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We have evaluated relativistic dipole oscillator line and momentum strengths for a number of elements in the

Li and Be isoelectronic sequences. In the Li sequence, the transitions considered are 2s», -2p, /23/2 2s)/2-

3p] /2 3/2 2pl /2 3d3/2 and 2p3/2 3 d3/2 5/2 in the Be sequence, 2 s'„,-2s„,2p„,„,. The two electromagnetic-field gauges

which in the nonrelativistic limit give the length and velocity forms of the transition operator have been used.

The heaviest element considered in both sequences was uranium. Relativistic wave functions were obtained

using a multiconfiguration Dirac-Hartree-Pock calculation. Nonrelativistic calculations of similar accuracy
were also carried out for comparative purposes. The results are discussed with a particular emphasis on how

relativistic effects manifest themselves, and under what conditions.

I. INTRODUCTION

The study of transition probabilities in highly
ionized atoms is a subject of considerable interest
for many fields. For example, transition probabil-
ities are very important in studies of controlled ther-
monuclear reactions, where atomic radiation is one
of the primary loss mechanisms. They are also
important in astrophysical studies, where accurate
transition probabilities are necessary in the deter-
mination of atomic abundances. Beam-foil spec-
troscopy has, of course, recently provided a new

method of accurate measurement of transition
probabilities in highly ionized atoms, thus pro-
viding both a test of previous predictions and a
direct challenge to theoreticians to explain newly
measured values.

Since in a highly ionized atom the electrons move
in the field of a large effective nuclear charge, one
expects to see relativistic effects in such quantities
as transition energies and probabilities. The basic
techniques necessary for the evaluation of these
effects are, of course, almost as old as quantum
mechanics itself, being based on the Dirae equa-
tion. ' However, these techniques tend to be rather
complicated mathematically or computationally,
in particular if they involve self-consistent-field
calculations. "

Early self- consistent-field studies of relativistic
effects' were confined primarily to neutral or
only-a-fem-times-ionized atoms, since these mere
of primary experimental interest. However, with
the conjunction of the interest in highly ionized
atoms, mentioned above, and the availability of
high-speed computing equipment, efforts~ are nom

being made to carry out accurate self-consistent
studies of large numbers of ions.

Our primary emphasis will not be on the predic-
tion of a specific number, for example, the oscil-
lator strength of a particular line, but rather on
an overall study of the regions in which relativistic

effects may be important, and a determination of
just how these effects manifest themselves. This
paper marks the first of a series of papers in
which we will seek to obtain at least partial answers
to these questions of where and hom.

The relativistic Dirac-Hartree-Fock' {DHF)
method would seem to be, at least in principle, the
method most likely to produce accurate relativistic
wave functions in highly ionized atoms. In addition,
by using multiconfiguration DHF calculations, one
can take into account in a straightforward manner
some of the most important correlation effects.
We do not claim, however, to have included all
correlation effects in our calculations, since we
are interested primarily in understanding relativ-
istic effects, and not in calculating the very accur-
ate numbers which only very sophisticated correla-
tion calculations ean produce. Thus, for example,
our study of the Be sequence involves only the tmo

ground configurations 2s' and 2p' and the single-
excited configuration 2s2p; the correlation calcu-
lation of Burke, Hibbert, and Robb' utilized a total
of 13 configurations. We show below, homever,
that the effects of correlations not included in our
work seem to decrease rapidly with increasing Z.

Grant' has recently discussed the importance of
gauge transformations for relativistic transition
probabilities calculated using approximate wave
functions such as those obtained from a DHF cal-
culation. He also obtained the two gauges which for
the electric dipole case reduce in the nonrelativistic
limit to the usual. l.ength and velocity forms of the
transition probability. Since we wish to compare
our relativistic results to those obtained from
nonrelativistie calculations in order to see the
effects of relativity, we have carried out calculations
in both of these gauges. Results of these calcula-
tions for the Li and Be isoelectronic sequences
are described in Sec. III.

In Sec. II we discuss the theory of relativistic
transition probabilities. We repeat Grant' s' analy-
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sis in Sec. II A and II 8, since our results differ
from his by an overall multiplicative factor and
by phase factors which cannot be explained by dif-
ferences in coupling. An alternative method of
analyzing relativistic effects —effective opera-
tors' —is described in Sec. IIC. The specific re-
lationships of the relativistic oscillator, line, and
momentum strengths to the transition operators
of Sec. II A are discussed in Sec. II0. Finally, in
Sec. IV we discuss our results with an emphasis on
beginning to answer the question of how and where
outlined above.

(we will use Gaussian units in this work). Here,
at and a„are creation and annihilation operators,
respectively, for photons of type y; A„"(x) is the
field amplitude at x [x= (r, icf)]; and the electron
charge is -e. The y„matrices are defined by

x4=0,

where ~ is expressed in terms of the Pauli spin
matrices 0'

(4)

H. THEORY

A. Relativistic transition operators

The interaction Hamiltonian responsible for the
electromagnetic transitions in an N-electron atom
is, in covariant form,

&...= P ey. (i)y„(j)&"(x,), (1)
g =1

where the sum is over the N electrons in the atom.
2"(x) is the quantized photon field [A=(A, ip)]

Z (x) = P [s„~„(x)+n'„(~„"(x))*]

The metric tensor g„„is simply I, the 4 4 identity
matrix. For the ease in which A" is expanded in
terms of photons of definite angular momentum I,
projection M and energy K[, Eq. (2) becomes

A "(xl = Q g [a.'"'„A",„„(x[

~L]f( Lek(x) ) (5)

where X=1 stands for a photon of electric type, and
X= 0 a photon of magnetic type.

Electric-type field amplitudes which satisfy the
Lorentz condition are given by

I +1 X/2 1/2
&-fat

G jL, J Y:L~ 1,4lsJg 2L +] L
2L, +1

+uL([tl(x) ( / ) Gjr 1e v &uI 1([1 '

The quantities j~
=j&((dr/c) are—spherical Bessel

functions, and the Y~ ~ „are vector spherical
harmonics as defined by Akhiezer and Berestet-.
skii. ' The quantity R is the radius of a large
sphere in which the waves are confined. The con-
stant G reflects the possibility of a restricted gauge
transformation within the Lorentz gauge, i.e., for
potentials satisfying the Lorentz condition

one can make the gauge transformation

1 BA
A A+PA

q c Bt'

where E3'A=O. The part of A„~» containing G

describes a longitudinal photon; the remainder

describes a transverse photon. It is the trans-
verse nature of the observable E and 5 fields which
forces the arbitrary constant G to be the same for
the longitudinal vector field and the scalar field.
The corresponding magnetic field amplitudes are
given by'

X„, =i'(4wn~/ft)'"V g, , „j,e '"',
0

The transition amplitude is given, in first-order
perturbation theory, by

6ft(f) = (Z,M, ; n, ~ff„,~
Z,M „n,), (10)

where J& and M& are the total angular momentum
and z projection of the angulax momentum for the
final atomic state and J,. and M, are the corre-
sponding quantum numbers for the initial atomic
state. The numbers nz and n, are the numbers of
photons present in the final and initial states, re-
spectively. Using Eqs. (1) and (5), we see that if
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dg= (2v/8) 6{E~ E,+-K~) ~K, ~'p~,

where p& is the differential density of final photon
states; p&

—-R d&a/xc for the normalization used in
E|ls. (6)-(8}. The 6 function 18 a statement of
conservation of energy. Integrating over energy,
one obtains the total probability of emission of a
photon in going from the atomic state ~Z,M, ) to
the atomic state

~
JPfz):

W, = (2II/n'c) i5g, i'. (12)

When A" is given by Eq. (5), one can put Eq. (10)

n, =nz.+1 (absorption), only the term containing A"
will contribute to 3R; if nz=n, +1 (emission), only
the term containing (A")*will contribute. We de-
note the resulting expressions for K by 3g, and
3R y respectively.

The differential transition rate dS' can be direct-
ly related to using standard first-order pertur-
bation theory. For example, if the initial atomic
state is excited with. xespect to the final state, i.e.,
an emission, one obtains

into a form which is more useful for calculations
by using the tensorial nature of the operators.
Thus, either SR, or 5R, can be written in general
form

K=(-1)~ "x(n)'~' g»» -Mf M ~&

x V~II Q ~„(j)l(~(),

{13)
vrhere n is the number of photons present after
emission (5}I,) or before absorption (K,), and the
operator A, „~~ is defined by

ggp@p A~, for K

icy,y, (A„")*, for 5)I, .
The symbol ( lj [( } represents a reduced
matrix element. ' Using the usual rules' for evalu=

ating many-particle reduced matrix elements, one
obtains, finally,

1 2z - u~- z( )s~/ +2~ f & ~[J', g P~2

~r.m (-Mz M M,f

&q Eye)g (I ( el» jy /

The quantities ( ~ ( ) are coefficients of frac-
tional parentage (CFP's) for the entire N-electron
system (not just the open shell). Such CFP s have
been discussed in the L,S-coupling case by one of
us"; extension to jj coupling is straightforward.
The symbol [a 5 ]=(2a+I)(2b+ I)

We now consider evaluation of the one-electron
reduced matrix element which appears in Eg. (15).
In order to do so unambiguously, rve must specify
the coupling convention which we use in defining our
relativistic single-electron states. Our one-elec-
tron states are of the type

(I/ry „„~—,'Ijm)) (16)
(i/r}G„,~ ~

—,'I jm))

/I
I ) g ( I) l 1 j2m t

fft~ yfn) m8 ml ™

n.V„„=(-1)" "[(2'+I)/4v]'" («'")'„,

where C,"' = [4s/(2k+ 1)]'~'Y~, and expressions for
reduced matrix elements' of the operators C'~' and
(nC'~')'~', one obtains

(jq (~k„~,)~j,}= [G(6's+ P~)+ Fr]a,
where a=i for absorption, a=(-1) "i for emis-
sion, and

r, =[L]'"aZ, (E, -E,)/~E, -E, ~,

&~ =-b[L] ' "[{x~—x, )(I~ „+I~,)
+ (L+ I}I~„—Li~,],

is a two-component spinor, and 1+l =2j.
First, consider electric- type interactions. Using

the relationship In Egs. (19},

L+y 1/z
[(», &;)Ig, —L4:g.]—
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j L j ~
b=s (—1)~f ~ [I j ]L~~

a)
(20)

and J~ and I ~ are radial integrals defined by'"

J~ = F~F,. +G~G, j J.d~,

Iz = (F&G&+G&F&)jz dr.
(21)

W~ arises from the scalar potential, S~ from the
longitudinal vector potential, and F~ from the
transverse vector potential. These equations are
valid for either 3R, or 3R,.

We noted above that our results differed some-
what from those of Grant. ' Comparison of our
Eqs. (18)-(20) with his Eq. (4.10) shows a sign
difference in the contribution due to the scalar po-
tential; in addition, his result is (2L+1)'~' larger
than ours. The sign difference may arise from
Grant' s' Eq. (3.11), where there is an error in the
relative signs of the scalar and vector terms, ' or
it may be due to his' reduced matrix element of
C~ [Eq. (4.4) of Ref. 6], which is the negative of
ours. ' The factor of (2L+1)' ' arises from the
normalization of the second quantized field A"; we
have used the normalization in a spherical box of
Akhiezer and Berestetskii. Grant has used a 5-
function normalization.

For magnetic-type interactions, one obtains im-
mediately

(j&llh„~, llj, ) = iba(»f+»&)[-(2L+1)/L(L+1))'~'I~ .

(22)

That is, the gauge transformation —the specific
values of G—does not have any effect on the transi-
tion rate. However, if the final and initial states
are only approximate solutions to a common Dirac
equation, or if they satisfy slightly different equa-
tions, then Eq. (23) will no longer be true, and the
value of 9R, or 9R, will be a function of G.' This
will be the case when the initial and final states
are solutions to a DHF equation.

Grant' discussed the implications of this depend-
ence of the rate on G by considering the nonrela-
tivistic limits of 5R for electric dipole transitions.
He showed that there are two values of G which
are of particular utility in that they lead to well-
known nonrelativistic operators. First, if G =0,
one has the usual Coulomb gauge result, which
has as nonrelativistic limit the momentum form of
the transition operator. Second, if G =-[(L+1)/
L]'~', one obtains an expression which reduces
to the usual length form of the transition operator.
Since it is well known that these two operators
usually give different results when Hartree-Fock
wave functions are used, it is not surprising that
their relativistic equivalents should give different
results.

Since our goal is to study effects of relativity on
transition probabilities, we must compare rela-
tivistic calculations to nonrelativistic calculations.
In order to make this comparison, we have calcu-
lated transition rates using both the "length" gauge
for 9R, using

(j,llh „lljg)g= L(L 1) (ia

B. Gauge transformations

It can easily be shown" that ifboth the initialand
final states are exact solutions to the same Dirac
equation,

+) q —,))' „+)L~ 1)1,),
(24)

~s+~i=0. (23) and the "velocity" gauge,

L(j,llh„~, ll j,)„=ap(2L+1) L~' [(» —»,)I;,+(L+1)I»]- [(»~- »,)I;,—LI~ L] . (26)

A third choice of gauge, G = [L/(L+1)]'~', leads
to the dipole formulation of Babushkin. " However,
as is obvious from the work of Grant, ' this gauge
reduces in the nonrelativistic limit to a linear
combination of length and velocity forms of the
dipole operator, and thus is not well suited for
comparison with traditional nonrelativistic calcu-
lations.

C. Effective operators

The technique of effective operators enables one
to expand relativistic operators in terms of opera-
tors having transformation properties identical
to those of familiar nonrelativistic operators. ""
By studying both the relativistic effective operator
and the nonrelativistic operator which is its limit
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as (v/c}'-0, one can see directly how familiar
nonrelativistic operators are changed by relativity.
Effective operators are also quite useful in the
interpretation of experimental data. They have,
thus far, found their greatest use in studies of
hyperfine structure. "'" %e use them here to
study relativistic effects on transition operators.

If 1P) is a, relativistic state which has as non-
relativistic limit 1P), etc. , then for any relativis-
tic operator R one can define an effective opera-
tor R, by

As shown by Armstrong and Feneuille, 7 any one-
electron relativistic operator R~ which transforms
as a tensor of rank K in 4 space can be expanded
in the effective form

pansion of the type

+A', ,(l„l, )W'u2)'(l „l, )], (30)

where the A's can be obtained from Eq. (29). In
terms of these operators, the matrix element jg
of Eg. (15) can be written

3m=&v, M, IZ', I Z, M, ),
where I 2;M, ) is the nonrelativistic limit of state
IZ,.M, ), etc.

In the nonrelativistic limit, A1» =A,', =0 in both
the length and velocity gauges„and

Rz= g Ar(l l )W("))r(/ l

where W '""r(l„l,) is a double tensor operator of
rank v in spin space, 0 in orbital space, and K in
the combined space J =1.+5. The magnitude of
8""~' is fixed by its reduced matrix element taken
between nonrelativistie states":

R) rA) dr,
1 2

28' k(d , (I, II&")II I,)

d l, (l, +1)—l, (l, +1)
1 dy' 2y

(32)

The expansion coefficient A„„of Eq. (27) is given
by'

1 1
K

for the length and velocity gauges, respectively.
Deviations of the A's from these values are direct
indications that the optical electron is showing rel-
ativistic effects. Finally, Eq. (30}shows very
clearly the way in which the usual nonrelativistic
dipole operator r -g ~"~' is changed by relativity,
and indicates how the familiar nonrelativistic di-
pole selection rules on J and 8 must be altered
by these relativistic effects.

In other words, by this technique one expresses
a relativistic operator 8 in terms of constants
A„„which are evaluated by doing sums over rel-
ativistic ma. trix elements, and of operators
g ~""~, which are to be evaluated between non-
relativistic states. Since the operator P which
R approaches in the nonrelativistic limit can
in a natural way be expressed in terms of the
@'~'~~~, one is able in this way to make a very
clear comparison between B and P .

In Sec. II 8 we evaluated the reduced matrix
elements of relativistic transition operators.
Thus we can immediately evaluate A. ,& for any
desired multipole. %e are interested here only
in the electric dipole operator, which has an ex-

D. Dipole osci113tor, line, and momentum strengths

The most convenient way to describe the results
of our calculations is not through the transition
probability W of Eq. (12), but rather through close-
ly related quantities such as dipole oscillator and
line strengths. The relativistic dipole oscillator
strength f is defined by (for absorption)

I mcf [J ] 2e2 2 ~ Af~, hf(

N~, N. , hf

=p
) ~,.. . (~gil Q&,g(f)ll~;), (33)

where gi«, is the transition proba, bility of Eq.f t

(12), keeping, however, only the dipole term; M
is the ~ projection of the photon angular momen-
tum. The quantity P" is calculated using Eqs.
(12), (15), and either Eq. (24) or (25), for the
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length or velocity forms, respectively. Grant' s'
expression for f does not include the sum over
1Vi, which has the effect of canceling the factor
2L+1 difference between our normalization of
A, " and his. Grant's final results [his equations
(5.1) and (5.2)] are correct except for the sign of
the scalar contribution to the matrix element.

It is also very convenient to define line strengths
fox the length gauge, since these are, in the non-
relativistic limit, independent of the energy of the
transition. One defines the length line strength
S(J(,Jy) by

S(Js Jg)=2~ 3 (Jfll Q h „(f')IIJg)g

(34)

By studying this quantity, we can measure the
effects of relativity on the matrix elements of the
length transition operator separately from the re-
lativistic effects on the transition energy.

We also define a momentum strength, P(J;,J~),
for the velocity form of the dipole transition,
which in the nonrelativistic limit is energy inde-
pendent, and is equal to the square of the matrix
element of the momentum:

(J II QP, IIJ)

University. Both ground and excited states of each
ion under study were obtained by allowing all
orbitals to be varied (no frozen core). The result-
ing small differences between the core orbitals of
the ground and excited states were taken into ac-
count by including overlap integrals in the calcula-
tion of the transition matrix elements. Transition
energies include the configuration average of the
first-order correction due to the Breit interaction. "
It must be noted that the Breit interaction is in-
cluded in our relativistic calculation 'only as a
first-order correction to the energy; it is not in-
cluded in the calculation of the wave functions.
Thus, for example, Table IG does not reflect the
breakdown of I.S coupling in the Be sequence pro-
duced by the Breit interaction —in the Pauli limit,
by the spin-spin, orbit-orbit, and a part of the
spin-other-orbit interactions. What is included in
the calculation of the wave functions are the inter-
actions which in the Pauli limit become the spin-
orbit and part of the spin-other-orbit interactions.
The point-nucleus approximation was used in all
calculations.

For comparative purposes, we have also calcul-
ated nonrelativistie wave functions using the multi-
configuration Hartree-Fock program MCHF 75
of Froese-Fisher, "similarly modified for use on
the Sigma V. Nonrelativistic calculations were
performed in a fashion parallel to that used for the
relativistic calculations in order to facilitate
eompal lsons.

Consideration of this quantity enables us to see
how the momentum operator is changed by rel-
ativity by separating off the enex gy dependence
which appears in the oscillator strength.

The dipole oscillator strength in the length
gauge can be expressed in terms of S by

fi = (1/[ J; ))(2mco/3he') S(J;,J~),

and, in the velocity gauge, in terms of P by

f„=(1/[ J ( ])(2/3h(um)P (J„Jq) .

(36)

We have calculated both relativistic length and
velocity dipole oscillator strengths for numerous
elements in the I i and Be isoelectronic sequences.
The complete relativistic expressions for these
f values, obtained by combining Eqs. (12), (15),
(33), and either (24) or (25), were used. Relativis-
tic radial wave functions were obtained using the
multiconfiguration DHF program of Desclaux, "
modified to run on the Sigma 7 computer of the
High Energy Physics Group at Johns Hopkins

A. Lithium sequence

We have obtained length and velocity oscillator
strengths of the 2sl/2 2pj/2. 3/2 2~~/2 apl/2. 3

2p, /, -3d,/„and 2p, /, -ad, /, ,/, transitions in sever-
al elements of the Li sequence. Results are shown
in Table I; calculated energies were used in all
cases. The length results are shown graphically
in Fig. 1; on this scale, they are essentially identical
to the velocity results. In this and all other figures
we have drawn continuous curves by intex polating be-
tween calculated values. Also shown in Fig. 1 are our
nonrelativistic values for the same transitions ob-
tained by multiplying Z'S('S 'P) by the a-ppropriate
line factors; our nonrelativistic values are essen-
tially identical (within 3%) to those obtained by
Weiss" in a similar calculation (no configuration
interaction} up to Ne, the heaviest element con-
sidered by Weiss. We note that Weiss" also did a
multiconfiguration calculation involving 45 terms,
which improved the agreement between length and
velocity forms somewhat. The length form ex-
perienced a 2%%uo

—
3%%up change due to this increase

in the number of configurations, and the velocity
form a 3%-5% change.
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TABLE I. Relativistic energies and oscillator strengths (length and velocity forms) for the Li sequence.
istic values are in parentheses.

Nonrelativ-

Element Energy (a.u.}

2s ~2pg/2

Energy (a.u. )

LiB"
B+2
C+3
N+4

O+5

F+6
Ne+ 7

Ar+ 15

Fe+ 23

Mo+39
~+71
U+ 89

0.0677
0.147
Q.223
0.297
0,370
0.443
O. 516
0.589
1.18
1.81
3.28
8.05

13.2

(0.0677)
(0.147)
(O.222)
{0.296)
(O.369)
(0.441)
(0.513)
(0.585)
{1.15)
(1.72)
(2.85)
(5.12)
(6.39)

0.255
0.171
0.125
0.097
0.079
0.067
0.058
0.051
0.026
0.018
0.011
0.0071
0.0062

(0.255}
(0.171)
(0.125)
(0.097)
(0.080}
(0.067)
(0.058)
(0.051)
(0.026)
(0.017)
(0.011)
{0.0059)
(0.0047}

0.264
0.183
0.138
0.107
0.088
0.075
0.065
Q.058
0.030
0.020
0.012
0.0066
0.0053

(0.262)
(0.180)
(0.133)
(0 ~ 104)
(0.085)
(0.072)
(0.062)
(o.o55)
(0.027)
(0.017)
(0.010)
(0.0043}
(0.0030)

0.0677
0.147
Q.223
0.297
0.371
0.445
0.520
0.596
1.30
2.39
7.89

63.2
166.9

o.511 (o.510)
0.343 (0.343}
0.250 (0.250)
0.195 (0.195)
0.160 (0.159)
0.135 (0.134}
0.118 (0.116)
0.104 (0.102)
0.058 (0.052)
o.048 (o.o35)
0.056 {0.021)
0.129 (0.012)
0.200 (0.009)

0.524
0.367
0.272
0.215
0.177
0.151
0.132
0.117
0.066
0.053
0.060
0.131
0.202

(0.523)
(O.36O}
(0.265}
(0.208)
(0.170}
{Q 144)
(0.124)
(0.109)
(0.054)
(0,035)
(0.019)
(0.009}
(O.006)

2s ~3pg/2 2s ~3P3/P

Ll
Be"
B+2

C+3
N+'
0+5
F+6
Ne+'
Ar'"
Fe+ 23

Mo+ 39

~+71

U+ 89

0.140
0.438
0.877
1.46
2.17
3.03
4.03
5.17

19.4
42.7

118.8
412.5
696.1

(0.140)
(0.438)
(0,877)
(1.46}
(2.17)
(3.03)
(4.02)
(5.16)

(19.2}
{42.2)

(114.8)
(366.7)
(570.8)

0.001
0.026
0.049
0.066
0.078
0.087
0.094
0.099
0.120
0.128
0.133
0.136
0.135

{0.001)
(0.026)
(0.050)
(0,066}
(0.078)
(0.087)
(0.094}
(0.100)
(0.121)
(0.128)
{O.135)
(0.139)
(0.140}

0.001
0.024
0.048
0.064
0.076
0.085
0.092
Q.098
0.119
0.127
O. 133
0.136
0.135

(0.001)
(0.025)
(0.048)
{0.065)
{o.o77}
(0.086)
(0.093)
(o.o98)
(0.120)
(0.128)
(0.134)
(0.139)
(0.140}

0.140
0.438
0.877
1.46
2.17
3.03
4.03
5.17

19.4
42.9

120.2
429.0
742.1

0.002 (0.002)
0.052 (0.052)
0.099 (0.099)
0.132 (0.133)
0.156 (0.157)
0.174 (0.175)
0.187 (0.189)
0.198 (0.199)
0.236 (0.241)
0.245 (0.257)
O.238 (O.27O)
0.176 (0.279)
O.121 (O.281)

0.002 (0.002)
0.049 (0.050)
0.095 (0.096)
0.128 (0.130}
0.152 (0.154)
0.170 (0.172)
O.184 (O.189}
0.195 (0.197}
0.234 (0.240}
0,244 (0.256)
O.237 (O.269}
0,176 {0.278)
0.122 (0.280}

LI
+1

B+2

C+ 3

N+4

O+ 5

F+6

Ne"
Ar+ f5

F +23

Mo+ 39

~7i

U+ 89

Li
Be+1

B+2

g+3

0+5
F+6

+ 7

Ar'"
Fe+ 33

M +39

~+ 7i

U+ 89

0.0731
0.297
0.667
1.18
1.83
2.63
3.56
4.64

18.3
41.3

117.2
421.4
729.3

0.0731
0.297
0.667
1.18
1.83
2.63
3.56
4.63

18.2
40.7

113.0
37Q.9
587.3

(0.0731}
(0.297)
(Q.667)
(1.18)
(1.83)
(2.62)
(3.5e)
(4.63)

(1.8.2)
(40.7)

(112.3)
(3e2.2)
(565.2)

0.654
0.642
0.645
0.650
0.655
0.659
0.662
0.664
0.673
0.670
0.651
0.568
0.490

0.588
0.578
0.580
0.585
0.590
0.593
0.597
0.599
0.609
0.611
0.607
0.583
0.563

(0.654}
(0.642}
(0.645)
(0.650)
(0.655)
(0.660)
(0.663)
(0.666)
(0.679)
(0.684)
(0.689)
(0.692)
(0.692)

3'5/2

(0.588
(O.578)
(0.581)
(O.585)
(0.590)
(0.594}
(0.597)
(0.600)
(0.611)
(0.616)
(o.e2o)
(0.622)
(0.623)

0.653
0.641
0.644
0.649
0.654
0.658
0.661
0.666
0.672
0.671
0.653
0.571
Q.494

0.588
0.577
0.579
0.584
0.589
0.592
0.595,
0.597
0.608
0.611
0.608
0.585
0.564

(0.653)
(0.640)
(0.643)
(0.648)
(0.653)
(0.657)
(O.661)
(0.664}
(0.677)
(0.682}
(0.687)
(0.690)
(0.691}

(0.587)
(O.576)
(0.579)
(Q.583)
(0.588)
(0.592)
(0.595)
(0.598)
(0.609)
(Q.614)
(0.618)
(0.621)
(0.622)

0.0731
0.297
0.667
1.18
1.83
2.62
3.56
4.63

18.2
40.7

112.6
366,3
575.7

0.065 (0.065)
0.064 (0.064)
o.o65 (o.o65)
0.065 (0.065)
0.066 (0.066)
o.oee (o.oee)
0.066 (0;966)
0.067 (0.067)
0.068 (0.068)
o.o68 (o.o68}
0.068 (0.069)
o.oee (o.oe9)
o.o64 (Q.oe9}

0.065 (0.065 }

0.064 (0.064}
0.064 (0.064)
0.065 (0.065)
0.065 (0.065}
0.066 (0.066)
0.066 (0.066}
0.066 (0.066)
0.068 (0.068)
0.068 (0.068)
0.068 (0.069}
o.oee (o.oe9)
0.065 (0.069)
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FIG. 1. Length oscillator strengths of the Li & isoelee-
tronie sequence (a) 2s~&-2p~, (b) 2s&2-2p&&,
(c) 2s~-3p ~, (d) 2s~,-3p~, , (e) 2p~-ad~, (f) 2p~-3d
(g) 2p&2-3d@2. Prime indicates the nonrelativistic (NR)
result.
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A recent comparison by Martin and %'iese20 of
experimental and theoretical results for the 2s-np
transitions in the Li sequence shows very good
agreement between theory and experiment up to
Ne VII, the heaviest atom for which experimental
data are available. Our results are also in close
agreement with the experimental results insofar
as they exist. One sees fxom Fig. 1 that the rela-
tivistic and nonrelativistic values are in good
agreement up to about Fe"', but begin to diverge
after that, with the greatest discrepancies occur-
ring in I &jl = 1 transitions. We postpone discussion
of these and all other results until Sec. IV.

FIG. 3. Z P for the Li l isoeleetronie sequence. (a)
2s ~-2p ~ (left-hand scale), (b) 2s~-2p3~ (right-hand
scale). Prime indicates NR», double prime, ANR.

In order to separate relativistic changes in
transition energies from the relativistic changes
in the matrix elements, we show in Figs. 2-V
plots of Z'S [Eq. (34)] and Z 'P [Eq. (35)] for the
above transitions in the Li isoelectronic sequence,
as well as curves calculated using the nonre1. ativis-
tic limits of Z'S [Z'S(NR)] and Z 'P [Z 'P(NR)].
The corresponding relativistic and nonrelativistic
transition energies are given in Table I.

The nonrelativistic 1/Z expansion theory can
also be used to predict transition energies and

80 I2.0-

70
I I.O

IQ. O

zan

QQ

z s
80

30

IQ 5.0

.0 I .05 .IO

]rz
.20 40

.OI .05

FIG. 2. Z28 for the Lit isoelectronie sequence (a)
2s~-2p3&, (b) 2s~-2p ~2. Prime lndleates NR double
prime, the approximate nonrelativistie (ANR) result.

I IG. 4. Z 8 fox' the Li & isoeleetronie sequence (a)
3p ~s (b) 2s~ P ~ Prime lndlcates NRs double

prime ANR.
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FIG. 5. Z P for the Li & isoelectronic sequence (a)
2svt- P ts, (b) 2s~-3P~. Prime indicates NR; double

prime, ANR.
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oscillator strengths in the Li sequence. Onello
et al."have studied the 2s'S-2p'P transition, and
found the first eight terms in the energy expansion
and first ten terms in the expansion of the oscilla-
tor strength. Their results for the energy and f~

agree very well with our nonrelativistic results
over the range 5 &Z &92, although there are some
small differences between their f~ and ours. Com-
parison of our nonrelativistic and relativistic re-
sults gives therefore an indication of the regions
of utility of this 1/Z expansion. Clearly, rela-
tivistic effects will become important in the tran-
sition energy of the 2s,/, -2P,&, transition about Z
=15, and in the energy of the 2sy/2 2pg/2 transition
about Z =27. However, the matrix elements used
in calculating the f 's should be good until about Z
= 30.

The prediction of the transition energy can be
improved considerably using the relativistic 1/Z
expansion theory. Doyle" finds that the 2sy/2-
2P ] /p transition energy can be expressed in the
form

80- &Es(a.u. ) = &ENa+ 0.108 67n'Z', (38)

70- and the 2s,&, -2P,&, transition energy in the form

Z S 60
e2

50-

EEz(a.u. ) = b ENa + 0.031 25is'Z'

—0.109435~ Z (39j

40-

30-

20-

10-

.Ol
l

.05
I

. IO

I/Z

I

. 15

FIG. 6. Z~S for the Li i isoelectronic sequence (a)
2P g~-3d~, (b) 2P3/2 3d,&» (c) 2P3~-3d~~. Prime indi-
cates NR; double prime, ANR.

Comparison of transitions energies obtained using
these equations with our relativistic values shows
that Eq. (38) is relatively accurate up to about Z
= 50, and Eq. (39) is accurate up to about Z = 40.

Onello" and Laughlin et al."have studied the
2s-3P and 2P-3d transitions using a 1/Z theory.
Again, these results are in very close agreement
with our nonrelativistic results for 5 +Z &92, with
the results of Onello" being in somewha, t better
agreement than those of Laughlin et al. '4 Again,
comparison of our relativistic and nonrelativistic
results will give an indication of the range of util-
ity of the 1/Z expansion. The onset of relativity
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is delayed considerably in these cases, but the
nonrelativistic 1/Z theory should be reasonably
accurate percentagewise until roughly Z = 30-40.

A simple method for taking relativistic effects
into account in an approximate way is to let the
nonrelativistic operator act on the large compo-
nent of the relativistic wave function. In order to
find the regions of validity of such an approach,
we have also carried approximate nonrelativistic
(ANR) length and velocity calculations in which we
evaluate the matrix elements

Fngy rFn')') ' ~p

l d l(l +1) —l'(l'+1)
nlf 2r

TABLE II. Effective length operators of the Li se-
quence [A"„q =A„I, /&e(hx/&) j. X(P means X&&10 '

Element
2s-2p

Ao~&(2s, 2p) A&&(2s, 2p)

Li

F+ 6

Ar+ 15

Fe+ 23

M +39

U+ 89

1.36 (—3)

1.80 (—3)

1.94 (-3)
2.27 (-3)

3.91 (-3)

1.47 (—2)

2.91 (-2)

3.86(—7)

8.11(—6)

8.76(-5)

2.91(—4)

1.36(—3)

8.67(—3)

1.85(—2)

respectively. These are then used to evaluate the
approximate nonrelativistic values Z'S(ANR) and
Z 'P(ANR), which are also shown in Figs. 2-7.
One finds that Z'S and Z'S(ANR) are in fairly good
agreement for all values of Z, differing by only
about 7% at the heaviest element considered, U"'.
As we discuss below, the results of Kim and Des-
claux4 are, to a good approximation, reproduced
by our length ANR results. This work of Kim and
Desclaux has also been discussed by Martin and
Wiese." Because the ANR calculations are such
a good approximation to the complete calculation,
many of the conclusions drawn by Kim and Des-
claux' and Martin and Wiese" are identical to our
own conclusions. For ~A j~ =1 transitions, Z 'P
and Z 'P(ANR) are seen to be in fair agreement
over the range of Z, but in not so good agreement
as seen in the corresponding length matrix ele-
ments. For &j=0 transitions, on the other hand,
Z 'P(ANR) is seen to diverge strongly from the
correct value given by Z 'P at large values of Z.

Finally, we have evaluated the effective transi-
tion operators for the Li sequence using the equa-
tions of Sec. IIC. Sample values obtained for the
2s-2P transitions are given in Table II as an indi-

cation of the type of effect one observes in the Li
sequence. Because of angular momentum selec-
tion rules, the only additional operator for the
2s-nP transitions is A»W " '. The coefficient A»
is seen to be negligible for small Z [of the order
of (Zo, )'A'Oi], but to increase in size with increas-
ing Z, roughly as (Zn)'. This increase reflects
the increasing relativistic nature of the wave func-
tion of the optical electron. Similar results are
obtained for the 2s-3p transitions. For the 2p-3d
transitions, one finds that the coefficients of Ayy

and A» remain small all the way up to U+".

B. Beryllium sequences

We have calculated the same types of quantities
for the Be sequence as for the Li sequence. The
only transitions studied in this case were
2s' Sp 2s2P "P,. Both ground and excited states
were evaluated using multiconfiguration calcula-
tions in the relativistic case: the ground state was
taken to be of the form [(2s,&, )'+ (2p, &,)'+ (2p,&,)']J
= 0, and the excited state was given by [2s,&,2P,&,

+2s,~,2P,&,]J=1. The eigenvectors obtained for
ground and excited states are shown in Table III.
We also give in Table III the eigenvectors ex-
pressed in LS notation, in order to make the pro-
gression of the breakdown of LS coupling more ob-
vious. In the nonrelativistic case, the ground
state was taken to be of the form (2s'+2P') 'S,
and the single-excited state was given simply by
(2s2p) 'Pi.

The resulting relativistic and nonrelativistic f
values are tabulated in Table IV; the length form
is plotted in Fig. 8. For the 'S,-'P, transition,
one sees that the relativistic and nonrelativistic
curves are quite similar until about Ar'", at
which point they begin to pull apart. The agree-
ment between length and velocity forms for Z&17
is slightly better in the relativistic case than in
the nonrelativistic case. The length curve starts
out higher than the velocity curve, but drops be-
low it around Ne in both relativistic and nonrela-
tivistic calculations. The oscillator strength for
the 'S,-'P, transition rises after Z =20 until reach-
ing a broad flat region between 50& Z& 75. For
even higher Z, there is a slight decline in the
oscillator strength for this transition.

As mentioned in Sec. I, we have not attempted
to do a sophisticated correlation calculation of
these oscillator strengths, preferring instead to
concentrate on the relativistic aspects of our
work. Some comments should be made, however,
concerning the effects of configurations not in-
cluded in our calculation. We give, in Table V,
the results of several rather more sophisticated
calculations of nonrelativistic length oscillator
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TABLE III. Eigenvectors of the Be sequence.

Element

0+4

Ne"

Fe+ 22

Kr+ 32

Mo+ 38

Xe+ 5o

Gd+ 60

0.957

0.961

0.964

0.965

0.967

0.968

0.973

0.978

0.984

0.986

0.989

0.991

0.992

0.993

0.995

0.160

0.155

0.151

0.149

0.146

0.140

0.139

0.141

0.141

0.138

0.132

0.124

0.116

0.104

0.226

0.218

0.213

0.209

0.205

0.183

0.155

0.113

0.089

0.054

0.036

0.024

0.018

0.013

Ground state So

(2s~y2} (2P ~y2) (2P3/2}

0.167 0.237 -0.577

-0.577

—0.576

-0.575

-0.574

-0.572

—0.533

-0.439

-0.280

-0 ~ 200

-0.102

-0.061

-0.038

—0.027

-0.018

0.817

0.817

0.817

0.818

0.819

0.820

0,846

0.898

0.960

0.980

0.995

0.998

0.999

1.000

1.000

1.000

1.000

0.999

0.999

0.999

0.999

0.998

O.986

0.945

0.915

0.871

0.850

0.837

0.832

0.826

0.000

0.000

0.004

0.004

0.004

0.004

0.006

0.167

0.327

0.403

0.491

0.527

0.547

0.555

0.564

Upper excited state & = 1
(2s2P&g2} (282P3/2) NR P& NR P,

strengths for the first few members of the Be
sequence, as well as our own nonrelativistic re-
sults. Qur length results are almost identical to
those obtained by Burke et aL.' using seven ground
configurations and six excited conf lguratlons, but
not including correlations in the 1s' shell. The
main effect of correlation in the calculation of
Burke et al.' was to bring length and velocity
curves somewhat closer together than in our cal-
culation, but not to shift the overall curves sig-

nificantly. The calculation of Nicolaides et aL."
was made using the NCMET theory, and includes
some correlations not considered by Burke et aI.';
however, 1s' correlations are still not included.
The work of Banyard and Taylor" does include
1s' correlations. This correlation is seen to
cause a further decrease in the calculated f val-
ues. The decrease is only about 4% compared to
our results by QV, however, with the agreement
between the two calculations increasing with in-

TABLE IV. Relativistic energies and oscillator strengths (length and velocity) for Be sequences. Nonrelativjstic
values are in parentheses.

Element
'So- Pg (upper Pg)

Energy (a.u. ) fg
'So-3P& (lower P&)

Energy (a.u. ) fI,

+ $

C+ 2

N 3

O+ 4

F+ 5

Ne+6

Ar" &4

re+ 22

KI
Mo+ 38

Xe+ 5a

Gd+60

w "0

U+ 88

0.3838
0.5204
0.6522
0.7821
0.9112
1.040
2.128
3.504
6.363
9,260

19.82
36.47
64.78

1OO.1
168.1

(0.3835)
(0.5198)
(0.6507)
(0.7793)
(0.9064)
(1.033)
(2.031)
(3.022)
(4.259)
(5.000)
(6.483)
(7.718)
(8.953)
(9.941)

(11.18)

1.069 (1.065)
0.791 (0.793)
0.631 (0.633}
0.527 (0.527)
0.452 (0.452)
0.397 (0.395)
0.209 (0.198)
0.156 (0.132)
0.137 (0.093)
0.140 (0.079)
0.168 (0.061)
0.209 (0.051)
0.265 (0.044)
0.320 (0.040)
0.403 (0.035)

0.867 (0.864)
0.680 (0.672)
0.573 (0.563)
0.499 (0.487)
0.444 (0.430)
0.401 (0.386)
0.240 (0.211)
0.190 (0.144}
0.171 (0.101)
0.172 (0.085)
0.193 (0.064)
0.231 (0.052)
0.284 (0.044)
0.339 (0.039)
0.421 (0.033)

0.1765 (0.1762)
0.2457 (0.2452)
0.3141 (0.3130)
0.3820 (0.3801}
0.4497 (0.4467)
0.5176 (0.5129)
1.088 (1.037)
1.755 (1.558)
2.754 (2.208)
3.427 (2.598)
4.958 (3.377)
6.520 (4.026)
8.491 (4.674)

10.50 (5.194)
13.82 (5.842)

&1O '

&10 7

&1O '
&10~
&]0 6

2.2~10 '
0.0015
0.0054
0.0075
0.0096
0.0099
0.0099
0.0098
0.0097

&1o '
&10 '
«10 '
&10

&10
&10~
3.OX 10 '
0.0024
0.0089
0.0127
o.o 158
0.0157
0.0150
0.0143
0.0136
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FIG. 8. Length oscillator strengths for the Be I iso-
electronic sequence (a) So- I'

&
(left-hand scale), (b)

80-3/& (right-hand scale). Prime indicates NR.

FIG. 9. Line and momentum strengths for the 'So-'P&
transition in the Be isoelectronic sequence, (a) Z2S/e2
(left-hand scale) (b) Z 2P (right-hand scale). Prime
indicates NR; double prime, AIR.

creasing Z. Thus the effects of additional corre-
lation terms on the oscillator strength would ap-
pear to be relatively insignificant, particularly at
higher Z. However, it should be noted that the
available experimental values are even lower than
the values of Banyard and Taylor. " The origin of
this discrepancy is not known, but might be
related either to cascading in the beam-foil ex-
periments or to correlations of a type not yet con-
sider ed.

The transition energies for the various ions
under consideration are given in Table IV. In Figs.
9 and 10, we have plotted Z'S and Z 'P for these
transitions. It is obvious that there is no region in
which either of these curves can be approximated
well by a straight line; a l/Z expansion in this case
would thus obviously require that more than the first
two terms be kept. This is, in fact, in agreement
with the results obtained by Watson and ONeiP'
in their l/Z study of the Be sequence. They ob-
tained the first ten terms in the expansions of the

energy and of the line and momentum strengths.
For the line strength, the coefficient of the third
term in the series, the Z ' term, is, for example,
ten times as large as the constant term and there-

fore obviously not negligible until very large Z.
The values of &E and fL, obtained by Watson and
ONei12' are in good agreement with our nonrela-
tivistic results over the range 5 ~ Z ~ 92; their
values of f~ are somewhat higher than ours over
the entire range.

We have also shown in Figs. 9 and 10 the ap-
proximate forms Z'S(ANR) and Z 'P(ANR) Once.
again, Z's(ANR) is a very good approximation to
Z'S over the entire range of Z. The deviation be-
tween the two is only about 3k for U'". Signifi-
cant differences are once again obvious between

- 4.0 x lO

-50 x IO

TABLE V. Nonrelativistic length oscillator strengths.
P.Ox lO

Eleme eference 26 5 Present work
P. .O- -1.0x lo

B+

C

4+

5+

Ne"

0.968 1.00 1.048
0.734 0.760 0.793
0.596 0.605 0.629
0.504 0.513 0.525

0.435 0.449
0.384 0.393

1.065
0.793
0.633
0.527
0.452
0.395

. OI

FIG. 10. Line and momentum strengths for the ~SO-3P&

transition in the Be isoelectronic sequence (a) Z2S je2
(left-hand scale), (b) Z 2P (right-hand scale). Double
prime indicates ANR.
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TABLE VI, Effective length operators of the Be se-
quence I.A.„& =Q„&/ye{A~/g) j. X{+means Xx10,

Element A()g(2s, 2p)

3.37(—3)

3.31(-3)

3.36(—3)

3.67(—3)

5.72(—3)

2.09(—2)

4.08(-2)

A,",(2s, 2p)

1.25(—7}

1 ~ 08(—6)

5.95(—6)

1.47(-5)

6.50(-5)

8.36(—4)

2.78(—3)

Z 'P(ANR) and Z 'P, this time beginning at about
Ar'".

We give in Table VI the values of the effective
transition operators A~»(ps) and%'„(ps) for this
case. As expected, A» is very small for low

states of lonlzatlon~ but begins to grow with in-
creasing ionization, roughly as (Zn)'. The op-
erator A» is very pertinent in this ease, since
even in the absence of breakdown of L8 coupling
the operator A»g ~» ' could cause the transition
'$0-3P, . This is a direct demonstration that rela-
tivity breaks down the usual LS selection rules for
dipole transitions.

IV, DISCUSSION AND CONCLUSIONS

Several conclusions can be drawn from the re-
sults presented in Sec. III. The most obvious of
these is that one cannot make a single general
statement which defines where and when rela-
tivistic effects will be important in these tmo

sequences. However, one can make a number of
less ambitious statements relating the onset of
relativistic effects to such quantities as the 4j
and ~n of the transition.

For example, one sees the onset of relativistic
effects in the line and momentum strengths for
}&j } =1, } dn} = 1 transitions much before they be-
come significant for the &j =0, } 4n} =1 transitions.
The converse is true for the ~n =0 transitions.
One can combine both statements in the rule that
relativistic effects on the line strength are strong-
er in } 4 j}=}nn}transitions than in transitions for
which } &j }a } &n}—at least for cases in which } &n}
=0 or 1. This effect is essentially a one-electron
phenomenon in that it is the same as one finds for
a relativistic hydrogenlike ion."

One also finds that the energy of the bn = 0, }nj }

= 1 transition shows a much stronger relativistic
effect than does the energy of the ~n = 0, 4j =0
transition. This effect can be easily understood
using a simple 1jZ expansion of the energy. The

main part of the 2s-2p transition energy arises
from the Coulomb inter action between electrons
in the atom, and thus has an expansion of the form
hE, =ZE +E + ~ - - . The leading term in the rela-
tivistic contribution to this expansion ean be ob-
tained by looking at energy separations in the rela-
tivistic hydrogen atom. The 2s«, and 2p,~, hydro-
genic states differ in energy by an amount whose
Zo, dependence is, in lowest order, the same as
that of the spin-orbit interaction, i.e., as Z'a'.
On the other hand, the 2s,~, and 2p, &, are degen-
erate for hydrogen, and so there will be no Z'o'
contribution to their energy separation in a, more
complex atom. Thus the relativistic effects will
be more important for the } &j }

= 1, &n = 0 transi-
tion energies than for the 4j =0, &n =0 ones. This
argument is, of course, the basis for the results
of Eqs. (38) and (39).

Switching our attention to a comparison of
transition energies for transitions having an n

change with those not having an n change, one
sees that relativity plays a much greater role
proportionally in the 4n = 0 transitions, especially
when }Aj}=l. This is.also easily understood by
considering the leading terms in a relativistic
1/Z expansion of the transition energy. For nn
= 0, }6j } = 1, the energy expansion has the form

&E' = ZE, +. +Z'a'E„+ = Z(E, + Z'n'E„+ ),
whereas the transition energy for a }An}=1,Aj =1,
transition can be expanded as

AE' = Z'E + ~ + Z' n.'E + ~ = Z'(E + Z'a'E + ~ )

Obviously, the relative importance of the rela-
tivistic correction increases more rapidly for
the former case than for the latter. Since the
relativistic effect on the line strength is a (Za)'
correction, one sees that the relativistic effects
on the transition energy have a stronger Z de-
pendence than the relativistic effects on the line
strength for nn =0, }Aj}=1 transitions, but the
same Z dependence for } nn}= 1, } & j}=1 transitions.
One sees, in fact, that for the 2s«, -3P,&, transi-
tion, relativity produces significant changes in
the line strength at a much lomer value of Z than
the value at which it produces changes in the tran-
sition ener gy.

One rather surprising result is that the ANH
calculations of line strength agree so well with
the completely relativistic ealeulation. This is
surprising because a number of effects of rela-
tive order (Zn)2 are neglected by the ANR calcu-
lation. For example, one has kept only the first
term, ~, in the expansion of the Bessel functions
which appear in the complete operator, This is
equivalent to neglecting retardation. The next
term in the Bessel function is (kr)', which for
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ant 0 transitions should be of the order of
(Za)'(kr). One has also neglected the small
components in evaluating the ANR terms; these
also contribute effects of relative order (Zo, )'.
We have also evaluated the ANR line strengths
keeping the small components, i.e., by evaluating

and found essentially no difference between this
value and those obtained using our previously de-
fined ANR operator. Use of this radial integral
leads to one of the approximations suggested by
Babushkin. " This form was used, for example,
by Kim and Desclaux"'9 in their investigation of
the Li and Be sequences, and by Younger and
Weiss' in their study of the H sequence. Because
of the lack of importance of the small components
in the cases considered here, our ANR length re-
sults are essentially identical to the results of
Kim and Desclaux. 4 Thus for the line-strength
calculation the only important relativistic effect
comes in the relativistic shift of the large com-
ponents, again an effect of relative order (Za)',
rather than in a change of the form of the transi-
tion operator or in the introduction of the small
component of the wave function. This indicates
the lack of reliability which should be attached
to arguments which imply that all terms of a giv-
en order in Z~ will have roughly the same im-
portance.

The difference between Z 'P and Z 'P(ANR) at
high values of Z has an interesting origin. In or-
der to investigate this effect, we have looked at
the corresponding calculation in a hydrogenic ion,
where one can see tha, t this type of discrepancy is
caused by a (Zo. )' correction to the momentum op-
erator itself. The small component of the wave
function can, of course, be exactly related to the
large by

Ac K—+ — Emc'+E —Ze'/r dr

Qne usually approximates this by discarding
—Ze'/r and replacing E by mc' in the denomin-
ator. Such an approximation used in Eq. (25)
leads to the usual momentum form of the dipole
operator. However, for highly relativistic ions,
the electrons penetrate very close to the nucleus,
and the term —Ze'/r becomes quite large. In
such cases this term should be kept„which leads
to a (Za)' correction to the momentum operator.
This correction accounts for the difference be-
tween Z 'P and Z 'P(ANR). Thus one sees that
in the length form, replacing the correct operator
by the nonrelativistic operator introduces very
little error; in the velocity form, such a replace-

ment may cause considerable error at high Z.
This result can probably be generalized to say
that in cases in which the relativistic operator is
even, i.e., in which it acts between large compo-
nents, etc. , a good approximation to the relativis-
tic result is obtained by simply letting the nonrel-
ativistic operator act between the large compo-
nents. Qn the other hand, in cases for which the
relativistic operator is odd, i.e., for which it con-
nects large and small components, the same ap-
proximation will probably fail at high Z.

As mentioned above, the transition '80-'P, can
be produced by two different effects —the break-
down of 1,S coupling (Table III), and the relativis-
tic change in the effective LS form of the dipole
operator, which is indicated by the magnitude of
the operator A~»W~" ~'(ps) (Table VI). The former
reflects a sort of "collective relativistic effect"
which involves the coupling of all the electrons
together under the combined influences of spin-
orbit and Coulomb interactions. The la, tter is an
"individual relativistic effect" in that its exis-
tence depends on the relativistic nature of the in-
dividual electrons. Both effects are of relative
order (Zo. )'. lt can easily be shown that in the
present case these two effects make contributions
to the transition amplitude of opposite sign, i.e.,
tend to cancel each other. However, as can be
seen by comparing Tables III and VI, it is the
breakdown of LS coupling which determines the
strength of the '80-'P, transition until very high Z,
where the spin-orbit effect has almost "saturated, "
that is, pure jj coupling has been reached. Qn the
other hand, the relativistic change in the dipole
operator, which is originally of considerably less
importance than the spin-orbit effect, continues
to grow with increasing Z. As a result, at higher
Z there is an increasing cancellation between the
two effects, and a corresponding decrease in the
line strength.

Younger and Weiss" have conjectured that rel-
ativistic effects on line strengths might be rea-
sonably taken into account for an ion of nuclear
charge Z by multiplying the nonrelativistic line
strength by the ratio Ss/S~R, where S~„and S„
are, respectively, the nonrelativistic and rela-
tivistic line strengths for a hydrogenic ion of nu-
clear charge Z. This suggestion seems to be com-
pletely supported by the present results, as can
be seen by using their results" for S~/S~R in con-
junction with our relativistic and nonrelativistic
results.

Two more results should be noted. First, the
importance of ground-state correlations in the Be
sequence decreases with increasing Z, as indi-
cated in Table IV. This result has already been
discussed by Kim and Desclaux. ' Second, one
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can claim a slight preference for the nonrelativ-
istic length form of the dipole operator over the
nonrelativistic velocity form, since the length
form seems to be slightly more insensitive to
relativistic effects.

The Li and Be sequences have been chosen for
study here because in these cases there is almost
no core, and one expects to see results which can,

for the most part, be explained using only slight
variations on the hydrogenic model. These ex-
pectations seem to be borne out, as indicated in
the discussion above. In future works, we plan to
investigate the effects of a larger core in order to
see which, if any, of the results noted here are of
a general nature, and which will be limited to sys-
tems which are very hydrogenlike.
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