
PHYSICAL REVIEW A VOLUME 14, NUMBER 1 JULY 1976

The Fermi hole anti the exchange parameter in X theory
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In Slater s statistical exchange approximation, the Fermi hole is assumed to be spherical and uniform in

density. This leads to an exchange potential that depends on an adjustable parameter a which is different for
each atom. The value of this parameter is determined empirically for each atom, usually by eq~»&trig the
total energy of the atom calculated by the X method to that calculated by Hartree-Foci(: theory. In this paper
an explicit dependence of a on the atomic number Z is developed by considering a linear variation of the
Fermi-hole density, with the proper boundary values. This permits the calculation of theoretical e values for
all atoms in the periodic table; these are reported. These theoretical a values reproduce the Z dependence of
the empirical e values in all details. Further, it is shown that electrons of opposite spin should have different a
values —a result that has important consequences in X calculations of magnetic properties and hyper6ne
interactions.

I. INTRODUCTION

Slater's statistical approximation to the ex-
change potential has proved' a practical and rea-
sonably accurate method of obtaining approximate
one-electron solutions to the Schrodinger equation
for atoms, molecules, and solids. In the statis-
tical approximation, the exchange potential is pro-
portional to the —, power of the local charge den-
sity; the proportionality constant contains an ad-
justable parameter n which has to be determined
for each atom. Several criteria are used to deter-
mine these n values. ' The different n values for
different atoms, and the possibility of determining
these values in several ways, reduces the stature
of the X theory to a parametric theory. There-
fore it is desirable to enquire whether the propor-
tionality constant in the exchar@e potential can be
derived for each atom from purely theoretical con-
siderations. Such an enquiry would lead to a
greater understanding of electxon exchange in at-
oms. This is the purpose of this paper.

The one-electron Schrodinger equation in the X
method determining the spin orbitals u, is easily
derived. ' The nonreletivistic Hamiltonian is

p)(1) = Qn, iu*„i(1)u, )(1),

and similarly for p&(l). Here n, i is the occupa-
tion number of the spin orbital N, ~. The expecta-
tion value of the total energy is then given by,

(2)

r
8 = Qn, uf (1)f,u, (1)d&,

+2 'i oiO& n(2)C« "&i@))«..
+ —

(
p&(1)(l( p(2)r, ,'«, +U&(1)j«,. (3)

The first term is the sum of the kinetic and nu-
clear-electron attraction energies. The second
and third terms correspond to the electron-elec-
tron interaction energy written separately for
spin-up, 0, and spin-down, 0, electrons. In each
term, f p(2)r»' d7', represents the electron-elec-
tron Coulomb potential at point 1, and Ut(1) is
called the exchange potential acting on a spin-up
electron at this point. Ui(l) is a negative term
which removes the self-interaction energy of elec-
trons wrongly included in the Coulomb term, and
also accounts for all exchange effects. Slater's
statistical approximation sets U~(1) (in rydberg
units) as

where f, is the one-electron op.erator consisting of
the kinetic and potential energies in the field of the
nucleus (or nuclei for molecules), and the second
term is the coulomb interaction between pairs of
electrons. The total electron density at a point
1,p(1), can be written as the sum of the density
duetothe spin-up electrons, p&(l), and that due to
the spin-down electrons, p&(l). These charge den-
sities are defined by

with a similar expression for U& (1); o( is the pa-
rameter discussed above. When this form of U(1)
is substituted into Eq. (3) and the variational prin-
ciple applied to minimize E with respect to the
I,'s, then the one-electron Schrodinger equations
determining the u,.~'s are

[-V', + Vc(l) + Vr ) (1)]u, i (1)= g, ) u) (1),
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rv,'p (1i) = 1.

The electrostatic potential at the center of the
sphere due to this exchange charge is -3/r, (in
rydberg units); thus

(6)

with similar equations for u&. Here Vxi(1)
= —', U&(1). These are the self-consistent-field equa. —

tions of the X method, which can be solved itera-
tively.

Slater ha, s shown' that the p& ~'(I) dependence of
the exchange potential Ui(1), Eq. (4), is easily
obtained by certain simplifying assumptions re-
garding the distribution of the exchange charge
which produces the exchange potential Ut(1).

The exchange potential being negative means
that the exchange charge is removed from the
total electron distribution as far as our reference
electron is concerned; this is commonly called
the Fermi hole. Here, we adopt the sign conven-
tion that the exchange charge is negative, and this
corresponds to the Fermi-hole density being posi-
tive. It will be shown in Sec. II that the total
amount of the exchange charge is -1 and that its
value at the position of the electron in question,
namely, point 1, is —p&(1). Slater assumes that
the exchange charge is distributed with a uniform
density equal to -pi(1) within a. sphere centered
at point 1. If the radius of this Fermi sphere is
r„ then from the requirement that the total ex-
change charge be -1,

Lindgren and Schwarz' have analyzed the varia-
tion of a with atomic number. They decomposed
the total exchange potential in an atom into con-
tributions from the various shells, as well as into
self-interaction and interelectronic parts. These
quantities were found to vary differently with
atomic number and the variation in n~ with Z
represents an average of these individual varia-
tions. Such an analysis, accomplished by intro-
ducing more empirical n parameters, one for
each shell, is only a detailed description of the
Z dependence of n~.

What is required is a quantitative explanation
of the Zdependence of n~ and, if possible, a
method of determining the n values nonempirical-
ly. It has been shown above that the simple form
of the Fermi hole assumed by Slater does not lead
to any Z dependence of n. Therefore we examine
in detail the nature of the Fermi hole in atoms,
and show that a simple modification of the ex-
change charge distribution in the Fermi hole from
the distribution assumed by Slater leads to an ex-
change potential that depends explicitly on the
number of electrons, making n Z dependent. This
permits calculation of n values for all atoms
(Sec. II). Such a calculation is done for all atoms
in the periodic table and the results are compared
with the o~ values (Sec. III).

II. DENSITY FUNCTIONS, FERMI HOLE,
AND EXCHANGE PARAMETER

Comparison with Eq. (4) gives a theoretical value
of n =0.87. However, to empirically obtain the
spin orbitals u,.'s with Hartree-Fock accuracy re-
quires different n values to be used for different
atoms; these empirical values are considerably
less than 0.87. Consequently, the a value in Eq.
(4) has always been treated as an adjustable pa-
rameter. Schwarz' has determined the n values

' for atoms H through Rn, using the criterion that
the total energy computed by the X method be
equal to the Hartree-Fock energy for the atom.
These values, denoted n~, show a smooth varia-
tion with atomic number Z. n~ falls with atomic
number, being around 0.78 for the two-electron
atoms, decreasing to a range of 0.72-0.70 for the
3d transition elements and remaining almost con-
stant thereafter at 0.69 (see Table II and Fig. 3).
Further, the plot of o.~ vs Z (Fig. 3) shows dis-
tinct breaks in the slope as each new subshell is
filled; the slope remains almost constant within
a subshell.

Other criteria have been used ' to determine n,
but they lead to a rather random variation with Z
and their use is not usually recommended. ' Hence
we do not consider such values in this paper.

It is well known' "that the electron-electron
interaction energy corresponding to the Hamilto-
nian of Eq. (1) can be described in terms of the
spatial part of the reduced density matrix ele-
ments. Only the diagonal elements of the one-
and two-particle density matrices are needed here
and these are defined as' "
p(1)=n ~g(1, 2, . . . , n))dr2 ' ' 'dr„ds, ds2 ' 'ds„,

(8)

v(1, 2) = n(n —1)

~g(1, 2, . . . , n)~ de . . dr„dsz ds2 ' ' 'ds„.

(9)

Here, d~,. stands for the volume element of the jth
electron and ds,. for the spin coordinate. p(1)
gives the charge density at point 1 and is the prob-
ability of finding any of the n electrons at this
point. Equation (8) defines this as the number of
electrons times the probability of finding a spe-
cific electron at point 1. v(1, 2) is the pair den-
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p(l) dr, =n, (10)

sity and gives the probability of finding any of the

n particles at point 1 and simultaneously another
at point 2. According to Etl. (9) this is equal to
the number of pairs times the probability of find-
ing simultaneously a specif ic pair at points 1 and
2. It follows from Eels. (8) and (9) and the nor-
malization of g that

w) )(I, 2) dv', = (n) —1)pt(1), (19)

w«(I, 2) dr, dr, = wi )(1,2)d&, d&, =n)n),

where n = n ~
+ n &, n ~ is the number of spin-up elec-

trons and n
&

is the number of spin-down electrons.
Also, analogous to Eq. (14), for the independent
pair functions,

IN

w(1, 2) dr, dr =n( —1), wt'$(1, 2) =P$(I)p)(2) —Pi(I)p)(2)/n$,

and similarly for w~g&~(1, 2);

w'i')'(I, 2) = pi (I)p) (2),

(21)

w(1, 2) dr, =(n- l)p(1). (12)

All information about electron exchange and cor-
relation of their motion is contained in p(l) and

w(l, 2). When the electrons move independently
of each other, the corresponding pair-density
distribution, which we denote as w'~(1, 2), is usu-
ally but avrongly written as

w'"'(I, 2) = p(1)p(2). (13)

This expression is wrong since it does not pre-
serve normalization. This is easily seen by in-
tegrating both sides of Eq. (13) over dr, and dr, ,
which leads to n' —n=n'. Therefore Eq. (13) is
approximately valid only for systems with very
large n and not for finite systems such as atoms
and molecules, with which we are concerned.
Kutzelnigg, Del Re, and Berthier" have shown
that the correct form of the independent pair func-
tion is, instead of Eci. (13),

w'"(1, 2) = p(1)p(2) —p(1)p(2)/n. (14)

w(1, 2) =w„(1,2)+ w„(1, 2)+ w„(1,2)+ w„, (1, 2),

(16)

where, for instance, w~ &(I, 2) gives the probability
of finding an electron with spin up at point 1 and
another with spin down simultaneously at point 2 ~

It is ea,sily seen that

p, (1)d&, =n„ li p)(I) dr, =n), (IV)

/It

w) i(I, 2) d&, d7', =n)(n) —I),

Following McWeeny, ' for a system of def inite
spin, p(l) and w(1, 2) may be broken into their spin
components,

p(1) = p~(1)+ p~(I)

and similarly for w'P~~(I, 2). The pair functions,
when the electronic motion is correlated, may be
written as'

wt t(I 2)/pi(I) =pi(2)+pt(2)fi $(I 2)' (25)

p~(2) f~ ~(l, 2) thus represents the modification in
the charge distribution p~(2) stemming from the
presence of a spin-up electron at position 1.

Now, the total electron-electron interaction en-
ergy can be written

wi ~(1, 2) = p~(1)p~(2)+ p~(1)p~(2)f&&(1, 2), (23)

and similarly for w
& &

(1, 2);

w~~(1, 2) = p&(I)p~(2)+ p&(I)p~(2)f&~(1, 2), (24)

and similarly for w& ~(1, 2). The f's are the "cor-
relation factors. " This name has to be qualified;
for the pair distribution of electrons of unlike
spine, f represents the fractional change in w

from m
"~ owing to correlation, as is seen by com-

paring Eg. (24) with (22). However, for tike-spin
(e.g., 4t) electrons, (f& &+ I/n &) is really the cor
relation factor, as follows from Eqs. (21) and (23).

The correlation between electrons of unlike spins
is not considered in either the Hartree-Fock or
X theory; in these approximations, g~~'&~ and g~&'~~

[Eg. (22)] are used so that f&&(1, 2) =f& &(1,2) =0
for all positions 1 and 2. However, it is possible
to include such correlations in the X theory by
considering the properties of the "Coulomb hole, "
so that the solution of the resulting one-electr on
X equations leads to fully correlated spin orbit-
als and eigenvalues. The theory and results of
such a study will be presented elsewhere. " Here
we consider only the correlation between electrons
of the same spin.

The conditional probability of finding an electron
of 0 spin at position 2, when one is known to be at
position 1 with 4 spin, is, from Etl. (23},

~

w& &(1, 2) dr„F2
(18) g r,' =— r, ,'w(1, 2) dr, d7, .

fCg
(26)
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Then

p'i*(2) = p-i{2)/ i, (31)

fs to t12

FlG. 1. Forms of the approximations to the like-spin
correlation factor f&)(1,2). ———:Slater's approxi-
mation (Ref. 1); —:present approximation; ———:cor-
rect form (Ref. 14).

Using the spin components of (1, 2) given by Eqs.
(22) and (23) in Eq. (26), and comparing the result
with the corresponding terms in Eq. (3), it is seen
that for the exchange potential,

&)(1)= ~i.'pi(2)fbi(1, 2)«, (27)

This corresponds to an exchange charge p" at
position 2, given by

pf'(2) = p&(2)fir(1, 2). (28)

Furthermore, by integrating Eq. (25) over «, and
using Eq. (19),

pi (2)dr =
l pi(2)f))(1, 2)«.=-1. (29)

That is, the total amount of exchange charge,
which is effectively removed from the distribution
as far as the reference electron at position 1 is
concerned, is -1, Also, from the Pauli exclusion
principle, vi &(1, 1)=0, so that from Eq. (25) the
exchange charge at position 1 of the reference
electron is

pP(1) = p)(1)ft &(1, 1)=-p)(1).
Thus the Fermi hole has a density at the position
of the reference electron equal to the density of
the electrons of the same spin at that point. But
at any other point, it Inay be considerably differ-
ent from this value, as follows from Eq. (28).
This will be especially so in regions of strongly
varying electron density. In general, the Fermi
hole has a varying density and is not necessarily
centered at the position of the reference elec-
tron. "3 Eater's assumption of uniform spherical
distribution for the Fermi-hole density is there-
fore rather severe for atoms and molecules.

We now consider the value of the exchange den-
sity when positions 1 and 2 are far apart. In this
case, we may expect v~ i(1, 2) to reduce to the in-
dependent pair distribution, v~~~~(1, 2) of Eq. (21).

for r» large. Physically, this means that when
one electron of spin up is far removed from the
distribution, the probability of finding a similar
electron is reduced by a factor of 1/n~ every-
where. The same result may be obtained'4 by con-
sidering f&i(1, 2) as a slowly varying function for
large x», so that p'~*(2) has the form (const) && pq(2).
From Eq. (29), the value of this constant is -1/n&,
this leads to Eq. {31). Thus the Fermi hole ha.s a,

density equal to p i (1) for x~2 = 0, and p ~ (2) /n t for
large ~».

We now assume that the electron density is slow-
ly varying around the point 1, so that we may re-
place p&(2)/nt by p&{l)/n& Th. is is equivalent to
saying that the electron density is uniform within
the Fermi hole, but the exchange density, Eq.
(28), changes owing to the change in fi i(l, 2) from
—1 at r» =0 to -(1/n~) at large ~» (Fig. 1). We
further assume that the Fermi hole is spherical,
with radius ~„and is centered at position 1, but
the density of the hole varies Eineaxly with r, the
distance from the center, and is equal to p&(1)/n&
at the boundary and zero outside. In Fig. 2, this
Fermi-hole density distribution is compared sche-
matically with that assumed by Slater. Other,
more complicated forms for variation of hole den-
sity have been suggested; but these require the
introduction of additional arbitrary parameters
and are not of much practical value (see Ref. 6
for comments on such methods).

Thus

p) (r) = ar+ b.

Determining the constants a and b using the bound-
ary conditions, p~~(r =0) = —p~(1) and p~"(r =so)
= -p~(1)/ni, gives

p't*(&) =-apt(1)/&of(1/&$ —1)&+pt(1)}. (33)

p){1)

CD

0

E
0 p~{1)ini

I
I

rs rQ

FIG. 2. Approximations to the Fermi-hole density
distribution (schematic). —--—:Slater's approximation
(Ref. 1); —:present approximation. r, and r~ are the
radii of the Fermi sphere in the two approximations.
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Also, Eq. (29) then becomes

wQ

(34)

TABLE I. Theoretical exchange parameter a&~ and

scaled theoretical exchange parameter n&~ from Eqs.
(38) and (42) as a function of the number of electrons +~.

Substituting for p$*{r) from Eq. (33) and integrat-
ing, we find the radius of the Fermi sphere,

r. = [v(iln)+ l)pi(1)] '" (35)

Notice that in Slater's approximation, the radius
of the Fermi sphere is, from Eq. (8), r,
= [~ vp~(1)] '~3. This is always smaller than ro
[Eq. (35)]. Thus one of the effects of the present
treatment is to enlarge the Fermi sphere, as
shown in Fig. 2.

The potential at the center of the sphere owing
to the exchange density is

=a, wro2(1/n) + —,')pt (1),

usmg Eq. (33). Substituting for r, from Eq. (35),

8~'~'
n$+ g

{3V)

with a similar expression for U&(1), in rydberg
units.

Thus the exchange potential for a spin-up elec-
tron has an explicit dependence on the number of
spin-up electrons in the system, in addition to its
dependence on this number through p &(1); Eqs. (4)
or (7) have no such explicit dependence.

Writing Eq. (3'l) in the form of Eq. (4) yields

8 4H '~' i!n +-,'
Q

2

37 3 (i! + -')'" (38)

for the exchange parameter for spin-up electrons,
and

8 4y '~' i/n, +-,'
«37 3 (1/n, +-,')'~'

for the spin-down electrons. The notation ~, is
introduced to denote that these are theoretically
derived quantities.

According to Eqs. (38) and (39), the spin-up and
spin-down electrons have different n values when
their numbers are different in an atom. The val-
ues of a«(or equivalently n«) are computed
from Eq. (38) for n& values from 1 to 55. These
results are given in Table I, column 2. It is seen
that the n, ~ values steadily decrease with increas-
ing n~, being around O.S for small n ~ and ap-
proaching a constant value af 0.728 for large n~.
This range of values is remarkably close to the

III. EVALUATION OF THEORETICAL IVALUES FOR ATOMS

1
2

3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33

35
36
37
38
39
4Q

41
42

44
45
46
47
48
49
5Q

51
52
53
54
55

0.866 172
0.789 938
0.763 868
0.751 489
0.744 568
0.740 288
0.737 450
0.735 470
0.734 031
0.732 952

0.732 122
0.731470
0.730 948
0.730 523
0.730 174
0.729 883
0.729 638
0.729 428
0.729 249
0.729 095

0.728 960
0.728 842
0.728 738
0.728 646
0.728 565
0.728 491
0.728 426
0.728 367
0.728 314
0.728 265

0.728 222
0.728 182
0.728 145
0.728 ll 1
0.728 081
0.728 052
0.728 026
0.728 002
0.727 979
0.727 958

0.727 939
0.727 921
0.727 904
0.727 888
0.727 874
0.727 859
0.727 846
0.727 834
0.727 822
0.727 812

0.727 801
0.727 792
0 ~ 727 782
0.727 774
0.727 766

0.841 991
0.767 885
0.742 543
0.730 509
0.723 781
0.719621
0.716 862
0.714 937
0.713 538
0.712 490

0.711683
0.711049
0.710 542
0.710 129
0.709 789
0.709 507
0.709 268
0.709 064
0.708 890
0.708 740

0.708 609
0.708 491
0.708 394
0.708 304
0.708 225
0.708 154
0.708 090
0.708 033
0.707 981
0.707 934

0.7Q7 892
0.707 853
0.707 817
0.707 784
0.707 754
0.707 726
0.707 708
0.707 678
0.707 656
0.707 636

0.707 617
0.707 599
0.707 583
0.707 567
0.707 553
0.707 539
0.707 527
0.707 515
0.707 503
0 ~ 707 493

0.707 483
0.707 474
0.707 464
0.707 457
0.707 448
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TABLE II. Theoretical exchange parameters for atoms n«and +&a calculated from Eqs.
(38), (40), and (42); GHF values are from Hef. 3.

Atomic number Atom Electronic configuration &ga

1
2

3

5
6
7
8
9

10

H

He
Li
Be
8
C
N

0
F
Ne

1s'
1s
He 2s
He 2s
He 2s 2p|
He 2s22p2
He 2s22p~
He 2s'2p'
He 2s22p'
He 2s'2p'

1, 1
2, 1
2, 2
3. 2
4, 2
5, 2
5, 3
5, 4
5, 5

0.994 095
0.866172
0.815 349
0.7S9 938
0.774 296
0.764 305
0.757 531
0.751 805
0.747 644
0.744 568

0.966343
0.841 991
0.792 587
0.767 885
0.752 680
0.742 967
0.736 382
0.730 817
0.726 771
0.723 781

0.978 04
0.772 98
0.781 47
0.76S 23
0.765 31
0.759 28
0.751 97
0.744 77
0.737 32
0.730 Sl

11
12
13
14
15
16
17
18
19
20

Na

Mg
Al
Si
P
S
Cl
Ar
K
Ca

Ne 3si
Ne 3s2
Ne 3s23pi
Ne 3s23p2
Ne 3s 3pa
Ne 3s23p4
Ne 3s23p~
Ne 3s23p6
Ar 4s~

Ar 4s2

6, 5
6, 6
7, 6
8, 6
9, 6
9, 7
9, 8
9, 9

10, 9
10, 10

0.742 233
0.740288
0.738 760
0.737 535
Q.736 534
0.735 527
0.734 708
0.734 031
0.733463
0.732 952

0.721 152
0.719 621
0.718 135
0.716 944
0.715 971
Q.714 992
0.714 196
0.713 538
0.712 986
0.712 490

0.731 15
0.729 13
0.728 53
0.727 51
0.726 20
0.724 75
0.723 25
0.721 77
0.721 17
0.719 84

21
22
23
24
25
26
27
28
29
30

Sc
Tl
V
Cr
Mn

Fe
Co
Ni

Cu
Zn

Ar 3d~4s2

Ar 3d24s2

Ar 3d34s2
Ar 3d54s~

Ar 3d 4s
Ar M64s2
Ar 3d~4s2

Ar 3d84s2
Ar 3d~04si

Ar 3d~o 4s2

11,
12,
13,
15,
15,
15,
15,
15,
15,
15,

10
10
10
9
10
11
12
13
14
15

0.732 517
0.732 144
0.731 819
0.731620
0.731 285
0.730 998
0.730 750
0.730 533
0.730 392
0.730 174

0.712 067
0.711704
0.711389
0.711195
0.710 870
0.710 59Q

0.710 349
0.710139
0.709 953
0.709 789

0.718 41
0.716 98
0.715 56
0.713 52
0.712 79
0.711 51
0.710 18
0.708 96
0.706 97
0.706 77

31
32
33
34
35
36
37
38
39
40

Ga
Ge
As
Se
Br
Kr
ab
Sr
Y
Zr

Ar 3d" 4s'4p'
Ar 3d~04s24p2

Ar 3d"4s'4p'
Ar 3d~o 4 s2 4p4

Ar 3d~o 4s2 4p5

Ar 3d 4s 4p
Kr 5si
Kr 5s2
Kr 4di 5s2

Kr 4d25s2

16,
17,
18,
18,
18,
18,
19,
19,
2Q,

21,

15
15
15
16
17
18
18
19
19
19

0.730024
0.729 889
0.729 767
0.729 642
0.729 530
0.729 428
0.729 336
0.729 249
0.729 170
0.729 097

0.709 643
0.709 512
0.709 393
0.709 272
0.709 163
0.709 064
0.708 975
0.708 890
0.708 813
0.708 742

0.706 90
0.706 84
0.706 65
0.706 38
0.706 06
0.705 74
0.705 53
0.705 04
Q.704 65
0.704 24

41
42
43

45
46
47
48
49
50

Nb
Mo
Tc
Hu

Hh

Pd
Ag
Cd
In

Sn

Kr 4d45si
Kr 4d 5s
Kr 4d55s
Kr 4d~5s~
Kr 4d'5s'
Kr 4d"
Kr 4d~05s~

Kr 4d" 5s'
Kr 4d" 5s'5p'
Kr 4d" 5s'5p'

23
24,
24,
24,
24,
23
24,
24,
25,
26,

18
18
19
20
21
23
23
24
24
24

0.729 041
0.728 981
Q.728 912
0.728 850
0.728 792
0.728 738
0.728 691
0.728 646
0.728 605
Q.728 565

0.708 688
0.708 630
0.708 563
0.708 502
0.708 446
Q.708 394
0.708 346
0.708 304
0.708 264
0.708 226

0.703 83
0.703 41
0.702 99
0.702 53
0.702 17
0.701 58
0.701 45
0.701 14
0.701 02



THE FERMI HOLE AND THE EXCHANGE PARAMETER

TABLE D. (continued)

Atomic number Atom Electronic configuration

51
52
53
54
55
56
57
58
59
60

Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd

Kr 4d~o 5s2 5p3

Kr 4d~o js25p4
Kr 4d" Gs'Gp'
Kr 4d~ 5s25p
Xe 6s
Xe es2
Xe Gd~6s

Xe 4f 26s2

Xe 4f36s2
Xe 4f es

27
27
28,
28,
29,
30,
31
32

26
27
27
28
28
28
28
28

27, 24
27, 25

0.728 530
0.728 491
0.728 45S
0.728 426
0.728 396
0.728 367
0.728 340
0.728 314
0.728 291
0.728 268

0.708 191
0.708 155
0.708 112
0.708 090
0.708 061
0.708 033
0.708 007
0.707 982
0.707 959
0.707 937

0.699 84
0.699 61
0.699 27
0.698 98
0.698 45
0.697 65

61
62
63
64
65
66
67
68
69
70

71

73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90

Pm
Sm
Eu
Gd

Tb
Dy
Ho

Er
Tm
Yb

Lu
Hf
Ta

Be
08
Ir
Pt
Au

Hg

Tl
Pb
Bl
Po
At
Bn
Fr
Ba
Ac
Th

Xe 4f 'es'
Xe 4f ~es2

Xe 4f 7 6s2

Xe 4f'Gd'ez'
Xe 4f Gd es
Xe 4f~Des~

Xe 4f1i es2
Xe 4f~26s2

Xe 4f~36s2

Xe 4f'4es'

Xe 4f ~45d~6s2

Xe 4f Gd 6s
Xe 4f'4 Gd'es'
Xe 4f ~4 Gd46s2

Xe 4f Gd 6s
Xe 4f"Gd'es'
Xe 4f Gd es
Xe 4f"Gd'es'
Xe 4f"Gd" es'
Xe 4f'45d" es'

Xe 4f ~45d es2 ep
Xe 4f~45d' es 6p
Xe 4f"jd"es'ep'
Xe 4f'4 Gd" es'ep'
Xe 4f"Gd" es'ep'
Xe 4f ~4 Gd'06s26p6
an Vs'

Bn Vs

Rn ed'Vs'
Rn ed Vs

33
34,
35,
36,
36,
35,
35,
35,
35,
35,

36,
37.
38,
39,
4Q

40,
40,
40,
40,
40

43,
43,
43,
43,

44

28
28
28
28
29
31
32
33
34
35

35
35
35
35
35
36
37
38
39
40

43
43
44
44
44

0.728 247
0.728 227
0.728 208
0.72S 189
0.728 168
0.728 147
0.728 129
0.728 112
0.728 053
0.728 081

0.728 066
0.728 053
0.728 040
0.728 027
0.728 015
0.72S 002
0.727 990
0.727 979
0.727 968
0.727 958

0.727 948
0.727 939
0.727 930
0.727 921
0.727 912
0.727 904
Q.727 896
0.727 888
0.727 881
0.727 873

0.707 916
0.707 896
0.707 S78
0.707 860
0.707 840
0.707 819
0.707 801
0.707 785
0.707 769
0.707 754

0.707 740
0.707 727
0.707 714
0.707 702
0.707 691
0.707 679
0.707 668
0.707 656
0.707 646
0.707 636

0.707 626
0.707 617
0.707 609
0.707 600
0.707 591
0.707 583
Q. VQV 575
0.707 567
0.707 560
0.707 553

0.695 75
0.6956
0.695 25
0.694 53

0.693 24

0.693 06
0.693 01
0.692 90

0.692 48

101
102
103

Pa
U

Np
Pu
Am
Cm
Bk
Cf
Es
Fm

Bn Gf'ed'vs'
an Gf ed Vs
Rn 5f 57s2

Rn Gf ~ Vs2

Bn Gf vvs2

Bn Gj~ed' Vs2

Rn jf'ed' Vs'
Bn Gf~ovs2

Bn Gf ~~ vs2

Rn Gf ~2 Vs2

Rn 5f~37s2

Rn Gf~47s
an Gf" ed'Vs'

47,
48,
49,
50,
51,
52,
52,
51,
51,

51,
51,
52,

44
44
44
44

44

47
48

50
51
51

0.727 S66
0.727 860
0.727 853
0.727 847
0.727 841
0.727 836
0.727 830
Q.727 822
0.727 817
0.727 811

0.727 806
0.727 801
0.727 796

0.707 546
0.707 540
0.707 533
0.707 527
0.707 522
0.707 517
0.707 511
0.707 504
0.707 500
0.707 493

0.707 488
0.707 483
0.707 478
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(40)a„=(mt ttt+ n, n«)/(nt + tt t),

where n~ and g& refer to the number of spin-up
and spin-down electrons in the ground-state con-
figuration of the atom, and n, ~ and a«are the
corresponding values calculated using Eqs. (38)
and (39). These average values n„rageiven in

Table II for all atoms in the Periodic Table. The
availables a~ values are also given in Table II
for comparison. The a„and n~ are plotted as
a function of the atomic number Z in Fig. 3.

The Z dependence of n„gi e vbny Eqs. (38)-(40)
is seen to be in very good agreement with the em-
pirically found Z dependence of nttr (Fig. 3). This
shows that the nature of the Fermi hole assumed

.79

,78-

.77-

.76-

.73

~70 i-

y9 3 tQ t5 20 25 3Q 35 4Q

Z

50 7Q 90 103

FIG. 3. Plot of e«, 0.~ „and nHF vs atomic number,

empirically determined o~ values for atoms (see
TaMe II). As nt- ~, Eq. (39) gives a limiting val-
ue of 0.7275, which may be compared with the o
value of —,

' for an electron gas of uniform den-
sity.""

In the X method, different n values for elec-
trons of different spin are not generally used,
whereas, according to Eqs. (42) and (43), when

g ~
and n& are different, different 0. values must

be used. This result may be of particular impor-
tance in the spin-polarized X calculations, ""
and we will return to this point in Sec. IV. For
open-shell atoms, the a~ value is detex'mined by
making the total energy of the atom calculated by
the X equal to an average of the energies of the
various multiplets; this average is calculated
using the hyper-Hartree-Fock method. "b'

Within the present theory, to compute an aver-
age theoretical c. value for the atom (o,'„) for com-
parison with the n~ values, the following simple
Rvel aging ls used:

in Sec. II to derive Eqs. (35)-(40) is essentially
correct and adequately describes the situation in
atoms. Quantitatively, the n„values, although
close to the e~ values, are consistently high-
ex'. Thus the limltlng value of Qf HF fox' large
Z is ax'ound 0,69, while the theoretical lirn-
iting value is 0.7275. To compare the theoretical
n„values with the n~ values, this theoretical
limiting value can be adjusted and the correspond-
ing n values for atoms computed. Fox this pur-
pose, Eq. (38) is expressed by

i/n t+-.'
t t (1/ + 1)2/3

where C = 0.899 53 reduces Eq. (41) to (38) and cor-
responds to the limiting value of 0.7275 for a, ~.
Reducing the value of C to 0.680, i.e., using

I/n t+ —',
t t 0'88 (I/ 1&2/3iPl)+ p)

(43)

corresponds to a limiting value of 0.7072. These
o.,'~ values are also given in Table I, column 3.
The corresponding average n values for atoms,
denoted as a,', and computed using the averaging
process of Eq. (40), are given in Table II and plot-
ted in Fig. 3. These are seen to be in closex
agreement with n~.

We now turn to the fact, mentioned in Sec. I,
that the slope Bn~/BZ is discontinuous at every
atomic subshell. This is evident from Fig. 3. The
theoretical slope, Ba„/BZ or Bn', ,/BZ, is seen
from Fig. 3 to have exactly the same behavior as
B/t. sr/BZ; the magnitudes of the slopes are also in
good agreement. The apparent linearity of the
slope within each subshell is a direct consequence
of the dependence of a on the number of electx'ons,
Eqs. (38) and (39), of the Aufbau principle and of
Hund's rule, which determine the ground-state
configuration of atoms. From Eq. (38) and the nu-
merical values of Table I it is seen that a, &

falls
nonlinearly with n~, so does 0, «with n&. When a
subshell is being filled with electrons, rg ~

in-
creases with atomic number while n& remains
constant until the subshell is one-half filled, ac-
cording to Hund's rule for the ground state, and

n& remains constant while n& increases until the
two values are equal when the subshell is full.
Consequently, e, ~ falls nonlinearly and n«re-
mains constant until the subshell is one-half filled;
then a, ~

remains constant and o.« falls nonlinear-
ly until the subshell is full. Thus swithin the sub-
8hell the Rton11c Q~ value ls Rn Rppropx'1Rte Rvex'-

age [cf. Eq. (40)] of a nonlinearly varying quantity
and a constant; consequently, the variation in n„
becomes almost linear. This is schematically
shown in Fig. 4. The discontinuity in the slope
Bo.„/BZ at the beginning of every subshell arises
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I

Subshelli
II I I

Subshell ( i+1)

FIG. 4. Variation of nt ~, 0.
& ~, and a& I in atomic sub-

shells according to Eqs. (42)-(44), showing approximate
linearity (idealized in the figure) of n„within each sub-
shell and the discontinuity in slope Ba« /BZ at the be-
ginning of each subshel, l. (Purely schematic. )

from the fact that a„ is dependent on both nt and

n& and the ratio of these two changes at every
subshell. These breaks will be more pxonounced
for light atoms (small ni) for which the variation
in e, ~ is large. These facts are easily verified
from Fig. 3.

From the n& and n& values in Table II, which
reflect the ground-state electronic configuration
of elements, note that slight deviation from the
regulax behavior of n vs Z is predicted for Cr,
Nb, Dy, and Cf. The available n~ values show
these predicted deviations (Table ff).

Thus all details of the exnpirical Z dependence
of the n~ values are well reproduced by the pres-
ent theoretical n„values. This confirms that the
model of the Fermi hole assumed in Sec. II is es-
sentially correct and is sufficient to describe the
hole in atoms, and hopefully in molecules and sol-
ids as well.

IV. DISCUSSION

It has been shown that the Fermi sphere has a
density pi (1}at the center and pi(1)/n &

at points
far from the center. Assuming a linear variation
of the hole density within the sphere with these
boundary values leads to an expression for the
exchange potential which retains the simple p't~'(1)
dependence of the X theory, but shows that n
values depend explicitly on the n&, the number of
electrons. These theoretical values of o are
found to reproduce almost quantitatively the em-
pirically determined REF values as well as all
details of their dependence on atomic number.

Efforts have been made" to arrive at a single,
Z-independent n value that could be used for all
atoms, but this involves the introduction of another
Z-dependent parameter 8 and terms involving the
derivative of p in the exchange potential. It is
clear fx'om the present study that the Z dependence

of n has a theoretical basis, and arises naturally
without introducing any arbitrary parameters.
Therefore the use of a Z-independent o. value is
unjustified.

Another important result from the present work
is that for an atom or ion with a different number
of spin-up (n&) and spin-down (n~) electrons,
there are two different values of , namely, o.,~

for spin-up electrons and n, &
for spin-down elec-

trons, Eqs. (38) and (39). Thus the difference in
the exchange potential for the two types of elec-
trons arises not merely from the difference in
the electron densities p&(1) and p&(1), but also
from the difference in 0', ~

and e, &. This fact has
important consequences in calculations of pxop-
erties such as magnetic behavior and contact
hyperfine interaction using the spin-polarized
X method. As an illustration, we take the case
of the contact hyperfine interaction in the Mn"
ion discussed by Slater."' The magnitude of the
contact hyperfine structure is a measure of the
spin density at the nucleus arising from the s
electrons and is a stringent test of the exchange
approximation. In the particular case of the Mn"
ion the sign of the hyperfine structure corresponds
to an excess of spin-down electrons over spin-up
electrons at the nucleus. The spin-polarized X
calculations predict the corxect sign, but under-
estimate the magnitude; Slater has therefore con-
cluded that this feature will prevent the use of the
X method if very accurate calculations of contact
hyperfine structure are desired. The deficiency
of the X method can be removed if the dependence
of o on the number of electrons is considered. In
the spin-polarized X method a single average o
value is normally used for both spin-up and spin-
down electrons. But in the Mn" ion nt (= 14)
&ni(=9) and consecluently (see Table I) n, i
&e„&n«. Thus, for instance, the spin-up elec-
trons will have a less negative exchange potential
and higher energy, compared to the use of the
average O'.„.This would result in increasing the
density of the spin-down electrons at the nucleus
and decreasing that of the spin-up electron there,
from the corxesponding values obtained by the
use of a simple average &. Thus the magnitude
of the spin density at the nucleus and hence that
of the contact hyperfine structure would be in-
creased. Numerical calculations are underway to
test these qualitative predictions. Wilson et al."
used in a calculatjon on the Mn~ ion different o'

values, n„F(f}and n»(4) for different spine, the
two n values being empirically determined. Con-
trary to the pxesent theoretical results, they used
n„r(0) & o.sp(4), which leads to the wrong sign for
the spin density at the nucleus.

Finally, the use of different o.'values for elec-
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trons of opposite spin is of paramount importance
in describing the whole range of magnetic proper-

ties that depend on the small energy differences
between spin-up and spin-down electrons.
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