inside the integral, evaluating it at the veloc-
ity (or velocities) at which o, , is maximum, e.g. ,

()"('))=) G( )f(, ')&
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Im( v)

= Re(v)

Im(v)

= Re(v)

(b)

FIG. 4. Contours in the complex v plane used in the
velocity integrations. The contours are closed at v =+ ~.
(a) Contour for terms having time dependence of the type
e &' and e 2 . (b) Contour for terms having time de-

potpendence of the type e & and e 2'. For terms without
a velocity-dependent time factor, the contour may be
closed in either half-plane.

case the contour must be closed in the half of the
complex U plane in which the argument of the real
part of the velocity-dependent factor in the expo-
nential is negative for t&0. Thus integrating over
velocity is equivalent to evaluating o, ,(v, t) at the
poles lying in the appropriate part of the complex
plane, and in the integration process the velocity
groups at which resonant behavior occurs are
selected. From this point of view a pole G„of the
complex variable f (v) enclosed by the appropriate
integration contour corresponds to a resonance of
the real variable f (v) centered at Re(v„) [and of
width -Im(v„}]which has a finite (i.e., nonzero}
area in velocity space. The poles lying outside of
the contour, which do not contribute to the inte-
gration, correspond to resonances in f (v) having
zero net area, i.e. , either odd functions of veloc-
ity or even functions with equal areas above and
below the U axis.

Discussion of the various type of terms occurring
in the velocity integration are given below. The
complete result of the calculation, Eqs. (A9) and
(A12}-(A15), and some mathematical details are
deferred to the Appendix.

A. Resonant velocities and emission frequencies

In Sec. III it was seen that the coupled equations
for o give rise to a set of eigenfrequencies given

by Eqs. (37)-(41). Some of these frequencies are
velocity dependent and will be altered in the course
of integration over velocity. This comes about
because the amplitudes (the A„'s of &» = Z„=,A, & " )
multiplying the various oscillating factors
are themselves velocity-dependent functions with
denominators which undergo resonant behavior
at specific values of U. Thus at these velocities
the molecular response is enhanced, and in the
process of integration the velocity-dependent fac-
tors (kvt's) appearing in the exponentials of o
[cf. Eqs. (36}]are replaced by complex frequency
factors corresponding to the (complex) velocities
at which resonant behavior occurs. Thus the se-
lective enhancement of particular velocities gives
rise to "new" frequencies and decay rates.

As can be seen from Eqs. (33)-(36), the reso-
nant denominators are of the form &, —&, (includ-
ing &, —&o =&;). Therefore resonant behavior can
occur for a particular value of v when two of the
~„'s become equal. " Additional resonant behavior
is introduced through the velocity dependence of the
initial conditions.

In the following discussion the various terms
which comprise cr(v, t) will be grouped into cate-
gories and analyzed separately. As shall be seen,
cancellations occur in certain types of terms lead-
ing to a simplified expression for (o), as com-
pared to the pre-velocity-integrated expression.

I. Terms in o with no velocity dependence in their time behavior

These terms have velocity dependence only in
their amplitudes. Therefore their emission fre-
quencies will not be altered by velocity integra-
tion, nor will their decay constants be modified
by Doppler dephasing. Examples of this type of
term are the steady-state contributions, the tran-
sients with time variations e &~', and the ones
which vary as e ~~'. The latter terms contribute
to the beat signal at co».

As shall be seen below other types of terms,
after velocity integration, may have exactly the
same form as these terms and so can cancel or
modify them. This will be the case, for example,
with the beat signal at ~».

2. Terms in 0 having velocity-dependent time variations

The remaining terms all have velocity depen-
dence in their time behavior through the exponen-
tial factors L,.(v)t and L,*(v)t. These factor. s,
evaluated at specific velocities U„at which reso-
nant behavior can occur, result in emission at fre-
quencies Q, (v, ), Q, (v„) and Q, (v„), Q, (v, ), respective-
ly [cf. Eqs. (38) and (41), which lead to Eqs. (44) and
(47)]. These same factors also give rise to the
decay constant associated with Doppler dephasing
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effects. Let us now look at these resonant contri-
butions in some detail.

a. Contributions due to velocity groups selected
at t& 0. Due to the initial preparation of the sys-
tem, o, , contains terms which become resonant
when L,. =0, that is, when

U, =(~ —(u, )/k, (50)

where vp is the velocity at which the laser fre-
quency is Doppler shifted into resonance with the
molecular transition, at frequency ~p. Thus emis-
sion at frequencies 0j ——co3j+kv is enhanced for
v =v p, giving

&3j+kvp = ct) +(d3j —(dp, (sl)

leading to beat frequencies at 6j =N3j - Np.
" The

main contribution of this type is due to free-induc-
tion decay. However, terms of this form will also
occur in optical nutation, as explained in the dis-
cussion following Eqs. (35).

As an example, consider the following integral,
which appears in ( p„) = (&x») e"

s &
~t-Ag) e idv

This contribution comes from the coupling of the
1-3 and 2-3 transitions via the common level 3, so
that the v, group selected in transition 2-3 gives
rise to resonant behavior in o„. The integral (52)
may be carried out by closing the integration con-
tour in the upper half of the complex v plane
[Fig. 4(a)]. The pole corresponding to La*=0, the
only pole enclosed by the contour, gives a contri-
bution with time-dependent factor

e«3y+ p) e- 23&e- yg3& (53)

Thus the integration selects the frequency su+
In addition, the damping rate is increased from its
original value z» due to the decay of o„(v, t), by
an amount y». This additional contribution arises
because the excited molecules are spread over a
range ~vo = z„/k around vo. Consequently, the
transient response of the polarization at (d+&, is
spread over a range of frequencies -y», which
leads to Doppler dephasing of this contribution in a
time -y, ,'.

Other terms of this type, all having a beat fre-
quency at &j =co3j —cu„occur in the integrated ex-
pression for (u»), Eq. (A15). In every case there
are two contributions to the decay constant, one
due to Doppler dephasing and the other to decay.

The remaining terms are all characterized by
resonances occurring at t &0, after the levels have
been Stark split. Therefore they describe the
driven transients, i.e., terms of the optical nuta-
tion type.

b. Terms in o leading to cancellations. As men-

tioned above, some terms having velocity-depen-
dent time factors will cancel one another and, most
importantly, will also cancel terms which are free
of Doppler-dephasing effects (Sec. IV A 1). As an

example, consider a resonance in 0 associated with
the denominator L, (or. L,*). The resonance condi-
tion L, (L,*.. )=0 occurs for

v„=(~—~,~)/k (s4)

At this velocity the laser frequency is Doppler
shifted into resonance with the molecular transition
at frequency ~3j. Accordingly, the resonant veloc-
ity groups v3j will select the emission frequencies

3j kv for v = V» and v32.'

3~ +kv3

(d32+kv32 =(d,

(d3, + V32 =CO+(d2, ,

C032+kV3y CU W2y ~

(ssa)

(55b)

(Ssa)

(56b)

The same emission frequencies will result upon
substitution of v» and v» into 0, , =2~ —~3j kv.
Other denominators leading to the same resonant
velocity groups, and thus to the above emission
frequencies, are Lj —y„due to population tran-
sients, and L„—L, and L~ —L,*, due to o,",' tr an-
sients [cf. Eqs. (34)—(36)]. In general, the veloc-
ity groups v3j occur resonantly in terms related to
population saturation and to the nonlinear response
of the near-diagonal density matrix elements. In-
tegration of terms of this type is similar to that
of. Eq. (52), and again we find that the damping con-
stant will have two contributions, one from Dop-
pler dephasing and one from decay. "

The resulting components oscillating at frequency
cu are optical nutation terms of the two-level type,
at either the 1-3 or 2-3 transition. The frequency
components at co +co„are due to coupling between
the 1-3 and 2-3 transitions, and are thus optical
nutation terms of the three-level type. However,
these terms are clearly not of the Raman type,
since they are due to terms having velocity-depen-
dent time factors, and are therefore sensitive to
Doppler dephasing.

As can be seen from Eq. (36), many terms hav-
ing frequencies (55) and (56) arise in the course of
integrating 0» and v» over velocity. Interestingly
enough, for each of the components at frequencies
~ +(d„with two y's in its damping constant, com-
plete cancellation occurs when the individual terms
are summed. In addition, partial cancellation
occurs between terms at these frequencies coming
from contributions of the type described in Sec.
IVA1, with terms resulting from the Lj —y,. and

Lj —L„resonances, which have only one y in their
time dependence.
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In order to explain these cancellations it is nec-
essary to analyze the origin of frequencies (55)
and (56) in more detail. The general type of ex-
pression which gives a v» resonance has the factor
[cf. Eq. (29)]

(I/L/)[(e '"' —e "')/(L, —~.)], (57)

(e R' —e &')/(L, —Ls) (59)

which appears in Eq. (36). It follows from the pre-
ceding discussion that in the velocity integration
the terms having time dependence e 1'""exactly
cancels the e ~&' term, so that the factor (59}does
not contribute to (o„}.This example shows how

Doppler dephasing gives rise to oscillation at v».
Note that the e ~&' term in Eq. (59) is not caused
by population changes induced by the laser field.
Rather, it originates in o,',", which drives o$3'.
Terms of this type are important because, unlike
the oscillations at ~» due to population saturation,
which completely cancel among themselves in the
velocity integration, their velocity-integrated con-
tributions cancel with some of the e L~' term.
Thus Doppler-dephasing effects modify the result-
ing amplitude of the beat signal at ~».

c. Terms in 0 giving rise to neu contributions.
Another type of resonant behavior occurs for terms
in o,, containing factors of the type (57), in which

where the A.„'s, n =0, 3-7 [Eqs. (37)-(40)], have
either no velocity dependence or the same velocity
dependence as that of L&. However, the contribu-
tion to the velocity integral due to the factor in
brackets always vanishes, because for these ~„'s
the same contour (closed in the upper half-plane)
can be used to evaluate both parts of the term in
brackets. If the pole of L,. —~„=0 lies in the lower
half-plane, then the contribution will vanish for
each term separately. (A particular case of this
type is A.„=&,=0.) On the other hand, it is possible
that the pole lies inside the contour (upper half-
plane), in which case each individual term will
give a nonzero contribution. However, the sum
of the two contributions will. exactly cancel, since
at the pole, where L, =~„, the two exponential fac-
tors of Eq. (57}are equal. In fact, the bracketed
term in Eq. (5"I) does not contribute a pole, as
can be seen from the expansion

(e ~' —e ~&')/(L, —&„)

=e &'[t —(L~ —)L„)t'/2! y ] (58)

and thus no residue can result from the two terms.
It should be noted, however, that the factors out-
side the brackets in Eq. (57) may contribute poles
and thus give rise to nonvanishing contributions.

As a specific example of cancellation, consider
the term containing the factor

the velocity dependence of ~„ is opposite in sign to
that of L, These are the cases of A.„=L,* (i..e.,
n =8, 9). Factors of this type are important be-
cause their poles are such that no cancellation
arises in the course of velocity integration.

The most interesting example of this type in o13
is for L& = L, and ~„=L2, giving a resonant de-
nominator L, —L,* in (57), because it leads to a
contribution oscillating at frequency —,'(d». Such
terms originate from the coupling of o23 to (J$3'

via o,",' and o,",' (there are analogous terms in

&x,",'). A resonant-velocity group occurs for L,*
—L, =0, i.e. ,

&„=[~ —-'(~» + ~„)1/t, (60)

the velocity which is halfway between v» and v23.
The physical origin of this new resonant-velocity

group is as follows: Due to three quantum pro-
cesses of the optical nutation type [Fig. 3(d)], the
molecules reradiate at frequency 0, (and 09). In
the molecular rest frame, this corresponds to an
oscillatory component of the induced polarization
at frequency O' =0, —ku =2' —~31 —2'. This os-
cillation is resonantly enhanced at velocities for
which the frequency is tuned into the natural fre-
quency, 0'=~32, i.e. , for v =v„. This velocity
group is a specific feature of the transient re-
sponse of the molecular medium and is absent in

the steady-state regime. The reradiation of this
velocity group at the Doppler-shifted natural fre-
quencies leads to"

I
4)31 + ~V 12

= (d + 2 (d21,

1
32 12 2 21 '

(61a)

(6 1b)

Unlike the terms discussed in Sec. IVA2b, these
terms do not vanish after the velocity integration.
Because the velocity-dependent factors in the ex-
ponentials are opposite in sign, the integral

J
-L*f -L t-

L, L, —L
dv (62)

exp(z[-(7„+ Y„—i&@„)t]j, (63}

cannot be evaluated by closing the contour in the
same half-plane for both terms, and so the expan-
sion Eq. (58) cannot be used. Each term has to be
integrated separately, closing the contour in the
lower half-plane for the first exponential and in the
upper half -plane for the second one. If y23 & y, 3

the pole of (L,*—L,) ' lies in the upper half-plane;
there is no contribution from the first term,
whereas the second one gives a nonzero contribu-
tion. If y» & y», the contributions are exchanged,
but the final result is the same, independent of the
sign of y23 —y„. The integration results in a term
proportional to
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which oscillates at —,'~21 and decays at a rate
r'(r„+ r„).

Another contribution of the same type is due to
the resonant denominator L,*. —L, , which origi-
nates from the coupling of a3',"with its own counter-
rotating part a3~"'. The corresponding resonant
velocity group v„. leads to oscillation at the laser
frequency, but with a decay rate y„. This term
contributes to the two-level optical nutation [cf.
Eq. (A15)].

The discussions of this section help explain why

the expression for the velocity-integrated induced
polarization, Eq. (A15), is much simpler than the
preintegrated expression, Eq. (36}. The relative
importance of the different contributions and their
dependence on laser detuning, before and after the
levels are split, are discussed in Sec. V.

V. DISCUSSION OF RESULTS

A. Frequency components of the reradiated field

The reradiated field is given by Eq. (20), and
thus can be analyzed by inspecting the expressions
for o,(, Eqs. (Ag) and (A15} of the Appendix. The
following frequency components may be distin-
guished in the rotating frame:

(a} A constant term, representing the steady-

state absorption at t»1/y(i. The origin of this
term was explained in Sec. IVA1.

(b) Some purely decaying contributions. The
e &~" terms describe the transients in the level
populations as they approach their new equilibrium
values after t =0 [Sec. IV A 1]. The contributions
having time variations e»~' are two-level nuta-
tion effects, the origin of which has been explained
in Sec. IVA2c.

(c) Finally, the most interesting contributions are
those oscillating at frequencies different from that
of the laser. They lead to beats in the heterodyne
signal. One can distinguish three principal fre-
quency components:

(i) The beat at frequency &, =re„—(v, . As ex-
plained in Sec. IVA2 a, the largest contribution to
this term is due to the free-induction decay of the
molecules excited before t =0.

(ii} The Raman beat at frequency (d». As dis-
cussed in Sec. IVA, it includes the contributions
with velocity-independent time factors, as modi-
fied by the velocity-dependent Raman-type contri-
butions. The remaining velocity-integrated terms
oscillating at ~» cancel when combined. Using
Eqs. (20) and (A15), the component of the rera-
diated field envelope oscillating at frequency copy

is given by

g«P' g(v } e-(X12+& 21&~

g((v ) 0 0 +i„~i..—i,.~ '(,.— .) i„+i'..—i'„~ i( „—,))
g(v )e (y(2 i 21)t 1 1

+ 32

~13 ~23 ~12 21 ~13 ~23 ~12 32 0 ~12 21

g (v ) e- ( y12- i 21) t 1 1
+

~l 3 ~23 ~12 21 ~13 ~23 ~12 31 0 ~I2 21
(64)

where

gl = +4 v +2t)t ti 2 I /ti ((

is the usual expression for the linear gain coeffi-
cient of the Doppler-broadened 3-1 transition at
line center, u is the Boltzmann velocity factor
(see the Appendix), and

- t 2
g(v) =War uG(v) =e

Accordingly, the reradiated field $(cu») is smaller
than the incident field by a factor gL( /y(3,. )'.(The
factor gL was explained in Sec. IIA. The extra
factor (P/y„} obtained here results from the per-
turbation treatment.

As can be seen from Eq. (64), the amplitude of
the Raman beat is largest when one of the transi-
tions remains in resonance after t =0 (i.e. , either
~(()» —

coo~ or ~(()„—(d, ~«y, i). The quantity in brac-
g(v ) e ()(2 i 21) e (l (2 i 2()

0

yi~ i (m~2 ~0) t (~» —~o
(66)

kets in Eq. (64} is then given approximately by

(65)

w'hen the condition of observability of the Raman
beat, co»»y12, is taken into account. This en-
hancement occurs because the v» coherence creat-
ed before t =0 is resonantly enhanced for v =vp

[Eq. (26)]. If &u» =(vo, the laser continues to reso-
nate with this velocity group at the 3-2 transition
for t) 0, leading to a maximum contribution to
&c„).

For the off-resonance case, when both (4@31 (00,
(()» —(()0»y, i (for simplicity it is assumed that all
y's are of the same order), the quantity in brackets
in Eq. (64) becomes



THEORY OF COHERENT THREE-LEVEL BEATS

which is smaller than Eq. (65) by a factor y/((dog
—(o,). In this expression it is assumed that I(o„l
-l(o„—(o,l. In the case (o'„«l(d„—(o,ly„ the
terms in 9(v„) and 9(v») in Eq. (64) would give
additional contributions to Eq. (66).

The decay rate of the Raman-beat signal, as ob-
tained in Eq. (64), is free of Doppler-dephasing
effects. The decay rate is not sensitive to colli-
sions which destroy the phase of the induced optical
electric dipole. However, y» does depend on de-
polarizing collisions. Accordingly, the Raman beat
is affected by the collisions which change the ori-
entation of the induced optical dipole.

According 'to the discussion following Eq. (65},
the influence of velocity-changing collisions on the
decay rate of the Haman-beat signal should be very
different for the resonance and nonresonance
cases, Eqs. (65) and (66). In the resonance case,
in which one of the transition frequencies remains
unchanged when the Stark field is applied, such
collisions can transfer the o» coherence induced

xn the vo velocity group to other velocity groups.
This shouM reduce the amplitude of the beat signal,
since these new velocities do not satisfy the reso-
nance condition. Accordingly, the damping rate
of the beat signal should include a contribution
equal to the rate of velocity-changing collisions.
Qn the other hand, in the nonresonance case the
transfer of the initial a» coherence to other veloc-
ity groups is of no significance, so that collisions
of this type should not lead to a reduction of the
amplitude of the beat signal. Thus in the reso-
nance case the decay rate of the Haman-beat sig-
nal will be increased by velocity-changing colli-
sions, whereas in the nonresonance case it will
not be. This point might be used to advantage in
exper iments.

(iii) The polarization exhibits a beat at frequency
—,'v», which has been interpreted in Sec. IVA as
originating from molecules of velocity v» -—o(v»
+ v„). The envelope of reradiated field due to this
beat is given by

((o„—(d,)e ' »'~
y(o+y»+ i((o» +~so 9(oo) (y(o+yoo+ '~o()(y(o+ y»»+ i~»)(y(o+y» 2y(o ' »)

(QJ» —(oo)e f~a~t Q e- (gg3+ &23}&/"+ (y„+y„—i(o„)(y„+y„-2y,— t(d)( „y+„y-2y„+ i(d„)

(67}

Several features of this expression are noteworthy.
First, the beat disappears if there are no colli-
sions which either dephase or disorient the polar-
ization without changing the level population [i.e.,
(9(-,'(o„)-0 if y„.=-,'(y, +y, ), so that y„+y„=y„
+y,]. Secondly, the beat amplitude is maximum
when (oo =

& ((d» + (o»). In this case, setting (oo(» y„,
the expression in brackets in Eq. (6't) is approxi-
mately equal to

conclusions have to be modified. Let us assume
that the levels are split by a Zeeman or Stark field
perpendicular to the polarization of the laser field.
The coupling between the magnetic sublevels is
then as indicated in Fig. 5.

a. Both levels have similar Zeeman splitting.
In the case of similar splittings for both levels
{g„p~,=g„„)or for J =1-0 transitions all of the
three-level subsystems coupled by AM =+1 tran-
sitions are identical and satisfy the condition

89(vo)(ylo+yoo y(2 yo) cos 21 e-(y(o+yoo)(/2
(y( 3 y23)»

1~» ~o= ((doo ~o) =o(d». (69)

(68)

and is thus a factor y/(o„smaller than the Raman-
beat amplitude [cf. Eq. (66)]. Thirdly, the decay
rate of this signal is sensitive to Doppler-dephas-
ing effects, in contrast to that of the Haman beat.

B. Relative importance of the beats for molecular
levels w'ith Zeeman structure

Up to now, an idealized three-level system has
been considered. In the actual experiments' the
molecular levels have degeneracies and the above

The discussion of Sec. VA then applies. Note that
in this case the free-induction beat of every sub-
system has the same frequency, —,'~„, and its
amplitude is of the same order as that of the Haman
beat at frequency (d».

b Zeern((n sPtittings of the. t(vo levels differ.
When the splittings of the upper and lower levels
of the molecular transition are unequal (grope,
&Z(,„„),the beat frequencies of the free-induction-
decay signals, ~» —(d, and ~~ —~0, will be differ-
ent for each subsystem. In this case the net free-
induetion-decay signal tends to vanish because of
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UPPER LEVEL. J = 1

LASER
FIELD

ER LEVEL: J = 2

MJ =+2

FIG. 5. Example of level scheme for a molecular
transition with Zeeman structure. The case shown is
for J =2 1=1.

destructive interference. " However, this is not
the case for the beat signals at ~» and —,'cu», which
occur at the same frequency for all three-level
subsystems. Therefore at these frequencies the
contributions of all of the subsystems add. Ac-
cordingly, the net effect of the Zeeman structure
is to enhance these beats. As mentioned earlier,
however, the principal contributions to the beat at
~„come from those transitions whose frequencies
are nearly unchanged by the splitting of the sub-
levels (u„or &u» ——ruo). In contrast, the most im-
portant contribution to the oscillations at 2~»
come from the transitions which are symmetrically
split [(uo =—'((u„+(u»)j.

C. Comparison with previous work

The present study is directly applicable to the
experiments of Shoemaker and Brewer, ' Previous
theoretical analyses of these experiments have
been given by Hopf, Shea, and Scully' and Brewer
and Hahn. "

These treatments clearly show that the beat at
frequency co» originates in the transient response
of p». However, they are all incomplete in vari-
ous ways, and none gives an explicit expression
for the velocity-integrated polarization and re-
radiated field.

As pointed out in Sec. V A-B, such an expression
is essential for analyzing the physical origin of the
various contributions and assessing the relative
importance of various experimental factors, such
as velocity-changing collisions.

The three-level-beat effect is closely related to
the quantum-beat phenomena. 4 In fact, three-level
beats may be considered to be "stimulated quantum
beats. " That effect is usually observed as the
interference beat produced in the fluorescence
arising from a system with coupled closely
spaced transitions, excited by a pulse whose band-
width is sufficiently wide to resonate with both
transitions simultaneously. However, the same
effect can be observed in a three-level-beat system

by studying the fluorescence to a fourth lower
level (Fig. 6). Our analysis may be extended to
this kind of experiment by calculating the frequen-
cy-integrated side fluorescence from levels 1 and
2 to a lower level 4.

The expression for the frequency-integrated
fluorescence is well known. »'I For the (1-2}-4
transitions it depends only on the velocity-inte-
grated density matrix elements of levels 1 and 2, '

(a) cw
LASER

STARK
PLATES

SAMPLE
GAS

LUORESCENCE

DE

(b)
LASER

L FIELD

ORESCENCE

FIG. 6. Quantum-beat fluorescence experiment. The
Stark field is applied at t = 0. (a) Experimental setup.
(b) Energy-level diagram.

where the p. 4~ are the dipole matrix elements con-
necting levels 1 and 2 to level 4. The expressions
for &o„& in Eq. (70) are given in the Appendix,
Eqs. (A12)-(A14), up to second order in the laser
field.

From Eq. (A14} it can be seen that the &o'»& term
in Eq. (70) exhibits a quantum beat at frequency
co». There are two contributions to this signal, the
one with coefficient G(vo) being due to free decay
and the one with coefficient G(v») being due to
optical nutation. (Note that the optical nutation
term is smaller than the free-decay term by a
factor -y„/&u„. ) Also note the relative simplicity
of the expression. There is no beat signal at p'M2y,

nor are there any cross terms between optical
nutation and free-induction decay of the type pres-
ent in the three-level-beat expression. These
other contributions to the quantum beat should
appear in the fluorescence signal only at the fourth
order. The only additional second-order terms,
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the (a;",') terms in Eq. (70), can, at most, con-
tribute an exponential signal decaying at the popu-
lation decay rates. (This occurs for a Stark split-
ting large compared to the Doppler width. With a
small splitting these terms remain constant. }
Therefore it appears that the interpretation of the
quantum-beat experiments would be simpler than
that of the coherent three-level beat effect.

(a;q) =NG G(v)g f,'", '(v, t)dv, (A1)

where f j",) is a particular term of the correspond-
ing v, ~, defined by

a, ~ =N, G(v)g f,'", '(v, t) . (A2)

The velocity distribution will be taken to be Max-
wellian at temperature T:

G(v) =e '" "' /use, (A3)

where u = (2KT/M)'+, with K the gas constant and
M the molecular mass. In the general case an
exact expression for the velocity-integrated line-
shape must be given in terms of the plasma dis-
persion function. " However, in the Doppler-
broadened limit, where

ku»y, .
&, yi, z, P, (A4)

the form of the expressions simplifies consider-
ably. The velocity dependence of G(v} will then
be slow, as compared to that of f (v, t), and we
can write

APPENDIX: VELOCITY INTEGRATION OF THE ENVELOPE
FUNCTIONS IN THE DOPPLER LIMIT

This appendix presents the details of the velocity
integration of the a„.(v, t), Eqs. (33)-(36), in the
Doppler limit. The required velocity integrals
are of the form [cf. Eqs. (48) and (49)]

will consist of a set of narrow resonances super-
imposed upon a broad Gaussian background of
width ku (full width at the 1/e points) in units of
rad/sec.

Approximation (A5} is a great convenience which
considerably simplifies the integration process.
However, since Eq. (AS) represents the limiting
case of ku- ~, it inherently contains two assump-
tions: (i) the laser is tuned close to the molecular
center frequencies (i.e. , ~

(v —(d)„.
~
«ku}; and (ii)

the inverse time (ku) '-0. Before proceeding
with the integrations, it is worth investigating
further the validity of Eq. (A5). In any term having
two or more factors of the type L&(v) ', (A5) gives
rise to all of the leading terms (i.e., the terms of
lowest order in y/ku) in (a„.) in second and higher
orders in n, P. However, it omits first-order
contributions to (a) in o. , )3, which may be impor-
tant even in the Doppler limit. For example, as
will now be seen, use of Eq. (A5) leads to the
neglect of transient terms in (a,'~&)) which decay
in a time (ku) ', leading to an apparent discon-
tinuity in the linear signal at t =0.

Using Eq. (33a) and approximation (A5), (a,",')
is given by

—G(„)( '
d (A6)

(a,",') = (i nvN, /k)G(v„), (A7)

which gives rise to an apparent discontinuity at
t=0, since

The integral occurring in the steady-state contribu-
tion (the second term in the large parentheses}
is v/k. The remaining integrals both vanish, as
can be seen by contour integration. This approxi-
mation (A5) leads to (for t&0)

(a„)=NGQ G(v„) f (i)(v, f) dv, (A5) (a,",) (t & 0)) = (i o(vN, /k)G (v, ) . (A8)

where v„ is the velocity at which the denominator
of f,'", ' is resonant. As discussed in the text, the
remaining integrals in Eqs. (A5) can be conve-
niently performed by means of contour integration
in the complex v plane. Thus in this limit (a,&)

However, if instead (a,",') is calculated directly
from Eq. (Al), additional terms appear which re-
move this apparent discontinuity. In the Doppler-
broadened limit one obtains, using the properties
of the plasma dispersion function, "

i nmN 2i V0+ i kutQ
(a"') = G(v ) 1+ e dy +G(v ) 1+ eddy e" »

Wm0 0

—G(v„)(1~ ~ ( dV) (A9)
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where v, and v, are equal to (&d» —(d)/ku and

(&d —&d)/ku, respectively. Several additional terms
appear in this expression. The additional contribu-
tion to the steady-state part of (&t&«,

) ) (the first
term in the brackets) gives rise to the usual linear
refractive index in the Doppler-broadened limit.
(It does not contribute to the gain. ) The last two
terms, associated with the transient behavior, do
not have simple exponential decay but will decay
rapidly in a time of the order of (ku) &.~2 This fast
decay is due to the fact that the steady-state pre-
paration of the molecules at frequency ~„ followed
by a sudden shift of the molecular center frequency
at time t =0, is equivalent to a broad frequency
spectrum whose Fourier components can excite
the complex polarization over the entire velocity
distribution. The dispersive part of v plays an
important role in this process, since it varies as
(&() —«)» —kv) ' and therefore falls more slowly
than the absorptive part. ~ Although the dispersive
term is purely real at t =0 and so cannot directly
contribute to the reradiated signal at that time,
it can contribute at time t» 1/kv, since its phase
becomes complex then due to the phase factor e'~".
Thus the use of approximation (A5) in calculating

(v„}to first order leads to omission of terms com-
parable in magnitude to those obtained from (A5},
which are important when either assumption (i)
or (ii) does not hold.

In contrast, in second and higher orders in n, P,
approximation (A5) leads to expressions for (v)
which are complete to lowest order in y/ku. For
example, the velocity integration of any steady-
state term containing two or more factors of the
type Lt'(v) using approximation (A5) gives the
same result as that obtained starting from (Al} and

keeping only lowest-order terms in y/ku. " The
same is true for transient terms containing at
least two Lorentzian factors. In the transient
terms for the higher-order components, the use
of approximation (A5} leads to neglect of terms
decaying in a time of the order of (ku) '. How-

ever, even for times near t =0 it can be shown that
these terms are smaller by a factor y/ku than the
ones which decay at a rate y.

Let us now proceed with the velocity integration
of the higher-order terms, using approximation
(A5). For the second-order elements of o [Eqs.
(34} and (35)] we can write

1
—I, L, L,

(A10a)

[y„e»' y„(1—e»'} e~2' —e»' 1 1
v,' '=2pNG(v)q I L t + L L* +Re —L L L

( 4 2 2 y2 2 2 y2 2 2 2
(Al oh)

r +r
L F12 1 2 R 1 2

(I e-LRt)

- L1t e-LRt y j e-L2 t e-LRt

x[G(v,)e»'+G(v»)(1 —e y&t)],

(@&2)) =(2vP No/ky, )

x[G(v, )e»'+G(v„)(1 —e»')],

(A12)

(A13)

~ ~12 21
+ G(v„)

'42 ~4"21

(A14)

Using approximation (A5) and evaluating the inte-
grals along the contours of Fig. 4 by means of the
residue theorem, one obtains

(&t(3) ) = (2t«)&'N, /ky&)

Note that a small transient, proportional to G(v, )
—G(v»), occurs in the velocity-averaged popula-
tion of level 1, corresponding to a new group of
molecules at v» going into resonance while the
old group at vo undergoes free decay. A similar
transient occurs for (&r&2~)). However, since the
Gaussians are slowly varying [G(v, ) = G(v»)],
these terms will usually be small. In any case,
the populations do not exhibit oscillations of the
type observed in strong-field optical nutation. As
mentioned in the text, this is a consequence of the
perturbation treatment. The near-diagonal ele-
ment (o'») exhibits a quantum beat at the Raman
frequency co21 independent of the relative values of
G(vo} and G(v»). This beat is essentially the same
as that observed in the well-known quantum-beat
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fluorescence experiments (see Sec. VC and Ref.
4).

For the third order-contributions to (o), again
each term consists of the product of at least two

velocity-dependent Lorentzians. Accordingly,
approximation (A5) is valid, and the contour inte-
gration can be performed as discussed in Sec. IV.
The final result for (o(33)) is

inn', I, 1 1 e ""» "1",1 1 e (~1»23 "1"
(gI3)(f)) =- ' G(V, ) (22 —+ — +2P' —+13 y ') O

Y13 Y12 Y& 3 43
n2G(U„) 1 1 2p'G(U„) 1

Y Y] Y3 Y&3 (I gQ 21 Y3 Y12 21

22P'G(u„)&2e "3'

i 3(i 13++23 y3 21)(~13+i23 i 3 1)

~3$ ~-y, ~ &ts~

r„-yr, (.2,r„-y, - (5, ) r;.(r,.— (),))
Ot ~I e- 'Ya3~

2G(+ ) 13 3 i. + 13 1 12y —y —2x~ 2y —y —2&& e "»3 ' &"

r, (2r„-r, —'~, ) r, (2r„—r, — |i,)- r„- 5,

X„+r„-X, —f(~, +~,) r„+r„r„—-1(~, +~, )
~,(v„+r„-~,—«~, ) x„(~„+r., x„—-f&,) x„+r„-f(~, +~,)

2p G(U )s (~12 21» 2p G(1) )e ) 12 21 1 1
+ 0 32

y, .(y, .+y..—y,.— ().) r, .+y..—&r,.~ ., (y, .+y..—y„». r„—— „)
IP' (GU)(r„+r„-r,.-r, ) ~f. e" '"- '" "'

»13+~23-2('1+'2~~(~'13+y23- ~21)413+~23-»3- ~21)(~13+~23-»12+ ~21) I
'

(A15)

In Eq. (A15) &1 is equal to (o„—(dc The resu. lt for (o32) is the same, with the interchange of n, P and 1,2

everywhere. The physical meaning of the terms of Eq. (A15) is discussed in detail in Sec. VA.
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