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Moment-theory methods for the construction of photoabsorption and dispersion profiles from associated dipole

spectral moments are described and applied to simple atoms and ions. A previously devised (Stieltjes) moment

approach, which provides convergent histogram approximations to absorption and dispersion profiles, is

refined and extended to the use of arbitrarily large numbers of spectral moments, and an improved

(Tchebycheff) moment approach is introduced which gives profiles that are continuous in the photoionization

region and exhibit the 8-function-like behavior associated with discrete transitions at the appropriate
frequencies. Recurrence relations for the polynomials orthogonal and quasiorthogonal with respect to the

distributions are employed in solving the necessary moment problems involving large numbers of spectral
moments. The methods are applied in illustrative calculations of absorption and dispersion profiles in one- and

two-electron atoms and ions. In the case of one-electron atomic systems the necessary polynomial recurrence

coefficients are obtained in closed form from the known spectral moments, allowing the construction of
distributions which reproduce the known profiles with high accuracy, employing as many as 100 spectral
moments. Variational calculations using large basis sets of square-integrable functions, including the special
functions required to satisfy sum rules, provide accurate spectral moments for atomic helium and the negative

hydrogen ion. A simple moment-extension procedure is devised to interpolate the associated recurrence
coefficients to infinite order employing their known asymptotic values. The associated Stieltjes and

Tchebycheff approximations to the absorption and dispersion profiles obtained in these cases are in excellent
agreement with available measurements and previous accurate calculations employing discrete and continuum

;;ave functions.

I. INTRODUCTION

The photoabsorption and dispersion profiles of
atoms and ions in the optical and uv portions of the
spectrum have long been the focus of considerable
theoretical and experimental investigation. ' Only
comparatively recently, however, have accurate
measurements and calculations provided profiles
in good mutual agreement for even the simplest
atomic systems. ' Although Schrodinger theory in
the semiclassical approximation furnishes the
basis for theoretical investigations, ' construction
of the discrete and continuum eigenfunctions re-
quired in the customary expressions for absorp-
tion and dispersion cross-sections necessitates
the introduction of additional approximations which
are generally without a Pmoxi justification. '

Recently, techniques have been devised that can
avoid additional approximations in semiclassical
calculations of the interactions between radiation
and matter. ' ' One of these makes use of the
classical theory of moments and conventional Ritz
variational calculations appropriate for bound

states to obtain accurate discrete and continuum
absorption and dispersion profiles in atoms and
ion s.'

In the present paper the previously described
(Stieltjes) moment approach, ' which provides con-
vergent histogram approximations to photoabsorp-
tion and dispersion profiles from a given set of
spectral moments, is refined and extended to the
use of arbitrarily large numbers of spectral mo-
ments. In addition, a complementary and im-
proved (Tchebycheff) moment approach is de-
sc ribed that provide s conver gent approximations
to absorption and dispersion profiles which are
continuous in the photoionization region and give
the singular behavior associated with discrete
transitions at the appropriate frequencies. The
moment problems arising in the construction
of the Stieltjes and Tchebycheff profiles are solved
for arbitrarily large numbers of moments by con-
structing the orthogonal and quasiorthogonal poly-
nomials associated with the correct distributions, '
using stable algorithms to calculate the polynomial
recurrence coeff icients from spectral moments"
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or variationally-determined pseudospectra.
The Stieltjes and Tchebycheff Inoment methods

Rre applied in illustrative calculations of absorp-
tion and dispersion profiles in one- and two-elec-
tron atoms and ions. In the case of one-electron
atoms and ions, the necessary polynomial recur-
rence coefficients are obtained in closed forms,
affording the construction of Stieltjes and Tche-
bycheff profiles corresponding to the use of up to
100 spectral moments which are rapidly conver-
gent to the correct known results. Large basi. s-
set variational calculations, including the special
functions necessary to satisfy dipole sum rules, "
are used to construct 'S~ ground states and 'P',
pseudostates for atomic helium and the negative
hydrogen ion, from which the necessary spectral
moments are obtained. The associated polynomial
recurrence coefficients are found to converge
rapidly to asymptotic values determined by the
known frequency thresholds for photoionization,
allowing their extension to arbitrary order using
appropriate analytic forms. Convergent Stieltjes
and Tchebycheff photoabsorption and dispersion
profiles in atomic helium and the negative hydro-
gen ion are thereby obtained which are in excel-
lent agreement with available measurements and
the most accurate previous calculations employing
discrete and continuum wave functions.

The Stieltjes and Tchebycheff approaches to
photoabsorption and dispersion profiles are de-
scribed in Sec. II, and some computational aspects
of the methods are clarified. Applicati. ons are
given in Sec. III and concluding remarks in Sec. IV.

II. THEORY

ln this section we describe the Stieltjes and
Tchebycheff procedures for constructing conver-
gent approximations to photoabsorption and dis-
persion profiles from appropriate spectral mo-
ments or variationally determined pseudospectra,
and clarify some of the computational aspects of
the development.

A. Photoabsorption and dispersion

where

n df(e)/de
Imo.'&u) =

Rea(~) =P
q2 ~2

l

Here, the oscillator strength for transition into
the interval e to &+A is given by

where the discrete and continuum contributions
have their customary meanings. ' In the following,
we shall make use of the spectxal moments"

e 'df(e), k ~ 0,

which Rl.e necessRly Rnd sufflclent for the eval-
uation of Eqs. (1)-(3).'

where the distribution function f" (e) is given by
an n-term sum of Stieltjes step-function integra-
tors, and the remainder R„(a) is of known sign
along certain rays. The positions c;f(n) and
strengths f;(n) of the steps of f'"'(e), which pro-
vide the histogram representation''

fi"'(e) =0, 0& e& e,(n),

fi"'(e) =g f;(n), e,(n) & e-e,„(n),

fi"'(e) = Q f;(n) =S(0), e„(n) & e. ,

B. StieItjes procedure

Following the Stlelt]es Rpproachy convergent Rp
proximations to the polarizability of Eq. (3) that
are valid for all complex z, including the real
axis, are obtained in the form".

The photoabsorption cross section a(e) and re-
fractive index n(cu) of a dilute gas are given by
the expressions"' "

that give upper and lower (Tchebycheff) bounds on
f(6) Rt the points 6;(N), Rre detel mined uniquely
from solution of the moment problem'''

o(up) = (4w&u/c) 1mo((a)),

n(ur) =I+2sN, Ren((u),

where c is the speed of light, N~ is the atomic-
number density, and the comp1. ex polarizability
a(z) is given by the familiar Hiemann-Stieltjes
integrale

(1)

(2)

ff

8(-k) =g e;(n) f;(n), 0=0, 1, . . . , 2n-1 .

In the analytic region of the polarizability a(a), it
is sufficient to interpret df~" (z) of the histogram
of Eqs. (I) in the Dirae sense,



df' '(a"(=(gf( )&(a(ml —e)

in which case Eq. (6) beco111es ill tile RI1Rlytlc

region

a(z) =g ', , +B„(z) .f((n)

By contrast, on the real axis we wxite

df'"'(8) =g'"'(8) «, (11)

wllel'8 'tile (iellslty g (8) is tile Stleltjes derivative
of f'"'(8), '

g "'(8) = 0, 0 & 8 & e,(n)

g 1(,) =-'f '"'+f'("' .(.) «. «(n)
2 8;„(n)—8;(n) '

I1avlng a preassigIled fx'eguency 6y x'egarded as a
function of e." The associated Tchebycheff den-
sity is given by

dE~"l(e) ~ df;(n, 8) 1 df&(e)
de ~ dz 2 de

in which case Eqs. (13) are replaced by

Ima(((() = IIG("I(((()/2e+ImR„(&u),
" d"'(8) de

Rea((&() =P
& & +Red„((d) . (I'Ib)

s("'(-u) = 8 "G~"'(8)de, k=0, 1, . . . , 2n-l,

It is shown elsewhere that G "'(z) is continuous
and non-negative on the real axis, has 2n- 2 con-
tinuous derivatives there, with 2N convergent mo-
IQents

g("l(e) =0, e„(n)& 8,
ill which cRse E(I. (6) gives

Im a(v) = vg("'((d)/2(d + 1mjt„(&),
((() 8) de

Rea(ru) =P, , +ReA„((u) .

(12b)

(12c)

(13a)

(13b)

(18)
and has conjugate poles in the upper and lower
half -planes. '6

D. Computational aspects

The moment problem of E(I. (8) is Iinearized
through the introduction of Pad6 approximants"

E(luatlon (13R) is dll'ectly applicable ill tile plloto-
lonlzation region &g «~ A, whereas in the region of
discrete transitions previously described addi-
tional considerations are required to extract the
appropriate discrete oscillator strengths from
g(l(}( ~) & &

C. Tchebycheff procedure

[n, n- I](z) =P„,( )/zQ„( )z,

~„,(z) = P oa"&z',

q„(z) =I++ ta"&z',

to the continued fraction'

(19C)

8(-k) = e ' f,(&)+g e((n, 8) 'f;(n, 8)

l'& =0, 1, . . . , 2n, (14)

where c is an axbitx'ary preassigned frequency, in
the form

+'"'(8) = gf;(n, 8)+-'f.(e) . (15)

In E(I. (15)the sum on the right-hand side is overall
I for wlllcll 0& el(n, 8) & e. We recognize E (&) Rs
the Stieltjes value of the (n+1)-term distribution

Although the Stieltjes procedure has proved sat-
isfactory in previous applications, it is useful to
also investigate convergent approximations to a(z)
based on continuous (Tchebycheff) distributions
Ei"'(8) and densities G("'(8). The Tchebycheff dis-
tribution F " (e) is constructed from the solution
of the moment problem'

A(z) =

1/z —a, —
p„,1/z —a- ~ &

1/z —a„

associated with the Stieltjes integral

" «f(e) =S(0)+S(- 1) z+8 (- 2) z'+ ~

Q.(z) =(1 —a.z) @.—,(z) —z PgQ. —( &)z,

Q-, (z) =0, Q,(z) =1,

up to order 2' ~ 1;

[n, n-l](z)=(I/z)&(z)=P(z)=&(z'" '). (22)

E(luation (22) pl'ovides expllcl't Rlgol'ithnls for de-
termining the a~"», &~"» and n„, P„ from the mo-
ments 8(-k)." When large numbers of moments
are employed it is convenient to use the recur-
rence relations'
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P„,(z) = (1 —a„z) P„,(z) —z' P„,P„,(z),

P-,(z) = o, P.(z) = P. , (23b)

Y„,„Y„,„, S(-1)
Yn-l, n-1 Yn-, , n-2

' ' ' " S(0)

in constructing the polynomials Q„(z), P„,(z) or
thogonal with respect to the distribution f(«),"and
to determine the «L„and P„appearing in Eqs. (20)
and (23) from the moments S(- k) in the forms, "

spectra. " When the necessary moments are avail-
able in closed form, Eqs. (24) and (25) are satis-
factory, however.

Once the n„and P„are determined from Eqs.
(24) and (25) and the known moments [Eq. (5)], or
from Eqs. (23) and (2'7) and variationally deter-
mined pseudospectra, Eqs. (23) provide the poly-
nomials Q„(z) and P„,(z}. The «~(n) and f;( )mare
obtained from the roots and residues of
[n, n —1](z) [Eqs. (19)-(22) ] according to

Q„(«,(n})= 0,

p
ll. 71

$~71 J
P, =0, P, =S(0), (24b}

P„ ,(«;(n)}
«;(n) Q„'(«;(n)}

' (28b}

where the matrix elements

«™Q(«) df(«) (25a)

The polynomials of Eqs. (23) are also employed to
linearize the more general moment problem of
Eq. (14). The «~(+, «) and f;(+, «) are obtained
from roots and residues of the rational fraction

satisfy

n, l n-]. , 1+l 4 ~n-1, 1 ] ll-y ~n-2, 1 y

F„,=O, l &n,

Y, (=S( I), -

(25b)

(25c)

{25d)

In, 8 I)(-z) = P„,(z)/Q„(z),

P„(z) = Q„(«) P„,(z) —Q„,(«) P„,(z},
Q.(z) = Q.(«) Q.—,(z) —Q.-,(«) Q.(z)

according to

(29a)

(29b)

(29c)

(25e)

The recurrence relation (25b) is obtained directly
from Eq. (23a) and the definition of Eq. (25a).

Equations (24) can be written in the alternative
forms

I8„=
1

~0~~

(26a)

(
2n

Q.(«)' df(«), (26b)

N
y

pn-1

P.P," P. Q.—,(«;)'f;

(27a)

which are particularly useful when the recurrence
coefficients are to be calculated from variationally
determined pseudospectra «; and f;, i = 1, N In.
this case, Eqs. (26) become

Q„(«;(n, «}}=0,
P„ ,{«,(n, «))

«;(n, «) Q„' («;(n, «)}
(30b}

where P„,{z) and Q„(z) are the so-called quasi-
orthogonal polynomials associated with the dis-
tribution f(«), Q„(z) having a preassigned root at
~ 9

Equations (19)-(30) show that the polynomials
of Eqs. (23) provide the solutions of the moment
problems of Secs. IIA and IIB, emphasizing the
importance of the recurrence coefficients e„and
P..

A. Model ionic system

III. APPLICATIONS

In this section we apply the Stieltjes and
Tchebycheff procedures in determinations of the
absorption and dispersion profiles of one- and two-
electron atoms and ions.

2n

P. = - — . . . — Q = Q.(«)'f, (2'7b)

where the values Q„,(«, ) and Q„(«;) are obtained
from the recurrence relations of Eqs. (23) using
n and P values of lower order than the n„and
P„being calculated. Equations (23) and (27) pro-
vide a convenient stable algorithm for determin-
ing n„and P„values, which is preferable to the
use of Eqs. (24) and (25) with spectral moments
given by the variationally determined pseudo-

The continuum oscillator-strength density

g{«) =(8/3s) [(« —I)'~'/«]', 1 ~«&~, (3la)

and associated distribution

f(«) = g(«') «'

2 '(« —I)'~' 2 5 +t» '(« —1)'
3

(31b}
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provides a useful model ionic systemfor illustrat-
ing the Stieltjes and Tchebycheff procedures. "
The spectral moments [Eq. (5)] in this case are
given by

21-2k (2k)t
k!(k+2)! (32)

and the associated recurrence coefficients [Eqs.
(24)]

o.„=—,
' (4n' —3)/(4' —1),

P„=-,'(2n+3) (2n —1)/(4n+2)', P, =1,
(33a)

(33b)

are obtained from solution of Eqs. (25). These
can be employed in constructing the polynomials
of Eqs. (23) and (29) to arbitrary order, from
which the Stieltjes and Tchebycheff approximations
[Eqs. (6}-(13) and (14)-(18)] to the photoab sorption
and dispersion profiles [Eqs. (1) and (2)] are ob-
tained. "

We have evaluated the Stieltjes and Tchebycheff
distributions [f " (e}, I" "'(e)] and densities
[g "'(e), G "'(e)] of Eqs. (7) and (15) and of Eqs.
(12) and (16), respectively, for n =5, 10, 15, . . . , 50,

corresponding to the use of 10-100 of the moments
of Eqs. (32) in steps of 10. The respective Stieltjes
and Tchebycheff distributions and densities are
found to be in excellent mutual agreement, and are
rapidly convergent to the correct results of Eqs.
(31). Distributions and densities obtained employ-
ing 100 of the moments of Eqs. (32) are shown in

Fig. 1. Although the Tchebycheff bounds on the
distribution provided by the Stieltjes histogram
are evidently not fully convergent, their mean
values, which of course agree with the Tchebycheff
distribution, are indistinguishable from the cor-
rect result of Eq. (31b). Similarly, the Stieltjes
[g "(e}]and Tchebycheff [G "(e)] derivatives are
in excellent accord, the latter being indistinguish-
able from Eq. (31a). Indeed, the moment-theory
results obtained employing as few as 20 moments
(not shown) are in good agreement with Eqs. (31).'

In Fig. 2 are shown the Tchebycheff approxima-
tions to the absorption and dispersion profiles of
the model ionic system obtained employing 100 of
the moments of Eq. (32) and Eqs. (1), (2}, and

(17). The dispersion profile is evidently in ex-
cellent agreement with the correct result
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FIG. 1. Stieltjes and Tchebycheff photoabsorption dis-
tributions and densities for the negative hydrogen ion in
the Bethe-Ohmura approximation obtained employing
100 spectral moments [Eq. (32)] and the development of
Sec. II. The Stieltjes results f (&), g ~ (c) [Eqs. (7)
and (12)] are given by the histograms, and the Tcheby-
cheff results E ~ (e),G ~ (e) [Eqs. (15) and (16)] and
Tchebycheff bounds (Ref. 15) by the smooth curves. All
quantities are dimensionless.
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FIG. 2. Photoabsorption and dispersion profiles for
the negative hydrogen ion in the Bethe-Ohmura approxi-
mation; solid line, Tchebycheff results obtained employ-
ing 100 spectral moments [Eq. (32)] and the develop-
ment of Sec. II; filled circles, correct values obtained
from Eqs. (31) and (34). All quantities are dimension-
less.
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Reo.(~) = P
"A(e) de

—(cP
(34a)

=(4/3~4) [(1+~)'~'+(1 —~)'i' —( —,
' ur' +2)],

., =-,'[l- l/(i+ 1)'),

f, = —",(i+1} 'e, '[i/(i+2)]"", i =1, 2, . . . ,

(35a)

0((0 &1, (34b)

=(4/3~') [(1+(u)'i' —(
—', &u'+2)], a 0 1,

(34c)
obtained employing Eq. (31a). As in the case of
the absorption profile, the Tchebycheff approxima-
tion to the dispersion profile obtained with as few
as 20 moments (not shown} is in good accord with
the results of Fig. 2, ' and convergence upon intro-
duction of additional moments is rapid.

The foregoing results demonstrate that the
Stieltjes and Tchebycheff procedures can give con-
vergent approximations to continuous photoabsorp-
tion and dispersion profiles when the spectral mo-
ments necessary for obtaining the recurrence co-
efficients of Eqs. (23)-(25) are available.

B. Atomic hydrogen

The spectral moments of Eq. (5} for the photo-
absorption profile [Eq. (4)] of atomic hydrogen,

I
t

I
J ( f f I t

I I I I
I

I I I I

(35b)

16 exp[-4(2e —1) ' tan '(2e —1)' ']
3 e'(1 —exp[-2v(2e —1) "']j

o„=(n + 1)/n,

P„=—,'(n+3)/(n+1), Pa=1.

(36a)

(36b)

We have used the coefficients of Eqs. (36) in the
development of Sec. II to construct the Stieltjes
and Tchebycheff distributions [f "'(e), F "'(e)] and
densities [g "'(c), G" (e)] of Eqs. (7) and (15) and
of Eqs. (12) and (16), re spe ctive 1y, for n = 5, 10,
15, . . . , 40, corresponding to the use of 10-80
moments in steps of 10.'~ ln Figs. 3(a} and 3(b)
are shown the Stieltjes and Tchebycheff distribu-

I
I f I I 1 I

I I I I
)

I I I I

e~ 0.5, (35c)

can be determined for arbitrary k by a number of
methods. " The associated recurrence coefficients
of Eqs. (23)-(25) in the case of atomic hydrogen
are found to take the particularly simple forms"
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FIG. 3. (a) Stieltjes and Tchebycheff photoabsorption distributions and densities for atomic hydrogen obtained employ-
ing 80 spectral moments and the development of Sec. II. The Stieltjes distribution f +~(e) [Eq. (7)j is given by the as-
cending histogram inscribed by the upper and lower Tchebycheff bounds (Ref. 15), and the Stieltjes density g~+& (e) [Eq.
(12)] by the descending histogram. The Tchebycheff distribution E(+ (e) t.Eq. (15)l is given by the indicated mean value
of the Tchebycheff bounds, and the Tchebycheff density G (e) [Eq. (16)] by the smooth curve in the continuum portion
of the spectrum. All quantities are in Hartree atomic units. (b) Tchebycheff photoabsorpP. on density G~+~ (~) for atom-
ic hydrogen obtained from the development of Sec. II employing 80 spectral moments. The results in the photoioniza-
tion continuum are indistinguishable from the correct density of Eq. (35c), indicated by solid circles. All quantities
are in Hartree atomic units.
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tions and densities obtained employing 80 moments.
The results obtained employing fewer spectral
moments (not shown) are in good agreement with

and rapidly convergent to the results of Figs. 3(a)
and 3(b). Evidently, the Tchebycheff bounds on

f (e) shown in Fig. 3(a) are convergent to the cor-
rect results in the discrete region, but are not
fully convergent in the continuum. However, the
mean values of the Stieltjes distribution [f (e)],
which, of course, agree with the Tchebycheff re-
sults [F "(e)], are fully convergent to the cor-
rect values for all e. The Stieltjes derivative

[g ' ~(e)] shown in Fig. 3(a) evidently provides a
histogram approximation to the density that is in

excellent agreement with the Tchebycheff result
G~~" (e) in the continuum portion of the spectrum.
Approximations to the discrete f numbers in atomic
hydrogen are obtained directly from the Tcheby-
cheff distribution, and from the Stieltjes density
following previously described procedures. ' In

Table I, the first five f numbers in atomic hydro-
gen obtained from the Stieltjes and Tchebycheff
procedures are compared with the exact values,
indicating satisfactory mutual agreement. The
Tchebycheff derivative Gl4o'(e), shown in more de-
tail in Fig. 3(b), evidently exhibits 5-function-like
behavior at the correct resonances, and is in
excellent agreement with the correct continuum
absorption profile above the photoionization thresh-
old. Finally, in Fig. 4 are shown the Tchebycheff

l lllj Ilj I lllf[l j I
j l l j l j l ll

jo
a

CA

4J
Cl

j

0
Q

0
~~ o
OI-
C)
X
Q

K
4J

4
5 D

K
Q.

O
Vl

o ~
Q.
V3

C3

l &ill»ill illll l l ) l

o. j 0.2 0.3 0.5

FREQUENCY, e (a. u. )

FIG. 4. Photoabsorption and dispersion profiles for
atomic hydrogen; solid line, Tchebycheff results ob-
tained employing 80 spectral moments and the develop-
ment of Sec. II; solid circles, correct values of Eqs.
P) and (35). All quantities are in Hartree atomic units.

TABLE I. Discrete oscillator strengths in atomic hydrogen and helium.

Frequency &; Tchebycheff Stiel tj es

0.3750
0.4444
0.4688
0.4800
0.4861

0.7797
0.8484
0.8725
0.8836
0.8897

0,4162
0.0791
0.0290
0 ~ 0140
0.0080

0.2742
0.0719
0.0207
0.0201
0.0131

Hydrogen

Hel. ium

0.4161
0 ~ 0793
0.0291
0.0140
0.0078

0.2763
0.0733
0.0299
0,0156
0.0090

0.4162
0.0791
0.0290
0.0139
0.0078

0.2761~ 0.0014 '
0.0735+ 0.0036
0.0303*0.0071 '

0.0148 ~

0.0084 ~

Hartree atomic units,
Exact values for atomic hydrogen, experimental values for atomic helium [C. E. Moore,

gjtomic Energy I.bevels, Natl. Bur. Std. Circ. No. 467 (U. S, GPO, Washington, D. C. , 1949),
Vol. r].' Values obtained directly from the appropriate Tchebycheff distribution, as discussed in the
text.

Values obtained from the appropriate Stieltjes density, following the procedures of P. W.
Langhoff, J. Sims, and C. T. Corcoran [Phys. Rev. A 10, 829 {1974)].

Exact values for atomic hydrogen; as indicated for atomic helium.
M. T. Anderson and F. Weinhold, Phys. Rev. A 9, 118 (1974).

~ L. C. Green, N. C. Johnson, and E. K. Kolchin, Astrophys. J. 144, 369 (1966).
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approximations to the photoabsorption and disper-
sion profiles in atomic hydrogen obtained from
the 80-moment results. The dispersion profile
has been deleted in the discrete region of the spec-
trum for clarity. Evidently, the moment-theory
profiles shown are in excellent agreement with the
coll ect values except in the immediate vicinity
of the photoionization threshold, where the resolu-
tion obtained is limited by the use of finite num-
bers of moments and evaluation points. "

The foregoing results indicate that the Stieltjes
and Tchebycheff methods can provide convergent
approximations to both discrete and continuum
portions of simple photoabsorption and dispersion
profiles when the necessary spectral moments are
available.

TABLE II. Variational appr oximations to spectral
moments for the negative hydrogen ion.

Spectrum a Spectrum b

1.998 057(00)
1.494 963(01)
2.060 959(02)
3.771 499(03)
8.010266(04)
1.867 814 (06)
4.647 274(07)
1.213 031(09}
3.285 237(10)
9.161 894(11}

1.999 998(00)
1.496 745(01)
2.060 744{02)
3.767 879(03)
7.994 135(04)
1.861 477(06)
4.623 764(07)
1.204 628(09)
3.255 940{10)
9.061 453(11)

Values in Hartree atomic units. Numbers in paren-
thesis refer to appropriate powers of ten.

b Values obtained from pseudostate variational calcu-
lations employing distinct sets of basis functions (a and
b) as discussed in the text.

C. Negative hydrogen ion

Approximations to the spectral moments of Eq.
(5) in the case of many-electron systems are ob-
tained from variational calculations employing
square-integrable basis functions. ' Ten of the
moments obtaiQed from two such indepeQdent cal-
culati. ons in the case of the negative hydrogen ion
are shown in Table II. Spectrum a uses a 90-term
'So ground-state function (Eo =-0.52V 'l51 016 a.u.)
constructed from appropriate configurations of
1s-4s, 1s'-Ss', 2P, and 3P orbitals with optimized
Slater exponents multiplied by Hylleraas correla-
tion factors, and a 109-term 'P, pseudospectrum
of square-integrable functions constructed from
appropriate configurations of 1s-es, 2p-9p, and
Sp'-5p' orbitals multiplied by Hylleraas factors.
Spectrum b corresponds to the use of a 135-term
'S,' ground-state function (E,=-0.527 750 961 a.u.)
constructed from basis functions of the Perkeris

type, and a 110-term 'P,' pseudospectrum con-
structed from correlated functions of the Breit
type. In addition„ the spectrum-b basis contains
the special functions required to satisfy the S(2),
S(l), and S(0) sum rules. " Although the two cal-
culations are distinct, the first five spectral mo-
ments S(0)-S(4) in each case shown in Table II
agreetowithin a fewparts in the fourth significant
figure, and the next five S(—5)-S(-9) to within a
few parts in the third figure. Moreover„although
the pseudospectra of transition frequencies I,.
and oscillator strengths f, from which the sums
of Table II are constructed, 6

S(-k) = Q I,'f, , (87)

a „=I/(2e, ),
P„=1/(4e, )', (28b)

where &, (=0.02V 751 a.u.) is the photoionization

are different in the two cases, the presence of an
inelastic feature corresponding to the 2s hydro-
genic final state is clearly discernible in both
spectra at the appropriate excitation energy
(-0.4 a.u.). The appearance of this familiar in-
elastic feature in the moment-theory spectrum is
discussed further below.

In Table III the spectrum sum rules S(2), S(l),
S(0), S(-l) and Cauchy moments S(-2), S(-4),
S(-6), S(-8) obtained from the present calculations
are compared with available previous calculations.
It is clear that the present results are in good ac-
cord with previous accurate calcu. lations, and we
can infer that the variationally determined spectral
sums provide an accurate representation of the
photoabsorption spectrum of the negative hydrogen
ion. Note that the spectrum-b sum rules S(2) and
S(1) a,re in excellent agreement with the previous
accurate calculations, whereas the corresponding
spectrum a results are inaccurate. This is a con-
sequence of including the appropriate special func-
tions in the spectrum-b basis, but not in the spec-
trum-a basis, as indicated above. Evidently, only
the S(2) and S(l) values are significantly affected
by the special functions, the other moments from
the two pseudospectra being in good accord.

The pseudospectra and first 20 spectral sums in
both cases are used to calculate the recurrence
coefficients n„daPn„of Eqs. (28)—(2V) shown in
Table IV." Evidently, the first five coefficients
from the two different spectra are in good mutual
agreement, differing by a few parts in the third
significant figure, whereas the higher-order
spectrum-b coefficients disagree with the spec-
trum-a results and fail to converge to the correct
asymptotic values~a
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TABLE III. Spectral sum rules and Cauchy moments for the negative hydrogen ion.

Spectral sum Spectrum a Spectrum b Previous values

S(2)
s(1)
s(0)
s(—1)

0.625 74
0.713 166
1.9981(00)
1.4950(01)

1.377 59
0.747 48
2.0000(00)
1.4968(01)

1.378 54
0.747 51
2.0000
1.496 85(01)

s(-2)
s(—4)
S(—6)
s(—8)

2.0610(02)
8.0103(04)
4.6473(07)
3.2852(10)

2.0607(02)
7.9941(04)
4.6238(07)
3.2560(10)

2.0604(02)
8.144(04) '
4.672(07)
3.288(10)

a All values in Hartree atomic units. Numbers in parenthesis refer to appropriate powers of
ten.

b See footnote b in Table II.
C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

d Thomas-Reiche-Kuhn sum rule.
F. Weinhold, Proc. R. Soc. A327, 209 (1972).

f Bethe-Ohmura approximation of Eqs. (32) using the normalization of M. Inokuti and Y.-K.
Kim, Phys. Rev. 173, 154 (1968).

TABLE IV. Polynomial recurrence coefficients for
the dipole spectrum of the negative hydrogen ion.

Spectrum a
own Pn-g

Spectrum b
~n ~n-)

1
2

3
4
5
6
7
8
9

10

7.482 08
16.174 92
17.540 44
17.814 89
17.782 46
17.736 32
17.816 85
18.042 87
18.184 08
18.248 69

1.998 06
47.166 56
64.744 53
71.047 96
75.468 19
78.449 70
79.783 05
79.253 22
77.925 61
77.561 84

7.483 73
16.178 02
17.515 33
17.859 73
17.954 06
17.950 09
17.942 83
17.200 83

9 ~ 886 99
1.236 42

2.000 00
47.031 06
64.262 50
70.475 42
74.513 59
76.274 44
77.953 84
80.632 89
72.496 30
1.511 00

18.017 68 81.159 16 18.017 68 81.159 16

Values in Hartree atomic units obtained from Eqs.
(23) to (27) and var iationally determined pseudospectra.

b Asymptotic limits obtained from Eqs. (38) as dis-
cussed in the text, where &~ = 0.027 751 a.u. is the thres-
hold frequency for photoionization in this case.

threshold frequency. This failure of the spectrum-
b recurrence coefficients to converge to the cor-
rect limits can be attributed to the generally larger
variational pseudostrengths f, obtained (not shown),
in this case, relative to the spectrum-a values.
Evidently, the basis functions employed in con-
structing the 'P, psueodspectrum b are less ap-
propriate for spanning the space of the principle
pseudostates' for the negative hydrogen ion than
are the spectrum-a basis functions. As a con-
sequence, the underlying discrete spectrum used
to calculate the sums of Table 0 makes its pres-
ence felt in the n„and P„values for n ~ 9 in the
case of the spectrum b, whereas the spectrum-a

results, obtained with a distrubution of smaller
f, values, are found to be reliable for n 13. Of-
course, the n„and P„coefficients obtained from
any finite variational calculation will fail to con-
verge to the values of Eqs. (38) for sufficiently
large n.

The recurrence coefficients of Table IV are
employed in constructing the Stieltjes and Tcheby-
cheff distributions and densities corresponding to
the use of up to 20 moments for each spectrum.
The Stieltjes results obtained for both spectra are
in excellent mutual agreement for a given number
of moments, and are convergent to smooth profiles as
the number of moments employed is increased,
whereas the Tchebycheff results, although in ex-
cellent mutual accord and in agreement with the
Stieltjes values using up to 16 moments, fail to
converge in the case of the spectrum-b results
when additional moments beyond 16 are employed.
This failure to converge is a consequence of em-
ploying the coefficients a;„Pg and Gyp P]p ln the
spectrum-b calculations. When these are intro-
duced, although the Stieltjes density g""(e) is
convergent, the Tchebycheff density G""(e) ex-
hibits large peaks and deep minima, reflecting
the underlying discrete spectrum employed in the
calculation of the spectral sums. By contrast,
it is found that approximately 30 of the spectrum-a.
sums can be employed in the Tchebycheff approach
(not shown) before the presence of the underlying
discrete pseudospectrum is evident.

Although the Stieltjes and Tchebycheff results
obtained from the coefficients of Table IV are
satisfactory, it is useful to supplement these with
additional values for higher n that are compatible
with the known asymptotic limits a„and P„[Eqs.



14 MOMENT- THEORY INVESTIGATIONS OF PHOTOABSORPTION . . 1051

(38}], in order to extend the moment methods to
higher order. The coefficients of Table IV are
well approximated by the simple expressions"

o,„=n„(1+8,/n+ 8,/n'),

p„=P„t1 + y, /(n+ 1)+ y2/(n+ 1)'],

(39a)

(39b)

I & ~ ~&l&I

with (spectrum a, spectrum b)

5~ 0 1 '75 64~ 0 176 23 &2 0 760 3V~ 0 V60 88

(40a)

y& =-0.14492, -0.19169, y~=-1.38552, -1.29865,

(40b)

obtained by fitting Eqs. (39) to the first two coef-
ficients n»n, and P»P, in each case. Since the
latter values obtained from the two spectra are in
good mutual agreement (Table I), Eqs. (39)and (40)
provide a unique set of recurrence coefficients
with which to extend the values of Table IV.

The coefficients of Table IV and Eqs. (39}and

(40) are employed in the Tchebycheff procedure of

Sec. II in constructing the fully convergent photo-

absorption profile for the negative hydrogen shown
in Fig. 5. Evidently, the results so obtained are
in excellent agreement with the available measure-
ments, normalized to our results at 0.08629 a.u. ,
and with previous continuum wave-function calcu-
lations for frequency below the 2s inelastic thres-
hold. 4 In the latter region, the Tchebycheff results
indicate the presence of the inelastic contribution
to the total photoabsorption profile. " It is import-
ant to recognize that the results of Fig. 5, obtained
using the ten spectrum-a coefficients of Table IV
and ten of the coefficients of Eqs. (39) for 10 &n

~20, are in good accord with the Tchebycheff re-
sults obtained from the first 20 coefficients of
Eqs. (39}and (40). Thus the purpose of the coef-
ficient extension of Eqs. (39) is to enforce the cor-
rect asymptotic behavior of o.„and P„, which es-
sentially places the threshold of the density at the
appropriate value. The shape of the density is
determined from the lower-order coefficients or
spectral moments. Indeed, the coefficients of
Eqs. (39) are obtained from the first five spectral
moments of Table II and the photoionization thres-
hold frequency. "
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FIG. 5. Photoabsorption and dispersion profiles in the
negative hydrogen ion; solid line, Tchebycheff results
obtained from the coefficients of Table IV and the devel-
opment of Sec. II, as discussed in the text; solid circles,
experimental data [S. J. Smith and D. S. Burch, Phys.
Rev. 116, 1125 (1959)] normalized to the Tchebycheff
results at ~ =0.08629 a.u. ; solid triangles, accurate
theoretical calculations obtained employing continuum
wave functions [S. Geltman, Astrophys. J. 136, 935
(1962); N. A. Doughty, P. A. Fraser, and R. P. McEach-
ran, Mon. Not. R. Astron. Soc. 132, 255 (1966)j. All
quantities are in Hartree atomic units.

D. Atomic helium

Basis functions similar in type to those employed
above for the negative hydrogen ion are employed
in constructing appropriate 'So ground-state wave
functions and 'I", pseudostates for atomic helium.
The spectrum a, spectrum b ground-state energies
obtained are -2.903 72399, -2.903 V2437, and
associated spectral moments obtained from both
the correlated configuration basis and the Pekeris
basis are compared in Table V. Evidently, the
two sets of values are in excellent mutual accord,
suggesting that the special basis functions employed
in the spectrum-b calculation affect only the S(2),
S(1},and S(0}va.lues, and not the negative-integer
moments. In contrast to the corresponding values
for the negative hydrogen ion, the higher moments
of Table V are in better mutual agreement than are
the lower ones. Indeed, the two S(-9) values differ
by only one part in the fourth significant figure.
This does not necessarily imply that the values of
Table V are a priori more accurate than those of
Table II ~ Rather, in the case of atomic helium the
first discrete oscillator strength dominates the
higher-order S(-k) values, and contributions from
the rest of the spectrum are contained in higher
signif icant figures.

In Table VI the spectral sum rules and Cauchy
moments obtained from the present calculations
are compared with previous accurate calculations
and semiempirical and experimental values. There
is evidently excellent mutual agreement, except
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TABLE V. Variational approximation to spectral
moments for atomic helium.

TABLE VII. Polynomial r'ecurrence coefficients for
the dipole spectrum of atomic helium.

8 (—A')

Spectrum a
I

Spectrum b

fn ~n-)

1.992 526
1.504 771
1.383 019
1.414 911
1.542 067
1.749 849
2.040 661
2.426460
2.926 768
3.568 743

2.000 000
1.504 994
1.381 584
1.413 573
1.541 327
1,749 589
2.040 570
2.426 220
2.926 124
3.567 512

1
2

3
4
5
6
7

9
10

0.755 208
0.746 974
0,699890
0.695 875
0.707 686
0.562 169
0.586 662
0.759 833
0.495 706
0.689 247

1,992 526
0.123 765
0.103 948
0,093 637
0.077 095
0.082 382
0.128 016
0.058 341
0.071 810
0.104 143

0.752 497
0.748 768
0.692 243
0.667 668
0.603 775
0.522 282
0.846 869
0.375 453
0.866 257
0.408 967

2.000 000
0.124 540
0.102 632
0.103 021
0.082 381
0.159 888
0.041 963
0.103 925
0.037 371
0.116208

Values in Hartree atomic units,
See footnote b of Tabl. e II.

in the case of the S(2) and S(1) values, a conse-
quence of the lack of special functions in the spec-
trum-a calculation. Nevertheless, the spectrum-a
negative-integer sums are in excellent agreement
with the other values.

The moments of Table V and the related pseudo-
spectra are used in Eqs. (23)-(27) to calculate
the recurrence coefficient for atomic helium
shown in Table VII." Evidently, the first five
coefficients obtained from the two spectra are in
good mutual agreement, whereas the higher-order
coefficients oscillate about the correct asymptotic
values, and are in poor mutual agreement. As in
the case of the negative hydrogen ion, the coef-
ficients of Table VII that are in good agreement
a,re well represented by Egs. (39), where, in this

0.553 082 0.076 475 0.553 082 0.076 475

Values in Hartree atomic units obtained from Eqs.
(23) to (27) and variationally determined pseudospectra.

Asymptotic limits obtained from Eqs. (38), where
&q=0.904 025 a.u. is the threshold frequency for photo-
ionization in this case.

case (spectrum-a, spectrum-b),

5, =1.03681, 1.05468, 5, = -0.67136, -0.69413,

(4la)

y, =O.V59 65, 0.56426, y~ =0.954 16, 1.385 51.

(41b)

The 5; and y, of Egs. (41) are obtained from the
first two n„and p„of Table VII, and are deter-
mined uniquely, therefore, by the first five spec-
tral moments of Table V and the known threshold

TABLE VI. Spectral sum rules and Cauchy moments for' atomic helium.

~(2)
~(1)
8{0)
8(—1)

12.1120
3.7690
1.9925
1.5048

Spectrum b

30.3342
4.0837
2.0000
1.5050

Pr'ev ious values

30.3325
4.0837
2.0000
1.505

8(—2)
~(-4)
~(-6)
~(—8)

1.3830
l.5421
2.0407
2.9268

1.3816
1.5413
2.0406
2.9261

1.3832
l.5461 + 0.0001
2.042 ~0.006'

2.95 ~

Values in Hartree atomic units.
See footnote b of Table II.
C. L. Pekeris, Phys. Bev. 112, 1649 (1958).

d Thomas-Beiche-Kuhn sum rule,
A. D. Buckingham and P. G. Hlbbard, Symp. Faraday Soc. 2, 41 (1968).
G. Starkschall and B. G. Gordon, J. Chem. Phys. 54, 663 (1971). Our calculated S(—2) and

8(-4) values are incompatible with the bounds of these authors fthe reported 8(—2) bounds are
1.3849+0.0001]. The bounds are not rigorous, however, and should be weakened by including
larger uncertainties in the theoretical and experimental absorption and dispersion data used in
the author's development. Specifically, the errors in the calculations of G. Schwartz tPhys.
Bev. 123, 1700 (1961)j are significantly underestimated by Starkschall and Gordon.

~ P. W, Langhoff and M. Karplus, J. Opt. Soc, Am. 59, 863 +969).
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FIG. 6. Photoabsorption and dispersion profiles in

atomic helium; solid line, Tchebycheff results obtained
from 20 of the coefficients of Eqs. (39) and (41) and the
development of Sec. II; solid circle, experimental ab-
sorption data of J. A. R. Sampson, Adv. At. Mol. Phys.
2, 177 (1966), and dispersion data of C. Cuthbertson and

M. Cuthbertson, Proc. 3,. Soc. Lond. 135, 90 (1932), and

M. C. E. Huber and G. Tondello, J. Opt. Soc.Am. 64,
390 (1974$.. All quantities are in Hartree atomic units.

frequency for photoionization. Note that the coef-
ficients of Table VII converge to their asymptotic
values from above, whereas those of Table IV
converge to their asymptotic values from below. "

The recurrence coefficients of Table VII and
Eqs. (39) and (41) are employed in constructing
Stieltjes and Tchebycheff photoabsorption and
dispersion profiles for atomic helium. As in the
case of the negative hydrogen ion, when the higher-
order recurrence coefficients of Table VII are
employed, the resulting Tchebycheff spectra ex-
hibit large peaks and deep minima, indicating
the presence of the underlying discrete variational
spectrum, although the Stieltjes spectra, cor-
responding to a greater degree of smoothing, are
somewhat more stable in higher order. This dif-
ficulty is avoided by using the coefficients of Eqs.
(39) and (41), which correctly incorporate the ac-
curately computed low-order spectral moments of
Table V and the correct asymptotic limits of Eqs.
(38). In Fig. 6 are shown the convergent Tcheby-
cheff results, employing 20 of the coefficients of
Eqs. (39) and (41), in comps, rison with experi-
mental measurements of photoabsorption and dis-
persion in atomic helium. As in atomic hydrogen,

the dispersion profile is deleted in the discrete
spectrum for clarity. Evidently, the agreement
between the moment-theory results and the mea-
sured absorption and dispersion data is excellent.
Moreover, the results of Fig. 6 are in good agree-
ment with the previously described Stieltjes result, '
and with accurate calculations employing continuum
wave functions. 4 The discrete f numbers in atomic
helium are obtained directly from the Tchebycheff
distribution, and from the previously described
Stieltjes approach. ' The first five discrete oscil-
lator strengths so obtained are compared with pre-
vious theoretical calculations' in Table I. Here,
the Tchebycheff results are less satisfactory than
in the case of atomic hydrogen, where a larger
number of accurate moments is employed,
although the Stieltjes results are in good agree-
ment with available accurate calculations. The
Tchebycheff results in Table I can be improved
significantly by the use of additional moments or
recurrence coefficients. In this case, however, as
indicated above, the continuum portion of the mo-
ment-theory spectrum can be unstable unless the
moment extension of Eqs. (39) is employed. The
previously described reference-density approach
can be employed as a complementary alternative
to the Stieltjes and Tchebycheff procedures for
determining discrete oscillator strengths. "

IV. CONCLUDING REMARKS

The Stieltjes and Tchebycheff moment methods
have provided accurate approximations to photo-
absorption and dispersion profiles in simple one-
and two-electron atoms and ions. Variational
calculations of a conventional type provide the
necessary spectral moments in the case of two-
electron systems, whereas the moments for one-
electron systems are obtained in closed forms.
The moment problems that arise in constructing
the Stieltjes and Tchebycheff distributions and
densities are solved by evaluating the polynomials
orthogonal and quasiorthogonal with respect to the
correct densities. Well-known algorithms of
Stieltjes and Tchebycheff, and a simple moment-
extension technique employing known asymptotic
values, allow the construction of the associated
polynomial recurrence coefficients and their ex-
tension to infinite order. The resulting absorption
and dispersion profiles obtained for the systems
studied are in excellent agreement with the ap-
propriate exact results, experimental measure-
ments, and previous calculations employing dis-
crete and continuum wave functions. These results
suggest that the Stieltjes and Tchebycheff moment
methods should provide useful approximations to
photoabosrption and dispersion profiles in atoms
and molecules of arbitrary complexity. "
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by P. W. Langhoff, Int. J. Quantum Chem. SS, 347
(1974).

~J. A. Shohat and J. D. Tamarkin, The PrgMem gf Mo-
ments (American Mathematical Society, Px ovidence,
1943),

~ H. S. Wall, Analytic Theory gf Continued I"raetigns
(Van Nostrand, New York, 1948).
A. Dalgarno and S. T. Epstein, J. Chem. Phys. 50,
2877 (1969}.
G. V. Marr, Qkgtgignizatign Prgeesses in Q~ses
(Academic, New York, 1967},pp. 7 and 33.
S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471(1932).

l4J. O. Hirschfelder, W. Byex's-Brown, and S. T. Ep-
stein, Adv. Quantum Chem. 1, 256 (1964).

'SThe Stieltjes values of a distribution of the form of
Eqs. {7), constructed according to Eq. (8), are the
mean vlaues of the left- and right-hand limits at the
points of increase ~; (n). The distribution of Eq. (14),
with a preassigned frequency at arbitrary ~, thus pro-
vides Stieltjes values over the entire frequency range
jEq. (15)], and, moreover, provides upper and lower
Tchebycheff bounds on f(z} fox all ~. For an alterna-
tive application of the Tchebycheff distribution, see,
K. B.Winterbon, J, Chem. Phys. 53, 1302 (1970);
Atomic Energy of Canada, Ltd. Report No. 4832, 1974
(unpublished) .
C. T. Corcoran, Ph. D. thesis (Indiana Univ. , 1976)
(unpublished). The moments of Eq. (18) are in good
agreement with but do not exactly reproduce the input
moments of Eq. (5}, except in the limit of large n, in
which case convergence is obtained. The fact that
G~ "~(s}has poles in the uppex and lower half-planes
suggests a connection with the coordinate-rotation
method in a finite basis (Ref. 7). Numerical studies in
the case of atomic hydrogen and the negative ion in the
Bethe-Ohmura approximation |P.W. Langhoff and
C. T. Corcoran, Chem. Phys. Lett. (to be published)] in-
dicate that the poles obtained lie along a ray similar to
the rotated photolonlzatlorl cut obtained fx'om the co-
ordinate-rotation method. Moreover, in the case of
atomic helium, a second cut associated with the first
inelastic channel 1s~—2skp is also discernible.

' G. A. Baker, Jr. , Essentials gf Pade Approximants
(Academic, New York, 1975).
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Any of a number of closely related procedures can be
employed in determining the a;",b;" and n„, P„when
small (:30) numbers of moments are available. See,
for example, R. G. Gordon, J. Math. Phys. 9, 655
(1968); P. W. Langhoff and M. Karplus, Phys. Rev.
Lett. 19, 1461 (1967); J. Chem. Phys. 52, 1435 (1970).
It is perhaps useful to note that the a&"~and b;" are
dependent upon the order of truncation of the continued
fraction, necessitating the superscript n, whereas the
n„and P„are not dependent upon the order of truncation.
Moreover, the continued fraction of Eq. (20) can be
written in a number of equivalent forms involving se-
quences of coefficients related to the n„and P„, as is
discussed in detail in Ref. 10. The latter are conven-
ient to employ, since they appear directly in the re-
currence relation for the polynomials orthogonal with
respect to f(e).

IUpon introduction of the variable x =1/e and the poly-
nomials q„(x) =x"Q„(1/x), Eq. (23a) takes the form
qn(x) =(x ~n) qn-i(x) Pn-iqn-2(x). The q„g) are the
customary (Ref. 9) monic polynomials orthogonal with
respect to the density F(x) =S(0) -f (~), which has the
spectral moments S(-k) [Eq. (5)] as positive-integer
power moments. Similarly, P„(x) —= x " "P„&(1/x) is
the customary numerator polynomial of degree n —1
and order n associated with the denominator polynomial
q„(x), and satisfies the same recurrence relation as
the latter. We refer in the present development to the
Q„(e) and P„&(e) as the polynomials orthogonal with
respect to f(e), although it is perhaps important to
recognize that this is the case when the appropriate
variable 1/~ is introduced.
The algorithm of Eqs. (24) and (25) is a variant of those
devised originally by Stieltjes and Tchebycheff, cited
and described in Chap. XI of Ref. 10. The Stieltjes
form has been employed previously by J. Deltour
[Physica (Utr. ) 39, 413 (1968)] in Stieltjes imaging
distributions of normal-mode vibrations in crystals,
and C. Blumstein and J. C. Wheeler [Phys. Rev. B 8,
1764 (1973)] have employed a form of Eqs. (24) and
(25) in conjunction with the use of modified (polynomi-
al) moments in imaging spectral densities for crystal
lattice vibrations. The latter authors, who cite a
number of additional pertinent references, do not em-
ploy the Stieltjes or Tchebycheff derivatives of the
present development, but, rather, express the unknown

spectral density as the product of a known reference
density and an expansion in the associated orthogonal
polynomials. The development is a logical extension
and improvement of the expansion rn Legendre poly-
nomials originally employed by E. W. Montroll [J.
Chem. Phys. 10, 218 (1942); 11, 481 (1943)] in the
normal-mode problem. It is perhaps of interest to
note that when the approximate density of Blumstein
and Wheeler is evaluated at the roots of the polynomials
orthogonal with respect to the known reference density
employed, results identical with the equivalent-quadra-
ture method of H. A. Yamani and W. P. Reinhardt,
cited in Ref. 7, are obtained. Moreover, Blumstein
and Wheeler correctly note that the use of modified
moments results in a more stable moment problem than
that encountered using power moments, but that in the
latter case the algorithm of Eqs. (24) and (25) is supe-
rior to the so-called product-difference and quotient-

difference algorithms. In the present development,
the instability of Eqs. (24) and (25) when large numbers
of moments are employed is avoided by noting that the
n„and P„rapidly approach their asymptotic values
n„and P„, which are determined by the known fre-
quency threshold for photoionization, as is discussed
further below. In a separate development, R. G. Gor-
don [Adv. Chem. Phys. 15, 79 (1968)] has noted that
the continued fraction of Eq. (20) can be summed to
infinite order when the ~„and P„are replaced by
their asymptotic values u and P„beyond a given
order. This approach provides an approximate dis-
persion integral [Eq. (21)] having a finite number of
poles and a square-root branch cut, which is appro-
priate in the normal-mode problem, but generally in-
appropriate for the photoabsorption problem consid-
ered here.

2'Recently, R. K. Nesbet (private communication) and
W. P. Reinhardt and co-workers (private communica-
tion) have explored the possibility of direct quantum-
mechanical calculations of n„and p„values appropri-
ate for photoabsorption densities which do not involve
the diagonalizations necessary for constructing pseudo-
spectra ~;, f;, and without apparent recourse to spec-
tral moments or the algorithm of Eqs. (24) and (25).
The Nesbet development is evidently a generalization
of Eqs. (27) to the case of a nondiagonal transition en-
ergy matrix.
See, for example, M. Inokuti and Y.-K. Kim, Phys.
Rev. 173, 154 (1968), and references cited therein.
The density of Eq. (31a) is of the Jacobi type in an
appropriate variable, and, consequently, the polynomi-
als of Eqs. (23) in this case are related to well-known
classical orthogonal polynomials. See, for example,
U. W. Hochstrasser, in Handbook of Mathematical
Functions, edited by M. Abramowitz and I. A. Stegun,
(U.S. GPO, Washington, D,C ~, 1964), Chap. 22. More
generally, the polynomials of Eqs. (23) are not related
to classical polynomials, but rather are simply those
orthogonal with respect to the associated photoabsorp-
tion density. It is perhaps of interest to note in this
connection that the Jacobi-matrix approach of E. J.
HeQer and the equivalent-quadrature method of H. A.
Yamani and W. P. Reinhardt, cited in Ref. 7, are re-
stricted to those cases in which the appropriate re-
currence equations in each case can be solved in analy-
tic forms. Although the Jacobi-matrix designation of
Heller is apparently independently motivated, it is in
accord with the more traditional use of the term, as
employed, for example, by H. S. Wall, Ref. 10, p. 226.
Although we have not discussed it in detail in Sec. II C,
the Tchebycheff derivative can be evaluated at any of
the steps of an n-term histogram having a prespecified
frequency point. When 40 spectral moments are em-
ployed, for example, a 20-step histogram is obtained
which provides the Tchebycheff derivative at 20 distinct
frequency values. The construction of 50 such histo-
grams therefore provides 1000 data points for the
photoabsorption profile, the entire calculation requiring
approximately 10 sec CPU time on the CDC 6600
computer. Evaluation of the dispersion integral of
Eq. (17b) is aided by analytic treatment of the principal-
value contribution us ing methods similar to the dis-
persion-correction technique of E. J. Heller, T. N.



1056 LANGHOFF, CORCORAN, SIMS, WEINHOLD, AND GLOVER 14

Rescigno, and W. P. Reinhardt [Phys. Rev. A 8, 2946
(1973)].

24See, for example, R. J. Bell, Proc. Phys. Soc. Lond.
92, 842 (1967). In a separate development [P. W.
Langhoff and D. J. Margoliash (unpublished)] we have
evaluated the spectral sums appropriate for the gener-
alized oscillator-strength distribution in atomic hydro-
gen employing a number of procedures, and have con-
structed Stieltjes and Tchebycheff densities for the
associated Bethe surface. The dipole sums and oscilla-
tor-strength distribution are obtained from the general-
ized values in the limit of zero momentum transfer.
The polynomials of Eqs. (23) in the case of atomic hy-
drogen are apparently related to the attractive Coulomb-
Pollaczek polynomials discussed by H. A. Yamani and

W. P. Reinhardt in Ref. 7. For a description of the
classical Pollaczek polynomials see, for example,
G. Szego, Orthogonal Polynomials (American Math-
ematical Society, Providence, 1959).
In Figs. 3(b) and 4 the resolution of the photoabsorp-
tion densities shown is limited at the photoionization
threshold by the number of points at which the nec-
essary polynomials [Eqs. (23) and (29)] and related
quantities are evaluated, whereas the accuracy of the
associated dispersion profile is determined by the
number of moments employed and the nature of the
dispersion correction technique employed. Moreover,
unless a fine mesh of points is employed in evaluating
the Tchebycheff density, it is possible to miss the very
narrow 5-function-like peaks associated with the low-
est resonances. Of course, the discrete transitions
are easily discernible, in general, in the associated
Tchebycheff distribution.
The recurrence coefficients of Tables IV and VII are
calculated from the algorithms both of Eqs. (24) and

(25) and of Eqs. (23) and (27), the values of Eq. (37)
being employed in the former case. Good mutual agree-
ment is obtained from the two procedures for the co-
efficients shown in the tables, although the develop-
ment based on Eqs. (23) and (27) is preferable for the
calculation of higher-order recurrence coefficients.
H. S. Wall, Ref. 10, p. 209.
Equations (39) are suggested by the asymptotic forms
of the known recurrence coefficients for the previously
studied model ionic system [Eqs. (33)] and atomic hy-
drogen [Eqs. (36)]. We have found that the resulting
densities and distributions obtained from extended co-
efficients are relatively insensitive tothe specific func-
tional form employed, provided that the correct as-
yrnptotic values are obtained in the limit n —~, and
that convergence to these values is rapid. Moreover,
in certain instances the extrapolation of variationally

calculated recurrence coefficients to the known as-
ymptotic values is more conveniently accomplished
using an alternative representation of the continued
fraction of Eq. (20).

3 J. Macek, Proc. Phys. Soc. Lond. 92, 365 (1967). Re-
cently, J. T. Broad and W. P. Reinhardt [Chem. Phys.
Lett. 37, 212 (1976), and unpublished] have made a
detailed study of the photoabsorption profile in the hy-
drogen ion, including the line shapes near the 2s
threshold, employing the J-matrix approach and vari-
ous procedures described in the references of footnotes
6 and 7. Alternative bound-state procedures for cal-
culating resonance and nonresonance contributions to
photoabsorption profiles are described by R. F. Stew-
art, C. Laughlin, and G. A. Victor [Chem. Phys. Lett.
29, 353 (1974)], H. Doyle, M. Oppenheirner, and
A. Dalgarno [Phys. Rev. A 11, 909 (1975)], and
M. Oppenheimer and H. Doyle [Phys. Rev. A 13, 665
(1976)].

3'This suggests that very small numbers of spectral
moments, obtained from theoretical calculations,
semiempirical procedures, experimental data, and
known photoionization thresholds, can be employed in
obtaining Tchebycheff approximations to photoabsorp-
tion profiles in atoms and molecules of arbitrary
complexity. The use of semiempirical and experimen-
tal spectral moments in the Tchebycheff procedure is
pursued separately.
Although a detailed discussion is beyond the scope of
the present development, it is important to recognize
that the behavior of the u„and P„, and related se-
quences of coefficients, are largely determined by the
threshold frequency for photoionization and the qualita-
tive form of the photoabsorption profile under investiga-
tion. A number of model studies indicate that complex
spectra give rise to oscillatory behavior in the n„and
P„of such forms that separation into subsequences is
possible, in which connection investigation of the re-
lated minimal chain sequences discussed by H. S. Wall,
Ref. 10, is of particular interest.
C. T. Corcoran and P. W. Langhoff, Chem. Phys. Lett.
(to be published).

34Results obtained for molecular systems are reported
separately by P. W. Langhoff, S. R. Langhoff, and
C. T. Corcoran (unpublished). We are informed that
S. ONeil and W. P. Reindardt (unpublished) have re-
cently completed a detailed study of the photoab-
sorption profile in molecular hydrogen, including
treatment of the vibrational degree of freedom,
employing the various procedures mentioned in
Refs. 6 and 7.


