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The problem of calculating transition probabilities for an atom interacting with an intense radiation field is set

up within the context of an effective Hamiltonian formalism. This has the virtue that resonance effects are
properly accounted for at the outset; more gen rally, it provides a convenient framework for approximations.
Through the restriction of the class of intermediate states to be included in the construction of the effective
potential, a unitary (nonperturbative) model is obtained. A successive approximation procedure for
determining the effective potential, which is based on continued-fraction representations, is described. While

very likely intractable for the true problem, this successive approximation procedure can be implemented, for
the model effective potential, with the aid of a generalized Rayleigh-Ritz procedure described here. The level-

shift matrix is constructed from the effective potential; it determines the transition probabilities, linewidths,

and energy-level displacements induced by the field. We derive variational expressions of the Kohn type for
each of the elements of the model level-shift matrix.

I. INTRODUCTION

The effective Hamiltonian method, widely used
in scattering theory, ' provides a convenient frame-
work for the calculation of multiphoton transition
probabilities. Resonance effects are accounted
for in a simple and direct manner in this formalism
through the close coupling among nearly degener-
ate states. The contribution of virtual, energy-
nonconserving intermediate states appears in the
effective potential; since the resonant states have
been projected out near-singularity difficulties
arising from small energy denominators are
avoided, formally at least, in the calculation of
the effective potential. Ke say "formally" since
the wave functions of the atomic bound states to
be projected out are in general only imprecisely
known. A minimum principle, developed originally
for scattering problems, ' can be very useful in this
connection since with its aid the appearance of
spurious singularities ean be rigorously excluded.
The applicability of this minimum principle to the
problem of calculating the effective potential is
discussed below in Sec. IVA.

Once the effective potential matrix is determined,
in some approximation, there still remains the
problem of calculating the level shifts and tran-
sition amplitudes of physical interest. Here con-
tinuum effects enter, not only in the final state of
the ionization process but in intermediate states
as well; virtual energy-conserving transitions
to continuum states give rise to the imaginary part
of the level shift and must be properly accounted
for. Variational methods of the Kohn type' can
be useful in the calculation of these continuum
effects, as discussed in Sec. IVB.

The ealculational methods described in Sec. IV
are based on a particular model of the effective

Hamiltonian which is described in Sec. II. The
approximation which defines the model consists,
roughly speaking, of the neglect of the effect of the
atom-field interaction on the propagation of the
atomic system from one continuum state to another.
As a consequence of this assumption the model
effective Hamiltonian is Hermitian. Thus, the
property that transition probabilities sum to unity
can be preserved in calculations. In the limit of
low photon flux the model reproduces the results
of perturbation theory; it defines, then, a par-
ticular continuation of perturbation theory into the
high-flux domain. 4

In Sec. III we derive a continued-fraction rep-
resentation for matrix elements of the effective
potential of the model system. The structure is
similar to that obtained in lowest order perturba-
tion theory, but with intermediate-state propa-
gators modified by the interaction of the atom with
the radiation field. This is accounted for by the
addition of an effective potential (or "self-energy")
term to the Hamiltonian of the isolated atom. This
effective potential is itself of the form given by
lowest-order perturbation theory, but with a modi-
fied propagator, and so forth. The result of this
analysis is the above-mentioned continued-frac-
tion representation. The simplifying feature of the
model considered here lies in the fact that these
propagator modifications appear only mhen the
energy available to the atom is insufficient to
ionize it. It is for this reason that the calculational
procedure deseirbed in Sec. IV could be set up in
terms of commonly used bound-state and scatter-
ing techniques. %hether it mill be practicable to
go beyond the confines of the model in any sys-
tematic way is an interesting question, but a rather
difficult one, and me shall put it aside at the pres-
ent time.
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II. EFFECTIVE HAMILTONIAN FORMULATION

A. ResoIvent operator method

a' =iD(a -at), (2.3)

where D is proportional to the projection of the
dipole-moment operator of the atom in the direc-
tion of the polarization vector. We are concerned
here with photon states of large occupation num-
ber; we therefore neglect spontaneous emission
processes.

The resolvent operator' is defined as

We consider the interaction of an atom with an
external radiation field. The Hamiltonian is ex-
pressed as

(2.1)

where Hz is the Hamiltonian of the isolated atom.
The radiation field is described in the occupation
number representation. For simplicity we include
only one mode, of frequency ~ and linear polari-
zation, and write for the field Hamiltonian

(2.2)

In the dipole approximation the photon-atom in-
teraction takes the form

have two nearly degenerate discrete eigenstates:

(2.9)a, in&=s in&, n=ff, ff.

Here I a& =
I g, &I n, &, with I g, & representing the

atomic ground state with eigenvalue c, while n,
gives the photon number; we have g, = e, +n, @sr.
The state I 5& =

I $, &i n, & is similarly defined. We
take as our projection operator

P =In&&ni+Ih&&&I+In. &&n. l. (2.10)

[G(z)]„,-=(l
I c(z) iv&, P, , v =a, h, n, .

Equation (2.7) is efluivalent to

PGP =G, +G VP GP,

(2.11)

(2.12)

Here we have singled out the photon state I n, & which
is reached after the atom, originally in its ground
state, has absorbed the mAnngung number of pho-
tons necessary to raise its energy above the con-
tinuum threshold. At this stage the atom is in a
continuum state with energy 5, -g, Aced. The wave
function of this state must ultimately be construc-
ted (see Sec. IVB) but it will be convenient not to
introduce that function explicitly at this point. We
therefore deal with an effective Hamiltonian which
is an oyerator with respect to continuum states.

We introduce the 3&3 matrix

G(z) =(z -a)-'. (2 4) where we have defined the unperturbed resolvent

v(t) = . dze ' ''"G(z),1

C

(2.5)

The time-evolution operator can be obtained in
terms of the resolvent using the relation

G, (z) =[p(z -a, )p]-'

and the effective potential

v(z) =a'+a G'(E)a'

(2.13)

(2.14)

q(a-E)qc'(E) =-q. (2.6)

Then, by straightforward algebra' one finds that
PG(E)P satisfies

J [a -E+aqc'(E)qa jpc(z)p = p, -
and that G(E) has the representation

(2.7)

the contour c running from +~ to -~ above the
real axis. We base our analysis on a partitioning
technique of the type used by Feshbach' in the con-
text of reaction theory. Thus, let P and @=1-P
be projection operators, for the moment arbitrary,
and consider the modified resolvent G (E) defined

by

The matrix version of Efl. (2.12) can be expressed
as

G =G —V=—E1-H,0 (2.15)

where 1 is the Sx3 unit matrix and the effective
Hamiltonian matrix is given by

To facilitate the construction of G through the in-
version of E1-H,f~we make use of the identity, Eq.
(2.8), suitably reinterpreted so that it applies to
the matrix G rather than to the full resolvent, with
P replaced by P~; [P~jq„=5ff p

—5q„5~ . We find
that in the space of the discrete states

C(z) =G'(Z)+[1+G'(E)a]PG(z)P [1+ac'(Z)].

(2.8)

For definiteness we shall suypose that one and

only one of the bound excited states of the atom
can be reached from the ground state through a
x esonant transition. Stated differently, the un-
perturbed HamiltonianH0=H„+H„ is assumed to

Gus=[Gujnsf n&P =fffh f

with

G~ =[P~(z 1 -a R)P~]-
The level-shift matrix is here defined by

(2.17)

(2.18)

(2.19)
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-R~,R,~] ', {2.20b)

with the remaining hvo elements obtained by in-
terchange of indices a and h in Egs. (2.20). Once
G„has been constructed the remaining elements
of G are determined by the relations (o. , p =a, b)

G = (E-H~-n K&@ —V ) 'V G"ca C tlC ffC ffC y pj's p

y=a, b

(2.2 la)

C.„=g G.„V„(z-H„-n, i~ - V „)-',
y= a,b

(2.2lb)

G„„=(Z-H„-n, a~ —V„„)-'

+ g g (E -H„-n, Ku& —V„„) '
C C

y=a, b 6=a,b

&&(E H„-n, kv —V„-„) '.
(2.21c)

If the final state of interest has the photon number
m &n, the relevant matrix element can be seen from
Eg. (2.8) to be

(merci

g) =&micoH'PGPi g), p=a, b, n. .

(2.22)

This may be shown without much difficulty to be
expressible in the alternative form

(m ) G i g) = (E Hz -ma&o) -V „G„&. (2.28)

%e see that all the matrix elements of interest can
be expressed in terms of the effective potential V.
The bare interaction II' no longer appears expli-
citly. The yroblem has now been shifted to the
calculation of the effective potential.

B. Unitary model

We have, in Sec. II A, an exact reformulation of
the original problem in which three degenerate
states (the two discrete states a and b and the con-
tinuum state with n, photons in the field) are ex-

for p, , p =a, b, nc. Inversion of the 2~2 matrix
appearing in Eq. (2.18) can be carried out explicit-
ly; the elements are numbers, not operators. One
flIlds

C„R,.[(Z -8, -R„)(Z —S.-R ) -R„R„]-',

(2.20a)

G,.=(z-h, -R„.)[(E—S, -R„)(E—h -R )

U= . dEe ' '~" G(E).
2m (2.25)

the proof, based on the Schrodinger equation

iX —-H,g U t =0, {2.26)

is standard. ' %e are then assured that the sum of
the transition probabilities over the three allowed
final states will give unity.

The level-shift matrix R is obtained from Eq.
(2.19) with V replaced by V. Specifically we have

R „8=V„g+ $'„„(E-H~ n~R(u)- (2.21)

with n, P =a, b. The problem of determining ap-
proximations for the model potential V and the
associated level shift R is discussed in Secs. III
and IV. Once this is accomplished, and G con-

plicitly accounted for in the effective Hamiltonian.
There are of course other states degenerate with
these three. These additional states correspond
to photon number m &n„ for m small enough the
residual ion may be left with enough energy to ex-
cite it, or break it up. The presence of these ad-
ditional states is implicit in the effective potential.
%e now set up an approximation scheme in which
the possibility of real or virtual transitions to such
states is ignored. This corresponds to replacing
the exact effective potential V by a model potential
V characterized by the property

(2.24)

As a further simplification we ignore the variation
of the effective potential with respect to the energy
parameter [see Eg. (2.14)]; we take V= 0'(8) with
8 =g, . To see that these assumptions exclude the
appearance of energy-conserving intermediate
states in the expansion of the effective-potential
matrix V consider first the element V„,. The only

C
states with energy b which have not been projected
out are those with photon number m &n, . To reach
such a state starting with ) n, ) it is necessary to
pass through state

~ n, ) since each interaction
changes the photon number by one unit; but [ n, )
has been projected out. A similar argument holds
for the remaining elements of V. It does not hold,
evidently, if the photon number is n, in both initial
and final states, but V„„=0 in the model.

C C
The fact that there are no vanishing energy de-

nominators (in other words, that the Green's func-
tions from which V is constructed are nonsingular)
implies that V is Hermitian. The same property
holds for B,« in the space of square-integrable
functions. This guarantees the unitarity property
of the time-evolution operator
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structed, transition probabilities can be found
using Eq. (2.25). The contour integration is easily
performed if, as we shall assume, the energy de-
pendence of R„~ is simplified by the replacement
of E with h in Eq. (2.27).' In this way one obtains
explicit exyressions for the transition probabilities
in terms of the elements of the level-shift matrix
R($). Similar expressions have been given pre-
viously" and we shall not repeat the derivation
here. Rather, we turn immediately to the calcula-
tional problem, now well defined, of determining
the matrix R(h).

III. CONTINUED-FRACTION REPRESENTATIONS

&aa = ( i)' n. I '0 a(x I pa ) ~ (3.1)

with

(3.2)

To simplify the notation we shall, throughout the
remainder of this section, write n and 'U rather
than n and p„. We begin by projecting out the
state I n) from the Green's function which appears
in the definition of the effective potential [see Eq.
(2.14)]. Using the appropriate version of Eq. (2.8)
we obtain the relation

(3.3)1) =1)„+1)„q($-H„-rAu& —1)„) 'qg„.
The projection operator q = 1 —

~ g„)(g„( appears
since the state

~ g„) ~ n) must be excluded. (In the
following, for simplicity, the required atomic-
state yrojectors will be implied rather than ex-
plicitly indicated. ) Equation (3.3) has a simple
interpretation. ~„represents the sum of all those
terms in the yerturbation expansion of 0 in which
the photon state

~ n) never appears as an inter-
mediate state. If we write

The use of continued fractions for the evaluation
of transition probabilities has a long history which
we shall not attempt to review here. Some recent
work along these lines can be found in Ref. 4. Here
we derive continued-fraction representations for

Pa

elements of the effective potential matrix V intro-
duced in Sec. IIB. They reduce, in the appropriate
limit, to the representations derived previously
for a two-level atom. ' In Sec. IVA we discuss a
variational method of the Rayleigh-Ritz type for
evaluating the effective potential in its continued-
fraction form.

Our procedure is based on successive applications
of the partitioning identity, Eq. (2.8); in each such
application a particular photon state is projected
out. Consider first one of the diagonal elements
V, a =a, b. We write

(S H-„-nh(u-g„) '
= (8 H„--nh&d) '

+(& -Hg r)-Iield) 'U„($ H„-nri-id) '+ ~ ~ ~,

'Un = 'Un+ +'Un —~ (3.5)

Here g„+ contains intermediate states with photon
number greater than n; the remaining states with
photon number less than n contribute to g„. Con-
sider first ~„+. The perturbation terms can be
classified according to the number of times the
state

~
n+1) appears in the sum over states. Thus,

the second-order contribution is

n+ 1D- D ~

h H„—(n + 1)-h(o
(3.6)

This term describes the emission of a photon, the
free propagation of the atom in the presence of
n+1 photons, followed by the absorption of a pho-
ton. Higher-order terms repeat the initial emis-
sion and final absorption processes and introduce
yropagator modifications. The latter represent
virtual transitions, starting with the state

~
n+ 1),

to states of higher occupation number and then back
down to the state

~
n+ 1). Let g&„+,), represent the

sum of all such terms in which
~

)i+ 1) does not ap-
pear as an intermediate state. Then, in analogy
with the interpretation placed on Eq. (3.3), we may
conclude that g„+ has the representation

n+1
g„,=D D.H„—(n + 1)h id ——g(„,)

(3.7)

A similar analysis of the effective-potential op-
erator g~ » leads to the representation

n+2
q)g ~O+

= D
g —H —( + 2) h — D, (3.8)

'Up+ 2i+

where g~+», is the effective-potential operator as-
sociated with the state

~
n+2). The obvious ex-

tension of this procedure yrovides a continued-
fraction representation of ~„+. Application of a
similar analysis to „ leads to

(3.4)

it becomes clear that the second term on the right-
hand side of Eq. (3.3) represents the terms in which
~ n) appears once as an intermediate state, plus
those in which it appears twice, and so forth. This
Dyson-type perturbative analysis will be used re-
yeatedly in the following for the sake of clarity.
The validity of the results does not depend on the
convergence of the yerturbation expansion; it is
a simple matter to verify the results algebraically
using Eq. (2.8).

To continue we write
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n —1
=D 8,

g H„-—(n —1)@(u -u(„,&

(3.9)
n~ '~'i" ~

' D[g 8„-—(m+1)hg] 'D ~ ~ ~

m!

and so fox'th. In this case, however, the sequence
terminates; gi„,c vanishes since the state l n, )
has been projected out.

%'e continue with a similar analysis of the off-
P

diagonal elements of V. %e first look at elements
of the form {m l Vl n), with m &n. The cases of
interest are (i) m =n„n =n„(ii) m =n„n =n, or
n~. Here again we begin, for the sake of orienta-
tion, with the lowest-order perturbation contribu-
tion which is"

x [g -H„- (n —1)h~]-'D .

(3.10)

In considering the form of the correction terms we
note firstly that the initial photon state l n) may
x eappear as an intermediate state. The sum of all
such terms may be put in the form of the initial-
state correction factor

1~(g H nh„)-~~ +(g H na~)-'~ (g -H -nh&u)u + =1+(g -H~ -n@& (3.11)

%e now include corrections to the intermediate-
state propagators. The correct prescription re-
quires the replacement

(g - H„-P (hu) '-(g H„-Ph(u-- ~1l) ', (3.12)

for p =n —1, . . . , m +1. In checking this we start
with p =n —1 and apply the same type of reasoning
that led to Eqs. (3.7) and (3.8). [We have y&&„n

in the modified propagator (rather than, say, ui„n)
since all virtual transitions to photon state

l n) have
already been included in the initial-state correc-
tion factor, Eq. (3.11), and we must avoid double

1+"O (g -H„- Km(g —~ ) '. (3.13)

Putting all the correction factors together we have

countmg. ] The propagator modifications for
p =n -2, . . . , m +1 are then introduced successively
in a similax' way.

The remaining class of correction terms account
for virtual transitions from the final photon state
l m & to states with photon number less than m and
then back to l m). These may be summed in the
form of a final-state correction factor

1/2

{ml Vln) =ii "' ' [1+V (g -H„-mt') —11 ) ']D[g -H„—( m1+)R(o —g(', n ] 'D ~ ~ ~

yn.

x[g -H„—(n —1)h~-1l(„,) ] 'D[1+(g -H„nb~ --~„) '11„]. (3.14)

For m =n, we would make use of the relation
'U~ +~) =0 which was noted above. %e also have

C =0 by virtue of the basic assumption of the
model, namely, {n, l Vl n, ) =0.

The remaining elements of V are obtained using
the Hermiticity relation

& i I vl ~& =
& ~ I v I i &* (3.»)

This completes the construction of V in terms of
"dressed" propagators and "dressed" initial and final
states. '~ Each of the effective-potential operators
which appear here have continued-fraction represen-
tations of the type discussed above in connection with
Eqs. (3.7) and (3.9).

IV. VARIATIONAI. APPROXIMATIONS

A. Minimum principle for the effective potential

The nonsingular nature of the Green's functions
which appear in the definition of V suggests the

(e-H )-'=pl 4;&(&4.le-H, I y;&) '&@;l.

(4.1)

Here e =g —(n+1)h&u or, since g =e, +n, h&u, we
have, for tl =Pl or 'ply,

e =e, +(n, n —l)5&u. - (4 2)

For g =n„e lies below the ground-state level e,.

use of a minimum principle as an approximation
procedure. To describe this px'ocedure in its
simplest context we consider the expression (3.6)
for the second-order contribution to ~„. As in a
Bayleigh-Ritz bound-state calculation we suppose
that the atomic Hamiltonian H„has been diagonal-
ized in a finite orthonormal basis (p,.), i =1,2, . . . ,

Corresponding to this matrix representation
of H„we have the approximate Green's function
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In this case the variational approximation, Eq.
(4.1), is known to provide a minimum principle
for diagonal matrix elements of the Green's func-
tion. " This allows for systematic improvements
through the optimization of the choice of basis func-
tions p, . The minimum principle can be thought
of as a generalization of the Rayleigh-Ritz mini-
mum principle for the ground-state energy. Now
with n =n, in Eq. (4.2} we see that e&e, for n, -n,
—1&0. We consider the possibility of a finite num-
ber, say M, of energy levels lying below &. Even
when the eigenfunctions associated with eigenvalues
e„ i = 1, 2, . . .M (we adopt the ordering e, &e,+, with

e, =e,) are imprecisely known the minimum prin-
ciple is preserved provided thatN~M and the func-
tions ft}„p„.. . , p„are sufficiently accurate ap-
proximations to the corresponding eigenfunctions
to give binding-energy estimates which all lie be-
low e.2 The functions p„ i &M, can be thought of
as pseudostates representing, in a variational
sense, the effect of the remainder of the spectrum
of H„.

If n=ns =n, —1 in Eq. (4.2), we have e =e,. The
expression (3.6) is of course nonsingular since
the state

~ p, & is to be projected out. We now see
how this projection is to be accomplished in prac-
tice when, as is usually the case, the ground-state
wave function is imprecisely known; we simply
omit the term i = 1 in the sum in Eq. (4.1). The
existence of the minimum principle guarantees
that spurious singularities associated with vanish-
ing energy denominators are rigorously avoided.
(These difficulties are trivially avoided if, as
often happens in lowest-order perturbation cal-
culations, the trial function can be made orthogonal
to the bound-state function to be projected out by
making use of simple symmetry considerations,
such as parity. In the multiphoton case we are not
dealing with lowest-order perturbation theory and
this simple resolution of the problem is not gen-
erally available. A detailed discussion of these
near singularity difficulties, and the use of mini-
mum principles to circumvent them, is contained
in Ref. 14.)

The above discussion of the variational construc-
tion of the second-order term, Eq. (3.6), can be
extended directly to higher-order terms in the
perturbation expansion. In fact, the variational
approach can be useful in computations based on
the nonper turbative continued-f raction procedure
described in Sec. III. The simplifying feature is the
separable nature of the approximate Green's func-
tion, Eq. (4.1). Consider, for example, the con-
tinued-fraction expansion of „+, n =n, or n, .
practice we must truncate; suppose we have done
so by setting ~&+~+&+ =0. Then, with the form
(4.1) used as an approximation to the unperturbed

atomic Green's function we have
N ~+p+1

~& „~,=—Dgl y, &

s=l

(4 3)

1 1 1 1= —+ —yx —p x x x —y
(4.5)

with x = 8 -H„—(n +p) h&u and y = gt„,~~, given by
Eq. (4.3). The solution to Eq. (4.5} is obtained by
algebra since I/x is of finite rank. " This pro-
cedure can be continued, leading to an approxima-
tion for ~„+.

The same method is applicable to the evaluation
of the continued-fraction form for the operators

, n, +2 &m ~n„which are required for the
construction of the effective-potential matrix V.
In these cases the truncation is accomplished by
setting g+,» =0; this is not an additional approxi-
mation, but is a consequence of the definition of
V.

B. Variational principles for level shifts

It will be convenient, as in Eqs. (3.1) and (3.2),
to express the effective potential in terms of ma-
trix elements of an operator taken with respect
to atomic wave functions. Thus, we define, for
A) p =a~6~

~„s=(s. l Vins&, (4.6a)

g„,= (n„l v In, &,

~„=(n, I Vl&s&.

(4.6b)

(4.6c)

Here we assume that these amplitudes are known
in some approximation, e.g. , one of the approxi-
mations discussed in Sec. III. There still remains
the task of constructing the level-shift matrix. In
the model defined in Sec. II the "bound-bound"
elements corresponding to the discrete states a
and b are given by Eq. (2.27) which we write

Ens=(ku~'Unsks)+(4a~ 'Uuc4 ff~ j &esses) ~

(4.7)

Here we have fixed the energy parameter E at the
value g, ' and have defined e =5 -n, @co, this energy
lies above the ionization threshold of the atom. The

with e =8 —(n+p+1)h~. The next step in the cal-
culational procedure is the evaluation of

n+P
8 -a„-(n+p) +(u -V(„,~),

(4.4)

The propagator in Eq. (4.4) is of the form
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"bound-free" element is

(q '=„,~, y ) =T-P ( k) .
The continuum function g( ) satisfies

k

(H~ —e) g „=0(-)

(4.8)

(4.9)

and lncomlng-wave boundary cond1tlons. %e now
introduce some notation which allows us to express
these boundary conditions in explicit form.

The atom, assumed to be neutral, has atomic
number Z. %'e consider the region of configuration
space where one of the electrons, say electron 1,
is far from the ion and carries off the energy

(k'/2m) k' =e —e, ; (4.10)

y =me'/k'k, (4.13)

g, = argl'(l + 1+iy) . (4.14)

The asymptotic form of the wave function g ~
in(a) .

the region x-~, corresponding to outgoing-wave
(+) or incoming-wave (-) boundary conditions,
may now be expressed as

g „- -Z 'i'B(y) y(l)((28) 'i'u ' (k, x)

+C T'&(+x.k)

x mp[+f(kx -y h 2kx)]/x} .

(4.15)

Here g(l) is the spin function of electron 1 and C
is a normalization constant which is chosen for
later convenience as

e~ repx'esents the ground-state energy of the resi-
dual ion. (We assume that the available energy e
is insufficient to allow ion excitation. ) The normal-
ized, antisymmetrized ground-state wave function
of the ion is B(y), where y—= (2, 3, . . . ,Z) represents
the space and spin coordinates of the ion. To avoid
technical complications associated with angular
momentum coupling we assume that the ion has
zero total spin and zero total orbital angular mo-
mentum. Spin-dependent forces will be ignored.
In ordex to describe the motion of the electron with
spatial coordinate r, =-x in the Coulomb field of the
positive ion we make use of the modified plane
wave"

(,i ) g (21+1)i'P, {k x)e"'~E, (k )x
/ =0 kx

(4.11)

The radial function I, has the asymptotic form

F, (kx)-sin{kx -y ln2kx ——,
' lv+o, ), x-~,

(4.12)

C = —(2m/n') [(2v)'~2/4v].

The physical elastic scattering amplitude is
T+~ (k ~ k'), where k' and k are the directions of
the initial and final momentum vectors, respec-
tively. The Kohn variational principle' provides
a useful calculational procedux e for determining
the scattering amplitude. The basis for the Kohn
principle may be taken to be the identity

T '
(k ~ k') = T; (k ~ k') + (g k, [B„—e] g-„+,, )

in two ways. Firstly, we have

(4.13)

(4.19)

since g(:) satisfies the Schrodinger equation. Sec-
ondly, one may make use of Green's theorem.
The surface term can be evaluated using the known
asymptotic form of the wave functions. This part
of the calculation is carried through most readily
with the help of partial wave expansions of the
incident and scattered waves describing the rela-
tive electron-ion motion in the asymptotic domain;
we omit the details here.

A similar variational procedure can be set up
for the calculation of the level-shift matrix ele-
ments defined in Egs. (4.7) and (4.8). Thus, Eg.
(4.7) may be expressed in the alternative forms

ftas=N'ni '0 848) n+4' oneaL s ) ~

Bns 4'n~ t~nsks) +(~n ~ 0csks) ~ (4.20b)

The functions I.8, P =a, b, are defined by the dif-(&)

ferential equation

(&z - &) & 8
=- Ucsks

(&)

and the boundary condition

(4.21)

L'8'-~ "B(y)X(1)~TB"'(~x)

&& exp [+i (kx —y ln2kx)] /x,
(4.22)

valid for x- ~. Our notation anticipates the fact,

(4.17)

which, in its partial wave form, was given by
Kato." The trial function has the same asymp-
totic form as the exact function p+ but with
T + (x ~ k') replaced by the trial amplitude T,'(x k').
The variational expression for T(+) is obtained
from the identity (4.17) by replacing isa on the
right-hand side with g(=). The error thus incurx'ed

kt
is of second order, i.e. , it is bilinear in the error
functions p F ~k'~ and g ],

(+) (+) (-) (-)

The identity, Eq. (4.17), may be derived by
evaluating

~kk=-4'-„' [&A-e]4'-„",,)-(4'-„",, [& -e]4'„=')*
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proved below, that the amplitude Tf+l in Eq. (4.22)
can be identified with the "bound-free" level-shift
matrix element defined in Eq. (4.8). To derive a
variational expression for A s we proceed, in

analogy with the derivation of Eq. (4.17), by con-
sidering the expression

Z„,=-(L,'„-&,[e„-e)8,) —(l.'&'„[ff„-e]d„-'),

(4.23)

where I.&, is a trial function whose asymptotic(+) ~

behavior is given by Eq. (4.22) with T&+ replaced
by Ts', . Use of Green's theorem, and the obser-
vation that the surface term vanishes, allows us to
conclude that J„&=0. This relation, along with
the differential equation satisfied by L, , implies
that

(I' ' [Ifz -&]f'ag) +(I kI &cnkn)*=0 ~ (4.24)

From the Hermiticity property of the level shift
we have

(+) (+)
(Leg &cnpn)*=(4n vncf sg) (4.25)

Then, by adding Eqs. (4.20b) and (4.24) and taking
into account Eq. (4.25) we obtain the identity

ft s=(L'a' [@~—&)f ~st+&esksl)

+(y„, ~„Bye) +(q„,g„,LB,) . (4.26)

The replacement of L,(~) by a trial function I.( )

leads to an error of second order since L( ) appears
in Eq. (4.26) in an integral which is itself a first-
order quantity.

We proceed in a similar way to obtain a vari-
ational expression for the bound-free level-shift
matrix element. Thus, we consider

~/&8=(4 k 0 [+A ~] ~St) (~St t [+A «] 0 Q )(-) r+) (+) (-) ,
(4.27)

The second term on the right-hand side vanishes
by virtue of Eq. (4.9). Use of Green's theorem

TB (~) =(4 f, & sos). (4.30)

Since this relation coincides with Eq. (4.8), it
confirms the identification we have made of the
amplitude of the outgoing wave in Eq. (4.22) with
the bound-free level-shift matrix element. The
second version of Eq. (4.29) may now be written

T,"(~)=T'I(&) (y', [(ff.—.)L'l', ~.,q&]).

(4.31)

The variational expression is obtained by replacing
g y by a trial continuum function g z, .

At this stage we have a variational procedure for
calculating each of the matrix elements which enter
into the evaluation of the transition amplitudes in
the model set up in Sec. II B. With regard to the
choice of trial functions the procedure would be
essentially identical to that used, with consider-
able success in the past, in the variational approach
to atomic bound-state and scattering problems.
The point we would emphasize, then, in conclusion,
is that a large body of computational exper ience,
developed originally for the calculation of atomic
binding energies and scattering parameters, can
be taken over to the problem of calculating multi-
photon transition probabilities in perturbation the-
ory, and also to provide numerical tests of a non-
perturbative model.

leads, after evaluation of the surface term, to

~kt =-Ts«f) (4.28)

We then have the relation

T,',-(I ) =(y-„', [a„-~]f,",I)

e) ~Bt +UeBPB] )
—(0 k~'0. 848)- (4.29)

Consider the particular choice 1-6, =I 8 . It follows(+) (+)

that Ts+, = Tq' . By making use of Eq. (4.21) we then
see that Eq. (4.29) reduces to
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