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The Stieltjes imaging method makes possible the computation of photoionization or photodetachment cross
sections without use of electronic continuum wave functions. Several practical diAiculties are encountered in

applying this method to complex atoms. Modifications of the computational procedure are introduced here,
allowing the e5cient computation of high-order principal representations of oscillator-strength distributions of
complex atoms without numerical instabilities inherent in previous methods. Illustrative calculations are
reported for the ground states of He and B. Principal representations obtained by variational calculations for
these two atoms are used to compute spectroscopic moments and Van der Waals constants, and to reconstruct
the oscillator strengths of line spectra at observed excitation wavelengths. Good agreement is found with all
available quantitative data. Dif6culties in constructing the photoionization cross section from the computed
principal representations are shown, analyzed, and tentatively resolved by separating the oscillator-strength
distributions into physically distinct excitation series.

I. INTRODUCTION

The interaction of unpolarized electric dipole
radiation with an atom or molecule can be de-
scribed in terms of the complex-valued polar-
izability function

(,) I &f (&)

are known, the n pairs of parameters (e, ,f, ) of
the corresponding principal. representation are
determined so that

p, =g f, e, ', 0=0, . . . , 2n —l.
0= j.

Prom a given principal. representation, the cuin-
ulative oscillator -strength function

defined as a Stieltjes integral over the oseillator-
strength distribution df(e) Her.e e is an excita-
tion energy (in Hartree units, e'/a„ to give o.

in units of a, ) and z is a, complex excitation energy
or frequency variable. The complex function o.'(z)
has a branch point at the ionization threshold E,h.

Along the branch cut for real z from &,„ to +~
the imaginary part of u(z) is proportional to the
total photoionization cross section. For all real
z the real part of n(z) is the physical electric
dipole polarizability function, with poles at dis-
crete excitation energies.

Langhoff' has proposed an elegant procedure
for constructing the photoionization cross section
from an approximate spectral representation of
o)(z). This makes it possible to compute photo-
ionization cross sections without the use of con-
tinuum wave functions. This procedure has been
appl. ied successfully to photoionization2' of He,
and to H photodetachment. "

The method makes use of a principal represen-
«t& of the oscillator-strength distribution, such
that o. (z) is approximated by a. finite sum

(2)

If 2n values of the moments

E(e) = df(e)

is approximated by the histogram

F(e)= P f, , (8)

The values associated with rise points 6, ,

F(e, ) =-,'[E(e, —)+F(&,+)], (7)

converge to E(e) in the limit of large n. ' In the
ionization continuum, a continuous and non-neg-
ative oscillator-strength distribution function is
defined by

dI'
g(&) = —, (8)

such that

df (e) = g (e)«.
The total photoionization cross section is'

op, (e) = 2v'ng (e), (IO)

in units of uo if c is in Hartree units, and n is the
fine-structure constant.

The Stieltjes imaging method proposed by Lang-
hoff' approximates g(e) in the form of a histogram
obtained by differentiating the piecewise linear
function defined by connecting values of F(e, )
given by Eq. (7) with straight-kine segments. '
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Smooth curves obtained from such histograms are
compared with experimental photolonizatlon cross
sections.

The present paper reports preliminary results
of an investigation of the appl. icability of this meth-
od to complex atoms. Several. practical difficulties
were encountered. These difficulties include the
large size of matrices required to describe ex-
cited states of complex atoms, the inherent nu-
merical instability of algorithms that attempt to
construct a principal representation from a given
set of moments, and the difficulty of obtaining
a meaningful continuous function g(e) from a rel-
atively sparse set of points &, in a principal. rep-
resentation. An additional probl. em arises in the
description of resonance lines in the ionization
continuum due to Rydberg series converging to
low-lying positive-ion excited states. Relatively
satisfactory solutions to these problems were
found, involving new or modified procedures to
be described below.

Section II of this paper reviews the theory and

formalism used here. Section III describes the
new or modified computational procedures pro-
posed. Illustrative calculations on atomic He and

8 are reported in Secs. IV and V, respectively.

II. REVIEW OF THEORY

N

p»=P f, e,. , 0=0, . . . , 2n —1, (12)

where n«N. The computed values of these mo-
ments should converge to definite limits as vari-
ational calculations are improved, since the mo-
ments are, in principle, observable physical
quantities. Principal representations with n pairs
of values (e, ,f, ) are constructed from the 2n

moments, using various algorithms. ' Each prin-
cipal representation defines a cumulative oscil-
lator-strength function F(e) and its derivative
g(e), in the form of histograms given by Stieltjes
imaging. ' The use of the function g(e) in extra-
polating Hydberg-series oscillator strengths into
the ionization continuum has been emphasized by
Fano and Cooper. '

The most direct algorithm for constructing a
principal representation from a given set of mo-
ments proceeds in two steps. 'o The first step is
the construction of a symmetric tridiagonal ma-
trix that will be defined below. This step is in-
herently numerically unstable. The second step,
which is relatively free of numerical difficulties,
is the diagonalization of this matrix. The eigen-
values are &, ' and the eigenvectors determine
the parameters f, .

From Eqs. (3), (4), and (9),

The frequency-dependent polarizability com-
puted by standard bound-state methods is always
of the form

The discrete excitation energies &,- above the
ionization threshold and the corresponding oscil. -
lator strengths f; of Eq. (11) in general have no
direct physical significance. Equation (11) rep-
resents o. (~) above the ionization threshold as a
real function with discrete poles. As more quad-
ratically integrable basis states are included in

a variational calculation, the density of poles in-
creases, but o(~) remains qualitatively different
from its correct limiting form, a complex function
with smooth real and imaginary parts.

The Stieltjes imaging method proposed by Lang-
hoff' bypasses this fundamental difficulty, using
the mathematical theory of moments' to approxi-
mate the limiting complex function a(e). The
directly co~puted excitation energies &, and
oscillator strengths f; are basis-set dependent
and cannot be used directly as a valid principal.
representation of the physical. oscillator-strength
distribution. In practice, if there are N values
of &, , a restricted set of moments is constructed,
in the form

gC 6 61&-
a

(13)

x2

p(x)x'dx, 4=0, . . . , 2n —1,
X j

(14)

where p(x) is a non-negative density function.
Such a density function defines a sequence of
orthonormal polynomials P (x), where m indicates
the degree in x, such that

2(p.lp. )= p(x)P.(x) p. (x)dx=~...

in an obvious scalar product notation. It is well
known that the Gaussian quadrature points $, cor-
responding to Eqs. (14) are the roots of P„(x).
For non-negative p(x), these roots are real and
lie in the interval x, ~ ( - x, . The orthonormal
polynomials P (x) satisfy recurrence relations
of the form

Obviously the parameters (e, ,f, ) have the sig-
nificance of generalized Gaussian quadrature points
and weights for the density function g(e) over the
interval 0 ~ & ~ ~. The mathematical theory of
moments' and of gener'alized Gaussian quadrature
is used to determine (e, ,f, ) and then to recon-
struct g(e).

It is convenient to consider the general moment
problem defined in terms of x=6'



14 STIELTJES IMAGING METHOD FOR COMPUTATION OF. . . 1067

so that

(Pal Pa) =Pa pa= l.

(17)

These recurrence relations, for m ~ n, can be
expressed as a matrix equation,

a —x P

p, a2 —x p2

(18)

Since the inhomogeneous term here is proportional
to P„(x), it vanishes at the roots of p„, and the
matrix in the left-hand member of Eq. (18) must
be singular at these points. Hence the eigenvalues
$, (s = 1, . . . , n) of the symmetric tridiagonal ma-
trix " defined by the recurrence coefficients
(p„n„p„.. . , n„) are the roots of p„(x). The
value of P, or Pa indicated in Eq. (17) determines
the normal. ization of the whole set of polynomials
p (x).

From Eqs. (16) it follows that " is the matrix
of the coordinate x in the linear space defined as
in Eq. (15), with orthonormal basis I P j. Thus

=-..=(&.Ixlp. )

p(x)p (x)xP, (x) dx. (19)

Within the linear space of polynomials of degree
less than n, a function p(x) has matrix elements

(S.I4 (x)lp. ) = [e(=-)]..
=e y(:-).e, , (20)

where e is the unit vector corresponding to com-
ponent P in Eq. (18). The function Q(:") is defined
as a matrix with the same eigenvectors as =, with
eigenvatues Q($, ). If the mth component of the
normalized eigenvector u, is denoted by u, , Eq.
(20) is equivalent to

(&.Ie()lp. )=g .. ..4(~. ). (21)

Since Pa is a constant, equal to Pa ', Eq. (21) im-
plies, for the moments defined by Eq. (14),

~, =(p.p.l"lp.p.) =g .~'. ,

where
2" 0-

(22)

xp =p p, +n „p +p „p „, m~0, (16)

with

Equation (22) is a generalized Gaussian quad-
rature formula, valid for k& 2n. From Eq. (18),

(24)

so an alternative expression for the quadrature
weights is

.=(P a*.w. ))

When applied to Eqs. (13), this theory gives

fa=a'a~ ca=~a

for orthonormal polynomials p (e ').
In the theory of moments' the entire set of 2n

moments is described by a function

I" ~(*)a*
x

1 (z)a=
p2

g ~ Q 1 2P.-~Q ~ a a a

2

whose power-series expansion in 2 repr oduces
the first 2n terms in Eq. (27). The coefficients
(p„n„.. . , n„) herearethesameas those in Eqs.
(16), the recurrence formulas for the orthogonal
polynomials p (x). This can be verified by gen-
erating the rational approximants of I„(z), since
the successive denominators are polynomials pro-
portional to the functions p (z). From Eqs. (22),
the first 2n terms of Eq. (2"I) are given exactly
by the quadrature formula

(28)

l8
f(z) =—P — '

~

, z —$
(29)

Several algorithms are available for computing
the recurrence coefficients (Po, n„. . . , n, ) from
a given set of moments (pa, . . . , p „,).'a " What-
ever the form of the algorithm, this process is
inherently numerically unstable. " It involves
successive differencing of the given set of mo-
ments, and in practice is subject to very rapid
loss of significant digits. It can be used to obtain
generalized Gaussian quadrature formulas of high
order only when exact analytic expressions are
avail. able for the moments p, ~. In contrast, the
inverse process is highly stable, " since the mo-
ments can be expressed in terms of the recur-
rence coefficients (P„n„.. . , n„) entirely as sums
of positive numbers.

—~+~+. ~ + ' '+1
22 ~2ft

where a is a complex variable. This power-series
representation of I (z) can be converted to a con-
tinued fraction of the form
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In order to avoid severe loss of numerical. ac-
curacy, it would be desirable to have a computa-
tional procedure that constructed these recur-
rence coefficients directly from the electronic
Hamiltonian and dipole transition matrices. Such
a procedure is described in Sec. III.

III. COMPUTATIONAL PROCEDURES

The configuration-interaction (electronic Ham-
iltonian) matrix required for a reasonably ac-
curate description of the whole spectrum of ex-
cited states of a complex atom or mol. ecule can
be very large. Complete diagonalization of such
a matrix can be prohibitively expensive. %hen
the linear dimension N of this matrix is much
greater than n, for a principal representation
based on 2n moments p„ it is no longer efficient
to use Eq. (12) to construct the moments. This
formula requires complete diagonalization to de-
termine the excitation energies &, and the cor-
responding eigenvectors of the configuration inter-
action matrix.

In the Appendix, the oscillator strengths ap-
pearing in Eqs. (11) and (12) are expressed in the
form

xgp d, (v)[(h —e, )
' '],, d, (v). (34)

These formulas avoid expl. icit diagonalization of
the large matrix h —&0. Inversion of this matrix
would also be very inefficient. However, there
is no need to obtain this inverse explicitl. y, since
only contracted expressions of the form

d ~ (h-e, ) 'd (35)

are involved, where d is a vector. Such forms
can be evaluated efficiently by use of triangular
faetorization, "

"—~o= ~O (36)

where t is a lower triangular matrix. The symbol" " here indicates the transpose of a real. matrix.
The matrix rz is diagonal, with elements + I. If
h —~, is positive definite, as it is for exeitations
from the ground state, Eq. (36) reduces to Chole-
sky decomposition. " The more general form is
retained here for eventual application to excited
states. For h —eo factorized as in Eq. (36), eval-
uation of expressions such as Eq. (35) requires
two processes involving large triangular matrices:

f; (f ~ ) = C(1,1,)d& (1 )'(d; (f ). (30) b, =t 'bo, (37)

This is the dipole length-l. ength formula. Length-
velocity (f v) and velocity-velocity (vv) formulas
are also given. . The excitation energy

(31)

b, =(t ) 'gb„

such that

b, =d-b, =(h —&,) 'd.

(38)

(39)

is defined by an eigenvalue of the electronic Ham-
iltonian matrix h for states of total orbital angular
momentum L,. The computed energy of the ground
state is &0 and its orbital. angular momentum is

The dipole-length transition matrix elements
0- i are denoted by d; (f ). All states considered
have the total spin S.

If the matrix & is not diagonalized, the oscil. l.ator
strengths f, in Eq. (12) must be replaced by a
matrix version of Eq. (30). This results in

y., (l l ) =Q C(I.,I,,)

Similar ly,

i(.~ (f v) = —p C (I OL, )

xg Pd, (f)[(h —e,) ']„d,(v), (33)

An effective algorithm for Eq. (37) has been pub-
lished previously. " A similar al.gorithm, in-
cluding the data-handling procedures necessary
to transpose a large triangular matrix, has been
developed for Eq. (38), for use with the present
method. By iteration of Eqs. (37) and (38), start-
ing with bo= d, an expression of the form of Eq.
(35) becomes a scalar product of the resulting
vectors,

b(, ' ob)), (t,' odd,

b~' b~, k even.
(40)

This technique was implemented in the present
work for direct computation of p~ in the three
alternative versions (l l ), (j v), and (vv) given
by Eqs. (32)-(34).

Experience with this procedure indicates that
moments p~ can be generated very efficiently,
but direct use of the resulting moments in the
Stieltjes imaging method quickly runs into the
severe numerical difficulties associated with con-
struction of the recurrence coefficients (Po(x, . . . (x„)
from the moments.
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P ((h —e,) ')d (42)

which mould satisfy the same recurrence relations
as the polynomials P (x), replacing x by the ma-
trix (h —e,) '. Then, from Eq. (32),

v (ll) =g C(L,L,)d(l) ~ (h —e, ) P ((h —eo) ')d(l),
I1

(43)

with similar expressions for & (l v) and v (vv).
The new method proposed here is to use Eqs.

(42) and (43) to construct inductively the true
orthonormal polynomials P (x) and the associated
sequence of recurrence coefficients. For these
polynomials, the modified moments mould be

t'~ - ~o~mO.

Since these moments vanish except for m =0, they
are known to arbitrary accuracy. This method
bypasses the construction of moments, thus avoid-
ing the inherent numerical. instability of the sub-
sequent step from moments to recurrence co-

Sack and Donovan" have proposed an alternative
method, based on modified moments

I x2
v =

~l p(x)P (x)dx, (41)
&x1

where the functions P (x) are polynomials gen-
erated by specified recurrence formulas analogous
to Eqs. (16). An algorithm is given" for converting
this spec if ied recurrence matr ix into the cor-
responding matrix appropriate to the polynomials
P (x}, orthogonal with respect to p(x). By suitable
choice of the polynomials P (x), loss of numerical
accuracy in this transformation can be greatly
reduced in comparison with the original algorithm,
which is equivalent to using pure monomials x
for the functions P (x).

In terms of the matrix = defined by Eq. (19), the
method of Fzck and Donovan introduces a repre-
sentation, in the basis of polynomial. s P (x), inter-
mediate between x and the final. orthogonal poly-
nomials P (x). If the original data is a list of
moments (p~}, there can be no real numerical
advantage in breaking the overall transformation
into two steps. Thus the advantage gained in the
transformation of modified moments ( v }to the
final recurrence coefficients must be counter-
acted by numerical errors in transforming from
the given moments (p,,} to the modified moments.

For the applications considered here there is
no way to obtain closed analytic expressions for
modified moments. However, they could be con-
structed directly from the dipole transition vec-
tors d and the electronic Hamiltonian matrix h —eo

by suitable modification of Eqs. (32)-(34). It is
possible to construct vectors of the fox m

efficients.
Inductive formulas to generate the recurrence

coefficients for the orthonormal pol.ynomials
P (x) can be derived from the orthonormality con-
ditions and from matrix elements of x. These
formulas can then be used for vector functions
of the matrix (h —e,} ', as in Eq. (42). It is con-
venient to define the functions

0 (x)=P P (x)

In terms of these functions, Eq. (16) implies

4 =(x-o' }p '-i4' -i-}3 -i& '-24 -2 ~

(45)

(46)

From matrix elements of this equation, for (Ie) +„
(e.=,lxi e.)P.' „..„=(~.i.i 4.)p:.

The inductive process starts with

y, =-0, P, ~0,

x ', P, =1, a0=0

(48)

(49)

Then, for a single value of I.„matrix elements
can be defined by

(0 Ixl4 )„=(0 I(h —&,) 'l4 )gg

=C(L,L,)4 (1)'0 (l),
(4.l i4. )..=(4.I(l — .)-'Ie. )..

=C(L.L,)4 (v)'0 (v)

The inductive equations (46)-(49) can be used
with matrix elements of x or (h —eo)

' defined in
this way, and with Q, represented by

4-, (1) =(&-&.)d(1), 4-, (v) =d(v). (52)

It should be noted that the additional factor h —eo
required in Eq. (32) and the factor (h —e,)

' in

Eq. (34) are included correctly in the formulas
given above. The polynomials P and their re-
currence coefficients differ in the two cases (l l )
and (vv), since the matrix elements of Eqs. (51)
are not in general identical. . The agreement be-
tween the (l l ) and (vv) results is a necessary
(but not sufficient) criterion for the convergence
of variational calculations. The mixed case (l v}
could also be considered, but has not been im-
plemented in the present work because it would
require two distinct vectors Q„(l) and Q (v}. For

Then Eqs. (46)-(48) are used in sequence for
m=0, . . . , s —1, omitting the last term inEq. (46)
when m& 2.

This process can be applied to vector functions
as defined in Eqs. (42) and (43),

4.(1)=P.p.((1 —e.) ')d(l),
(50

4.(v) =P.P.((l —e.) ')(l —e.) 'd(v).
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both (1l) and (vv) cases, the inductive process
requires retention of three vectors at any stage:
(h —e,) 'p, P, and P

Since oscillator-strength distributions for dif-
ferent L, are independent, the Stieltjes imaging
method can be applied separately for each I,.
This is done here. For electric dipole transitions
L, =Lo+1, Lo, Lo —1, if Lo&0. If L0=0, then L, =1
only. When Lo&0, the three recurrence coefficient
lists can be combined by use of an algorithm for adding
continued fractions. " This has been implemented
for the continued fractions defined by Eq. (28),
yielding a combined recurrence coefficient list
that reproduces the sums of the moments g~(L, )
for each k.

IV. ILLUSTRATIVE CALCULATIONS: HELIUM

In order to verify the theory outlined above and
to test the computer programs written for this
work, exploratory calculations were carried out
for atomic helium and boron.

The calculations for He used a basis set of 7s,
7P, and 3d orbitals, with parameters listed in
Table I. The exponents are taken from the ma-
trix Hartree-Fock calculations of Clementi and

Roetti, augmented and slightly modified to a geo-
metric sequence, "extended until the first few
computed moments of the oscillator-strength dis-
tribution had converged to reasonable values. For
the 'S ground state and the manifold of 'P' virtual
excited states, all configurations that could be
constructed from this orbital basis were included
in the variational. calculations. These are much
l.ess complete variational calculations than those
of Langhoff et al. ,

' who used Hylleraas correlation

factors, and of Rescigno et al. ,
' who report re-

sults with 12s and 8p orbitals. The basic calcula-
tion was very rapid, requiring 35 sec on an IBM
380/195 system. This work was not aimed at
definitive results, but was intended onl. y to pro-
vide an example of calculations at a level of ac-
curacy that would be feasible for complex atoms.

The main variational calculation is organized
to proceed automatically from specification of
the atom, quantum state, and basis-orbital pa-
rameters to produce the list of recurrence co-
efficients (P, ' ' ' n„) defined by Eqs. (18) or (28).
The results reported here were obtained with
+ -20, although there appeared to be no difficulty
in going to n =30 or more. Only (1l) results are
given here, although (vv) results were also ob-
tained and were used as a consistency check. The
coefficient lists are very similar.

The principal representation obtained for He
with n =20 is listed in Table II. For n ~12, ex-
ploratory calculations indicated that except at
excitation energies greater than 2 Hartree units,
the (e,f ) elements in the resulting principal rep-
resentations did not vary significantly from those
given here. This was also true for the alternative
principal representations obtained with one value
of e set to + ~." Such representations were
obtained in all cases considered here, but did
not appear to provide any useful additional in-
formation.

Moments constructed from the principal repre-
sentation of order 12 with no fixed point are listed
in Table III. The first few even moments are com-
pared with spectroscopic moments obtained by

TABLE II. He principal representation.

TABLE I. He basis orbitals. & (e2/ao)

4.396 28
2.496 03
1.417 14
0.804 59
0.456 81
0.259 36
0.147 25

4.396 28
2.496 03
1.417 14
0.804 59
0.456 81
0,259 36
0.147 25

4.396 28
2.496 03
1.417 14

0.778 588
0.847 178
0.871 454
0.949 369
1.478 679
2.217 005
2.354 039
2.492 528
2.712 157
2.839 223
3.070 144
3.771 684
4.238 262
4.966 883
6.497 074
6.954 142

15.767 432
16.983 648
21.854 744
31.480 082

0.274 530
0.073 391
0.026 239
0.358 923
0.794 288
0.006 153
0.001 888
0.003 251
0.012 355
0.012 177
0.009 061
0.384720
0.003 463
0.002 245
0.001 646
0.001 239
0.038 281
0.001 230
0.000 090
0.000 005
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Leonard and Barker" from the best available the-
oretical and empirical data. 'The agreement is
quite good, and is especially striking in view of
the simple nature of the present calculations.

The constant coefficients in atomic or molecular
interaction potentials (dispersion forces) that
arise from induced electric dipole polarization
can be expressed in terms of integrals over n(f &a),

where a(z) is the complex-valued polarizabil-
ity. ' ' From the Gaussian quadrature approxi-
mation provided by a principal representation,
these integrals reduce to sums that can be eval-
uated in closed form. " In particular, the Van
der Waals interaction constant is

0
1
2
3
4
5
6
7
8
9

10
11

TABLE III. He moments (Hartree atomic units).

p~ (calc)p,z (calc) p„(spect) '

2.00002.005 174 1
1.507 448 2

1.384 994 2

1.416 781 6
1.545 852 3
1.758 522 2

2.057 281 2
2.453 749 1
2.967 123 6
3.624 516 0
4.462 232 5

5.527 797 8

12
13
14
15
16
17
18
19
20
21
22
23

6.882 7539
8.606 372 5

10.800 494
13.595 793
17.159 839
21.707 478
27.514 160
34.933 054
44.417 024
56.546 841
72.067 388
91.934 151

1.3838

1.550

2.066

2.95

CG(A, B) =——3 fA.fsb
2 a eAaesb(eAa+esb)'

(53) Leonard and Barker, Ref. 18.

and the three-body dispersion-force coefficient is

„(A B C) 3gg g fAafBbfCc( Aa+ Bb Cc}
a b c Aa Bb Cc(Aa+ Bb}(Bb Cc)(eCc+eAa}

(54)

The relativistic dispersion force is described by
a potential proportional to R ',"with coefficient

fAafBb
e &~a+ &ay

(55)

C, (He, He} = 1.4654,

q(He, He, He} =1.4860,

W, (He, He) = 0.6656,

(56)

For interactions among ground-state He atoms,
the present principal representation of order 12
gives, in Hartree atomic units,

elements (e, f) of the principal representation
with a&2. 0eb/ab (X&225 A), in the region of
(1snP}'P' excitations and the corresponding ion-
ization continuum, and the single large f value
with e=3.7717e'/ab. For X&225 A, the remaining
elements of the principal representation were
used to define a function AF(e), fitted by a cubic
natural spline curve" passing through the data
points b F(e, ). The upper curve F in Fig. 1is the
sum of F, and 4F. The lower and upper curves
(7p~ in Fig. 1 are obtained, respectively, from the
derivatives of F, and F, +AF, using Eq. (10}. The
upper curve a p~ can be compared with the experi-

in comparison with the best available empirical
or theoretical values, "" 10.0 2.0

C,(He, He) = 1.4614,

q(He, He, He) = 1.481,

W, (He, He) = 0.6643.

(57) 8.0—
1.5

a(A) x e(e'/a, ) = 455.6335. (58)

The I.ower curve F in Fig. 1 is a cubic polynomial
in E ' obtained by a least-squares fit to the func-
tion Fr (e) defined by the six largest principal f
values in Table II with &&10.0. This includes all

The agreement is excellent.
The cumulative oscillator -strength function

F(e) shown in Fig. 1was constructed from the
principal. representation of order n = 20 listed in
Table II, using the Stieltjes imaging formula. The
resulting function F(&) is plotted against wave-
length as the upper curve in Fig. 1. The con-
version constant used here is"

6.0

0(Mb)

4.0

1.0

2.0—
I

-He+
0=1

pp
500

I

400
I

300 200 100

0.5

0.0

FIG. 1. He ground-state cumulative oscillator strength
E and photoionization cross section op~ .
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& = 60.328 eV (2.2170e'/s, ),

f g
= 0.006 15, f„=0.006 11,

(59)

mental data of Samson, "for A. +209 A, and with
that of Lowry ««."for shorter wavelengths,
as shown in Fig. 1. The agreement is good
throughout this spectral region, although the pres-
ent results rise above the experimental data by
roughly 12/0 at threshold.

In constructing F(e), the elements of the prin-
cipal representation of Table II have been sepa-
rated into two groups, treated as physically dis-
tinct contributions to the os cillator -strength dis-
tribution. This represents an attempt to distin-
guish between the one-electron excitations
( Is kP)' P' and the Rydberg series and subsequent
continua associated with n = 2 and higher levels
of He', culminating in the double-ionization states
beyond A =156.93 A. The (IskP)' P' ionization
continuum extends throughout the spectroscopic
region considered her e. In exploratory cal-
culations, the large principal representation ele-
ment at 3 7717e.'/a foor n = 20 in the present cal-
culation was found to shift significantly in energy
as the orbital basis set was changed. This be-
havior is uncharacteristic of a narrow resonance,
and indicates that this (e,f) element must be as-
sociated with the continuum. The very large oscil-
lator strength of this element impl. ies that it must
belong to the series of singly excited states (IskP),
as do all. 'P' states below e = 2.0e'/a, . The lower
curves for F and 0» shown in Fig. 1 take only
these elements of the principal representation
into account, and are intended to represent the
total effect of final states containing the 1s ground
state of He+.

The first accessible member of higher Hydberg
series is the (2s P2)' 'Pautoionizing state, ob-
served" at ~ = 206.21 A. A direct calculation,
with the orbital basis set used here, of the energy
and oscillator strength for excitation of this state
from the ground state gave TABLE IV. Reconstruction of He(lsnp) Po Rydberg

series.

A. (A) ' f (c&c) f (spect)

the He+ threshold, apparent in Fig. 1, would then
be attributed to the autoioni. zing states. This
structure cannot be separated into individual reso-
nance peaks without further information about
their energy values and widths.

Spurious results would be obtained if oscillator-
strength contributions from different excitation
series were not separated as indicated above. In
Table II, the six principal representation elements
extending from 2.2170e' jao to 3.0701&'/ao, all
with small f values, define a nearly horizontal.
segment of F(e). If the large f value at 3.7717e' ja,
is required to follow this sequence, the curve
for F(&) must rise abruptly, giving a large peak
in g(e) or or& near 3.7717e'jao. Unless there is
a physical xesonance, this peak is spurious. Since
this representation element appears to be the
continuation of the (1skP)'P' series, and since
the element at 2.2170~~/ao is clearly identified
with the (2s2P)'P' autoionizing state, it is rea-
sonable to separate the principal representation
elements before constructing F(e), as is done
here. In effect, the rise in F(e) due to the large
f value at 3.7717e' jao is assigned a width that
overlaps the preceding (&,f) elements, rather
than being confined by an apparently unjustified
assumption of no overlap.

In order to compute Van der Waals interaction
constants, Dalgarno and Kingston" adjusted os-
cillator strengths for use in Eq. (53) so that Eqs.
(4) would be satisfied in the form of sum rules
for moments p~ obtained from spectroscopic data.
A refined version of this px ocedure was used by
Leonard and Barker" to obtain the spectroscopic
moments listed in Table III. The oscillator
strengths obtained in this way for the 1'S-n'I"
transition series are listed in Table IV.

compared with experimental values"" of

e =60.126eV, f =0.0048.

In Table II, the principal. representation element
at 2.2170e' jso agrees with Eq. (59) to the number
of significant digits shown. Apparently, the pres-
ent calculations are capable of representing the
lowest autoionizing states containing the first ex-
cited level of He quite accurately. This justifies
associating the principal representation elements
with small f values found for e between 2.0e'/ao
and 3.7e'/ao (A. between 225 and 125 A) with auto-
ionizing states, as has been done here in con-
structing &F(e). The broad structure in o» below

2
3
4
5
6
7
8
9

10
11
12
13
14

584.33
537.03
522.21
515.62
512 ~ 10
510.00
508.64
507.72
507.06
506.57
506.20
505.91
505.68

0.285 05
0.078 50
0.032 39
0.016 50
0.009 48
0.005 98
0.003 98
0.002 81
0.002 05
0.001 55
0.001 1S
0.000 92
0.000 73

a Martin, Ref. 29.
b Leonard and Barker, Ref. 18.

0.2762
0.0734
0.0309
0.0149
0.0085
0.0053
0.0036
0.0025
0.0018
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This system of equations is singular. Any linear
combination of particular solutions is also a so-
lution if the weight coefficients add to unity. Each
particular solution defines a parameter f, such
that

f0+f &
= 2E(&i)

which completes the system of Eqs. (61). It is
essential to choose f0 so that both f„,and f„
are positive. In the present work, particular
solutions are generated by choosing first f„=0,
then f„,= 0, in both cases recurring backwards.
Then ff, ) is taken to be a weighted sum of these
two solutions, chosen by the smoothing criterion
that f„„f„„and f„should define a linear func-
tion of &,

Equations (61) and (62) imply that

When f010, the solution is renormalized by multi-
plying each value f, by the factor

E(&s)rt E(&N) -ho] (64)

This ensures that Eq. (63) holds for the final values
of f, , with f, =0.

Oscillator strengths obtained in this way from
the fitted function E(e) of Fig. 1 are listed in Table
IV. The present values are in good agreement
with the best availabl. e val.ues, "but tend to be
systematically somewhat larger, consistent with
the excess in o» at threshold shown in Fig. 1. If
the present function E(e) is interpolated to the
ionization threshold (A =504.26 A), its value is
0.4461. The adjusted empirical sum of oscillator
strengths'8 up to this threshold is 0.4258. The
agreement is quite good.

As originally presented by Langhoff, ' the Stieltjes
imaging method would construct F(&) as a piece-
mise linear function, mhose derivative function
g(e) would be a histogram. This construction de-
fines F(e) as a spline function" of order 1. When

Since the Stieltjes imaging method constructs
a continuous cumulative oscilLator-strength func-
tion F(e), this function can be interpolated3'~ to
define F(e, ) at spectroscopic excitation energies. "
Then the Stieitjes imaging formulas, Eqs. (6) and

(7), can be used to reconstruct oscillator strengths
f, appropriate to the true spectroscopic tran-
sitions. '~ In effect, this is an application of the
procedure of Dalgarno and Kingston. "

The working formula used here, given N values
of E(e, ), is

f, +f,+, =2f E(e,+,) —E(e( )], i =I, . . . , A' l. -

enough data points are available to avoid inter-
polation over long intervals, it should be prefer-
able to fit E(e) by a cubic natural spline function. 2~

Such a function has continuous first and second
derivatives, with a piecewise linear second de-
rivative. Hence g(e) and its first derivative are con-
hnuous. A natural cubic spline function has
zero second derivative at its end points, and hence
is linear outside the range of defining points. It
has the property of optimal smoothness for a
cubic function, defined by minimizing the integral.
of the square of its second derivative over the
range of data points. ~ This establ. ishes an integral
bound on the first derivative of g(e) in the present
case.

The curve AE(s) shown as the difference of the
two curves E(&) in Fig. 1, for A&225 A, is a cubic
natural spline function, defining hg(e) as shown.
For ~&225 A, the data points mere so sparse that
the cubic spline function for Ez (e) gave rather
large oscillations in g(&). In this region, a least-
squares fit was used, as done in previous appl. ica-
tions of this method. "

V. ILLUSTRATIVE CALCULATIONS: BORON

The calculations for B used a basis set of 6s,
4P, 2d, and lf orbitals, with parameters listed
in Table V. The exponents are taken from the
double-g basis of Clementi and Roetti, extended
to a geometric sequence. " For the (ls 2s22P)~P'
ground state and the mansfo1. d of 8, P, and D
virtual excited states, all configurations repre-
senting one- or two-electron virtual excitations
of the 2s'2P shell that could be constructed from
the orbital basis were included in the variational
cal.culations. Results for oscillator strengths
obtained for wave functions of this structure, but
with larger orbital basis sets, have recently been

TABLE V. B basis orbitals.

6.566 57
4.249 27
1.413 14
0.875 64
2.280 58
0.542 58

2.217 34
1.005 51
4.889 65
0.455 97

2.217 34
1.005 51
2.217 34
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reported for the resonance transitions of ions of
the Be I isoelectronic sequence. ' The computed
dipole-length oscillator strengths appear to be
of quite good accuracy.

Boron is the simplest atom with L)0 in its
ground state. The three resulting virtual excita-
tion manifolds of the ground state were computed
separately, to give the principal representations
of the oscillator-strength distributions listed in
Table VI. For comparison with experimental
data, these f values have all been renormalized
by a common factor to make their sum exactly
3.0. The sum of directly computed f values was
3.1519. The basic calculation required only 80
sec on an IBM 360/195 system.

Also listed in Table VI is the total principal
representation of order n =15 obtained by sum-
ming" the continued fractions defined by Eq. (28)
for the S, P, and D excitation manifolds. The
first 30 moments p,, p.» determined by this
representation are each the sum of the correspond-
ing moments for the individual excitation mani-
folds.

The value of g, (total) determined by the present
calculation is 18.1585a',. This is the static polar-

0

izability. This computed value, equal to 2.69 A',
is in good agreement with recent theoretical re-
sults, 2.85 A' (Stevens and Billingsley ') and
2.93 A' (Mukherjee ef al.s').

The Stieltjes imaging method for constructing
the photoionization cross section from a given
principal representation can produce qualitatively
incorrect results if the excitation spectrum is a
superposition of weakly interacting component
spectra. In the case of He, discussed above, it
was necessary before constructing F(e) and g(&)
to separate principal representation elements

(e, , f, ) associated with the ground state of He'
from the much weaker elements associated with
excited states of He'. The essential problem is
that Eqs. (6) and (7) of the Stieltjes imaging method
confine the full effect of any f, to the interval be-
tween the adjacent energy values &, , and
When the principal representation elements are
relatively sparse, one large f, value may rep-
resent the integrated effect of a smooth excitation
curve extended over a broad enery range. If
physically distinct excitations (such as the auto-
ionizing states of He, superimposed on the 1skP
excitation continuum) produce other principal
representation elements within this energy range,
the large element (e, ,f, ) would appear as a large
but spurious peak, confined between the neighbor-
ing representation elements arising from distinct
excitation processes.

This aspect of the Stieltjes imaging method
presents serious difficulties for applications to
complex atoms. In the case of He, the excitation
series associated with He'(Is) could be separated
from the full representation because al. l large
oscillator-strength elements could be assumed
to be in this series. For complex atoms, the
various positive-ion states may produce several
relatively strong excitation series, which must
be disentangled before qualitatively correct curves
can be obtained for F(&) or g(e). This requires
careful consideration of the structure of the pos-
sible excitation manifolds and identification of
weak resonances superimposed on stronger con-
tinuum excitation backgrounds. An analysis of
the boron ground-state excitation spectrum is
given here as an example of the reasoning that
might be applied.

Stieltjes image data points for F(e) defined by

2$

TABLE VI. B principal representations (e in e /uo).

2D Total

0.184 122
0.293 900
0.397 900
0.454 644
0.584 801
0.747 114
0.881760
0.996 123
1.172 385
1.292 530
2.095 541
2.483 550
3.883 295
9.580 985

25.104 812

0.079 321
0.074 665
0.040 028
0.000 180
0.001 329
0.000 356
0.005 473
0.011407
0.015 600
0.026 668
0.006 159
0.004 848
0.000 617
0.021 522
0.001 172

0.334 122
0.409 468
0.577 508
0.665 256
0.828 092
0.873 482
0.984 253
1.127 848
1.349 968
1.580 083
2.426 085
3.293 280
4.860 680
9.588 166

25.357 702

0.568 152
0.039 705
0.000 109
0.003 015
0.005 162
0.061 521
0.003 023
0.054 310
0.058 475
0.003 750
0.010 034
0.001 728
0.000 519
0.062 951
0.001 418

0.220 554
0.392 830
0.434 852
0.569 109
0.669 561
0.871 498
0.909 534
1.123 328
1.240 585
1.799 634
1.964 637
2.585 232
4.177 930
9.572 919

25.512 670

0.077 569
0.900 929
0.265 540
0.000 592
0.002 492
0.025 687
0.048 854
0.053 218
0.175 447
0.096 270
0.068 981
0.013691
0.001 443
0.104 691
0.001 379

0.184 122
0.220 554
0.293 900
0.334 122
0.392 970
0.412 991
0.435 351
0.621 137
0.855 364
1.000 576
1.253 043
1.879 719
2.724 315
9.532 640

23 ~ 239 120

0.079 321
0.077 569
0.074 665
0.568 156
0.938 650
0.052 499
0.255 370
0.005 481
0.102 585
0.116598
0.329 271
0 ~ 178 370
0.027 451
0.189 136
0.004 878
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FIG. 2. 8 F and a'p& from. Stieltjes inmging of total
pr inc ipal representation.

Eqs, (6) and (7) for the total principal representa-
tion listed in Table VI were fitted by a cubic nat-
ural spline function. " The resulting curves for
E(A.) and o» [from the derivative function g(e)]
are shown in Fig. 2 for energies above the known

line spectra of 8 I; cr» is plotted only above the
(2s2p)'P' threshold of 8 II at 112.6 A (e
=0.639 40e'/a, ). Line spectra are observed at
longer wavelengths, superimposed on an ioniza-
tion continuum between the (2s2P} P' threshold
at 960 A (0.4'15 lie'/ao} and the (2s )'S threshold
at 1494.1 A (0.304 96e'/a, ). Reconstruction of the
intensity distributions in these line spectra will.
be discussed below.

Preliminary results of el.ectron scattering cal.-
culations of the atomic boron photoionization cross
section" indicate that v» ls a decreasing function
of energy above the 'P' threshold. This suggests
that the peak shown in Fig. 2 is a computational
artifact, due to failure to separate physically dis-
tinct contributions to the excitation spectrum. The
obvious separation into 'S, 'P, and 'D components
changes the total a» curve, but does not eliminate
what appears to be spurious structure. In order
to examine this question more closely, the 'D
excitation spectrum, which accounts for more than
half of the total. oscillator strength for valence-
shell excitations, will be analyzed here in detail.
Kith certain plausible assumptions, it turns out
to be possible to subdivide this excitation spectrum
so that the reconstructed photoionization cross
section is physical. ly reasonable.

The Rydberg series of excitations of the
(2s 2p} P' ground state of 8 I that converge to
the (2s')'S ground state of 8 II are of the form
(2s'ns)'S and (2s nd)'D T. he only other electric-
dipole-all. owed transitions in this energy range
are to the S and 'D states of configuration (2s2p ).

From its energy value, the first 'D principal
representation element in Table VI primarily
describes the (2s2P )'D excitation line. Since
only 'D states can arise from coupling nd oxbitals
to the (2s'}'S state of 8 II, the oscillator strength
due to 2P--nd transitions (or 2P- kd in the con-
tinuum) is confined to the 'D excitations. In the
present calculations, this oseil. lator strength is
concentrated in the second 'D principal represen-
tation element in Table VI. This was verified
by repeating the calculations with all d orbitals
removed, which eliminated this principal rep-
resentation element.

The oscillator strengths of the observed 'P'-'D
lines below the (2s2)'S threshold of 8 II were re-
constructed from a polynomial. defined to fit the
cumulative oscillator-strength function for the
first two 'D elements of Table VI:

0.978 498 —0.138 163~ ' —0.015 239
(65)

The curve E,(e) passes through the two data points
at e, and e„defined by Eq. (7) in this case, and

also through the implied point at infinity, pre-
serving the sum f, +f, E,(e) vanis.hes at &

=0.213 98, below the first 'D state of B I.
Oseil. lator strengths were determined at ex-

perimental excitation energies"" fol. lowing the
procedure described in Sec. IV. The lowest 'D
state is of configuration 2s2P', which distinguishes
it from the 2s'nd Rydberg series. Hence the first
'P'-'D oscillator strength was taken to be ex-
actly twice the locaL value of F(e), in accord with

Eq. (62) when f, =0. The subsequent f values, for
the 2s'nd series, were renormalized by the com-
mon factor defined by Eq. (64). These recon-
structed oscillator strengths are listed in Tabl. e
VII. Experimental oscil. lator strengths" ' are
known only for the first two 'P'-'D transitions.
The present results fall within the range of these
experimental values.

Absorption lines of a second 'D Rydberg series,
converging to the (2s2p)'P' state of 8 II, have
been observed. " These lines are broadened by
autoionization, since they lie above the 8 D ground
state. The upper states of these transitions are
assumed to be of the form (2s2P)'P'nP, arising
from 2s nP transitions. In the present calcula-
tions, the discrete part of this transition series
must be associated with the 'D principal repre-
sentation element at e = 0.4349 (1046 A), between
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TABLE VII. Reconstruction of B 2D Rydberg series.

State Z(g) a, b f (calc) f (obs)

2s2p
2s 23d

4
5
6
7
8
9

10
11
12
13

2s 2P 3P
4
5
6
7

2089.6
1826.0
1667.0
1600.5
1566.2
1546.5
1533.9
1525.6
1519.7
1515.5
1512.3
1509.7

1141.7
1044.8
1009.8
992.5
982.8

0.048 71
0.166 30
0.061 14
0.03111
0.015 90
0.010 84
0.006 21
0.00501
0.003 07
0.002 42
0.00192
0.001 51

0.100 34
0.03180
0.014 56
0.008 14
0.00448

0 059 0 048 d P P50 e P P54 E P P458
0.175 0.15, 0.19, 0.20 &

'Moore, Ref. 34.
b Esteva, Ref. 35.

Bergstrom et a/. , Ref. 36.
Lawrence and Savage, Ref. 37.

~ Bromander, Ref. 38.
~ Smith and Wiese, Ref. 39.
~ Kernahan et al. , Ref. 40.

the 'S and 'P' thresholds of BII. Since this large
contribution to the cumulative oscillator strength
should extend into the ionization continuum above
the 'P' threshold, it must be associated with at
least one large principal representation element
at higher energy. In Table VI, the largest 'D

f value at higher energy occurs at e =1.2406. The
quadratic polynomial in & ' defined by these two
principal representation elements, fitted as in
the definition of Eq. (65), is

F = 0.440 987 —0.095 227 &
' —0.016 873 E

(66)

F,(&) vanishes at b = 0.331 40, above the 'S thresh-
old of 8 II but below the first observed line
( s22p3p)'D of this excitation series. This is con-
sistent with use of E, to represent the cumulative
oscillator strength of this series. The coefficient
of & ' in E, is consistent in magnitude with the
quadratic term in F„given by Eq. (65).

Oscillator strengths for the (2s2PnP) D series
constructed from F,(e) at the experimental ex-
citation energies" are listed in Table VII. No
experimental oscillator strengths are available,
but the present values are consistent with obser-
vation of a rather strong series of absorption
lines. "

This reconstructed l.ine spectrum, together with
the continuous functions E, and E„defines the
cumulative oscillator-strength function F(e) shown

in Fig. 3. Absorption lines appear as vertical.
steps. Above the (2s2)'S state of Bli, g, (e), the
derivative of F,(e), provides a continuum absorp-
tion background to the line spectrum. The line
spectrum converging to the B II (2s2p)'P' thresh-
old is continued above this threshold by g, (e),
which gives the function g(&) shown in Fig. 3 when
added to g, (e). No Rydberg series converging to
the B II (2s2p)'P' threshold have been observed.
This is consistent with the present calculations,
since the 'D principal representation contains only
one very small element between the 'P' and 'P'

1.4 2.8

1.2 2,4

1.0— 2.0

0.8—
F(&)

0.6—

1.6

1.2

0.4— 0,8

0.4
(2s2)15

00 t I I4 I I 0.0
0.20 0.25 0.30 0.35 0.55 0.60

0.2—
(2s2p) P

0.40 0.45 0.50

e(e2/a )

FIG. 3. B ground-state 2D component of cumulative
oscillator strength E and oscillator-strength distribution
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thresholds (f =0.0006 at e =0.5691). This oscil-
lator strength is too small to be visible on the
seal. e of Fig. 3.

The total photoionization cross section shown
in Fig. 2 nearly vanishes at the {2s2P)'P' thresh-
oLd of BII. In contrast, the function g(e) shown
in Fig. 3, a monotonieally decreasing function,
gives o» =3.2937 Mb from 'D excitations alone at
the 'P' threshold (712.6 A or 0.6394e'/ao). A
l.arge part of the broad peak in o» shomn in Fig.
2 must be distributed over a wider energy range
in order to be compatibl. e with the indicated re-
construction of observed line spectra.

Although no l.ine spectra have been observed
beyond the (2s2P)'P' threshold, Rydberg series
of excitation resonances may be formed by elec-
tron attachment to excited B H states of config-
uration 2p . The (2s 2p)2P' ground state of B I
gains a relatively large component of structure
(2P')'P' by configuration interaction. Transitions
to states of structure 2P'ns or 2P'nd may have
substantial oscillator strength due to one-elec-
tron transitions 2P ns or 2P-nd from the
(2P')'P' component of the ground state. This could
give 1'lse to 8everal, dlstlnct excltatlon 8erles at
energies above the (2s2P)'P' threshoM, with final
'D states of structure (2P')'Pnd, (2P')'D( s,nnd), and
(2P')'Snd.

In the absence of experimental data and of more
detailed calculations, no definite conclusions can
be drawn about these higher excitation series,
although wave functions of this structure are con-
tained in the calculations presented here. In fact,
it was found that three additional. pairs of elements
in the 'D principal representation listed in Table
VI could be fitted to polynomials simil. ar to E,
and E2, with small. quadratic terms in & '. The
additional three polynomial. s are

E, =0.055710-0.020187~ ' —0.010901~ ',
(67)

from the 'D pr ineipal representation elements
at & =0.6696 and & =1.1233;

E,=0.117835-0.052936~ '-0.029125~ ',

2.0 4.0

1.5

2.0

defined only for E greater than the points at which

they vanish.
To illustrate the effect of separating distinct

excitation series, Fig. 4 shoms the cumulative
oscillator-strength function F{e)for 2D excitations,
expressed as the sum of E„.. . , E, and of a cubic
spline function defined by the remaining D prin-
cipal representation elements from Table VI.
The 'D photoionization cross section 0» shomn

in Fig. 4 is obtained from the sum of derivative
functions g„.. . , g, and of the derivative of the
residual spline function. If line spectra corres-
ponding to these assumed excitation series mere
known, the initial part of each function E,- would

be replaced by a histogram, as in Fig. 3, and
each function g, would commence with a series
of & functions, eventual. ly merging into the con-
tinuous functions approximated here. Since auto-
ionizing states are invol. ved, the discrete part
of g,. would actually be a series of resonance pro-
file structures. In the absence of information on
resonance line positions and widths, each function

g,. is presented here as a smooth function, dis-
continuous at its origin (where F, vanishes).
These discontinuities appear prominently in Fig. 4.

The 'I"-'I' excitation spectrum is dominated
by a single strong line, for the upper state
{2s2p )'P at X =1378.5 A or e = 0.33053e2/ao. This
line must be associated with the 'P principal rep-
resentation element {e=0.3341, f =0.5682) in

Table VI. Smith and Wiese39 give f =0.58 for this
line. A recently observed value4' is f =0.63+0.06.

Oscillator strengths of the observed 'P'-'8
lines below the (2s )'S threshold of B II were re-
constructed from a polynomial in & '. This poly-
nomial. was fitted to the first three Stieltjes data

from the elements at & = 0.9095 and 1.9646; and

E, =0.121957—0.078675~ ' —0.014307~ ', 0.5 1.0

(69)
from the elements at & =0.8715 and 1.7996. The
functions E„E~, and E, vanish at & =0.65920,
0.77017, and 0.79304, respectively. This is com-
patible mith excitation series of resonances above
the (2s2P)'P' threshold at e =0.639 40e2/ao
(A. = 712.6 A). The functions F„F„and F, are

0.0
800 600 200

FIG. 4. 8 ground-state 2D component of P and 0»,
from separated excitation series.
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points of the histogram for F(e) constructed from
the 'S principal. representation listed in. Table VI.
This pol. ynomial is

F =0.413805 —0.118268e '+0.009092e 2. (VO)

Oscillator strengths determined at the experi-
mental excitation energies"" are listed in Ta.ble
VIII. Experimental oscil. lator strengths, ""
known only for the first line in the series, bracket
the present value. The (2s2P')'S state occurs be-
tween n =6 and 't in the (2s'ns)'S series. Since
line strengths are not computed individual. l.y in

the present work, their values are determined
from the smooth curve for F(e) entirely by the
energy intervals of neighboring lines. This con-
struction assigns a relatively large oscillator
strength to the 2s2P . Qualitative line-intensity
observations 4 indicate that these relative inten-
sities should be reversed. It would be possible
to resolve this point by direct computation of the
oscillator strength for excitation to (2s2P )'S in
a variational calculation that could represent ex-
plicit ns orbitals for the neighboring Rydberg
states.

vr. DiScUSs~o~

The present paper has considered three main
aspects of the practical application of the Stieltjes
imaging method of Langhoff. ' The first aspect
is the technical problem of obtaining a numerically
valid principal representation of the oscillator-
strength distribution for excitations from the
ground state of a compl, ex atom. This appears
to be dealt with adequately through the revised
algorithms presented in Sec. III. The most im-
portant practical development in computational
procedure introduced here is the direct construc-
tion of the recurrence coefficients (P„.. . , c.'„)

of Egs. (18) and (28), since this bypasses the
numerically unstable step in the usual. method
of moments. It has been shown here that this
revised method retains sufficient detail in the ex-
citation spectrum to describe the (2s2P)'P' auto-
ionizing state of He, whose quite small oscillator
strength is superimposed on the much larger
absorption continuum of the (1 st)'P' excitation
series.

The second aspect of this general method con-
sidered here is the direct use of a principal rep-
resentation to compute Van der %'aals coefficients
and to reconstruct oscillator strengths for line
spectra at observed energy values. Results ob-
tained for He and B, based on exploratory cal-
culations that are very inexpensive in computer
time, are in good agreement with all available
quantitative data for the ground states of these
atoms and for their excitation spectra. This use
of the present method opens up a rich field for
possible applications, unifying the quantitative
treatment of ground-state excitation spectra over
the full range of observed energies. The prospect
of rapid and aeeurate computation of Van der Waals
constants and related quantities may be of con-
siderable importance in the quantitative study of
interatomic and intermolecular forces.

The third aspect considered here, the construc-
tion of the photoionization cross section from
principal representation data on the oseillator-
strength distribution, suffers from difficulties
inherent in the physics of complex atoms. When
several low-lying states of the detached species
exist, several distinct excitation series of com-
parable intensity may contribute to the excitation
spectrum. As shown here, it is necessary to
separate a given principal. representation of the
oscillator-strength distribution into the individual

TABLE VIII. Reconstruction of B 2S Rydberg series.

State

28 38
4
5
6

2s 2p
2s is

8
9

10
11
12

A, (A) a, b

2497.5
1817.9
1662.6
1610.4
1573.3
1558.7
1539.8
1529.6
1522.5
1517.4
1513.7

f(c&c)

0.069 49
0.03140
0.003 84
0.008 89
0,000 44
0.003 31
0.001 59
0.001 09
0.00078
0.000 57
0.000 42

f (obs)

0 055 ' 0 090 0 062 ' 0 087

~ Moore, Ref. 34.
b Esteva, Ref. 35.

Bergstrom et 4., Ref. 36.

Bromander, Ref. 38.
~Smith and%'iese, Ref. 39.
~ Kernahan et u/. , Ref. 40.
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contributions of such excitation series before the
photoionization cross section can be obtained with-
out spurious large-seal. e structure. This means
that a careful analysis of observed line spectra
and absorption resonance series and construction
of the cumulative oscillator-strength functions
that continue such series into the photoionization
continuum is an essential step in the practical use
of the Stieltjes imaging method.

Two important extensions of the present method
have not been discussed here. The first is imple-
mentation for molecules. It is clear that this
presents no serious practical difficulty, given
the technical developments of the method described
here. For molecules, it will be important to con-
sider electric quadrupole and octupole excitations,
so that higher Van der Waals coefficients can be

computed.
The second major extension of this method is

to the excitations of excited states, including
inner-shell vacancy states. For this purpose,
it will be necessary to modify the algorithms given
here so that negative oscillator strengths may
be considered. This development does not appear
to present any essential. difficulty.

In summary, the method considered here pro-
vides a powerful unifying formalism for the quan-
titative study of the intensity distributions in

atomic and molecular spectra, including eontinu-
ations of line spectra or resonance series into the
photoionization or photodetachment continuum.
Preliminary results indicate that quantitative data
can be obtained with relative ease for a wide range
of possible applications.
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2 (&, —&,) g ~ (0!rli} (il rl 0)
3 (2L, +1) „~ (0! 0)(il i)

2 E,. —E
3 (2L + 1)(0!0)(i I i )

(~ II rll 0),

where (i II rll 0) is a reduced matrix element4' of
the electronic operator

N

(A2)

a=g
ra. (A3)

(ilrl0)„, =
I

' ' (illrll 0). (A6)
L; —Lo Lo

Then Eq. (A2} can be expressed in the form

f, (l l ) = C(LOL, )d( (L)e( d, (l ),

where

C(L L; ) = —,'(0! 0) '(2L + 1) '

x ' oL; 1 Lo)
—L; L( —Lo L~)

d;(&)=(ili) "(ilrl0), d,

c,. =E] —E .

(A6)

(A7)

The 3-j symbol in C(L0L, ) can be evaluated4' to
give

The reduced matrix element (i II rll 0) is a real
number, with

(ill rll 0) =(-1)" '~ (0II rll i). (A4)

In the present work, a variational wave function
for an N-electron atom is expressed as a linear
combination of LS eigenfunctions. These are
constructed for each electronic configuration as
explicit l.inear combinations of Slater determin-
ants. An algorithm~ is used that produces a
standard state with Mz = L, M~ =S. Matrix ele-
ments of operators such as Eq. (A3) between such
functions are computed using simple general
formulas valid for Slater determinants. ~ For
such standard LS states the definition of reduced
matrix elements" gives

APPENDIX: COMPUTATION OF ATOMIC OSCILLATOR
STRENGTHS

Consider an electric dipole transition from
electronic state 0 to state i, both described by
variational wave functions. The orbital angular
momentum quantum numbers are Lo, Mo; L;, M& .
The dipole-length formula for the oscil. lator
strength is

L( =Lo —1,

(Lo+1)/Lo, L( =La,

(2LO+3)/(2LO+1), L( =Lo+1.

(A8)

Equation (A6) is the length-length (l l ) form of
the oscillator strength. Alternative formulas can
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be expressed in terms of dipole-velooity and
dipole-acceleration matrix elements, given re-
spectively by

d;(c)=(fI~) "(fI&I0)
d, (s)=(~i~) ~(fl~r rl0)„„

(A9)

f; (~ &) = —&(f.f; )~; (1 )~; (&),

f; (Uc) =~(&.f;)d;(c)e, 'd; (c).

(A10)

(A11)

The algorithms mentioned above reduce all
transition matrix elements to linear combinations
of integrals between orthonormal one-electron

where Ze is the nuclear charge. For complex
atoms the most useful formulas, in addition to
f, (l l) of Eq. (A6), are the length-velocity (l v)
and velocity-velocity (uu) expressions, respective-
ly,

orbital functions. The angular factors (denoted
by subscript 0) of these matrix elements can all
be expressed in terms of the integrals

(l + 1, mi r, i l, m')„= c'(1 +1, m; f, m' )r,

8
(1 +1, mi v, i f, m')„=c'(l +1, m; l, m') ———,

(A12)

(l+1, mi Zr 'r „)n=c'(l+1,m; f, m')Zr ',

where the coefficients c'(l +1; 1 ) are Gaunt co-
efficients tabulated by Condon and Shortley. ~
The matrix element of V is anti-Hermitian, and

the others are Hermitian.
This formalism has been us ed for recent ac-

curate calculations of oscillator strengths for the
Be I isoelectronic sequence. '
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