The Fermi hole and the exchange parameter in X_a theory^{*}

M. S. Gopinathan, M. A. Whitehead, and R. Bogdanović

Department of Chemistry, McGill University, Montréal, Québec, Canada, H3C 3G1

(Received 15 January 1976)

In Slater's statistical exchange approximation, the Fermi hole is assumed to be spherical and uniform in density. This leads to an exchange potential that depends on an adjustable parameter α which is different for each atom. The value of this parameter is determined empirically for each atom, usually by equalizing the total energy of the atom calculated by the X_{α} method to that calculated by Hartree-Fock theory. In this paper an explicit dependence of α on the atomic number Z is developed by considering a linear variation of the Fermi-hole density, with the proper boundary values. This permits the calculation of theoretical α values for all atoms in the periodic table; these are reported. These theoretical α values reproduce the Z dependence of the empirical α values in all details. Further, it is shown that electrons of opposite spin should have different α values—a result that has important consequences in X_{α} calculations of magnetic properties and hyperfine interactions.

I. INTRODUCTION

Slater's statistical approximation to the exchange potential has proved¹ a practical and reasonably accurate method of obtaining approximate one-electron solutions to the Schrödinger equation for atoms, molecules, and solids. In the statistical approximation, the exchange potential is proportional to the $\frac{1}{3}$ power of the local charge density; the proportionality constant contains an adjustable parameter α which has to be determined for each atom. Several criteria are used to determine these α values.² The different α values for different atoms, and the possibility of determining these values in several ways, reduces the stature of the X_{α} theory to a parametric theory. Therefore it is desirable to enquire whether the proportionality constant in the exchange potential can be derived for each atom from purely theoretical considerations. Such an enguiry would lead to a greater understanding of electron exchange in atoms. This is the purpose of this paper.

The one-electron Schrödinger equation in the X_{α} method determining the spin orbitals u_i is easily derived.¹ The nonrelativistic Hamiltonian is

$$H = \sum_{i} f_{i} + \sum_{i < j} r_{ij}^{-1} , \qquad (1)$$

where f_i is the one-electron operator consisting of the kinetic and potential energies in the field of the nucleus (or nuclei for molecules), and the second term is the coulomb interaction between pairs of electrons. The total electron density at a point 1, $\rho(1)$, can be written as the sum of the density due to the spin-up electrons, $\rho_{+}(1)$, and that due to the spin-down electrons, $\rho_{+}(1)$. These charge densities are defined by

$$\rho_{\dagger}(1) = \sum_{i} n_{i \dagger} u_{i \dagger}^{*}(1) u_{i \dagger}(1), \qquad (2)$$

and similarly for $\rho_{\downarrow}(1)$. Here n_{i+} is the occupation number of the spin orbital u_{i+} . The expectation value of the total energy is then given by,

$$E = \sum_{i} n_{i} \int u_{i}^{*}(1) f_{1} u_{i}(1) d\tau_{1}$$

+ $\frac{1}{2} \int \rho_{\dagger}(1) \left(\int \rho(2) r_{12}^{-1} d\tau_{2} + U_{\dagger}(1) \right) d\tau_{1}$
+ $\frac{1}{2} \int \rho_{\dagger}(1) \left(\int \rho(2) r_{12}^{-1} d\tau_{2} + U_{\dagger}(1) \right) d\tau_{1}.$ (3)

The first term is the sum of the kinetic and nuclear-electron attraction energies. The second and third terms correspond to the electron-electron interaction energy written separately for spin-up, \dagger , and spin-down, \dagger , electrons. In each term, $\int \rho(2) r_{12}^{-1} d\tau_2$ represents the electron-electron Coulomb potential at point 1, and $U_{\dagger}(1)$ is called the exchange potential acting on a spin-up electron at this point. $U_{\dagger}(1)$ is a negative term which removes the self-interaction energy of electrons wrongly included in the Coulomb term, and also accounts for all exchange effects. Slater's statistical approximation sets $U_{\dagger}(1)$ (in rydberg units) as

$$U_{\dagger}(1) = -9\alpha [(3/4\pi)\rho_{\dagger}(1)]^{1/3}, \qquad (4)$$

with a similar expression for $U_{\downarrow}(1)$; α is the parameter discussed above. When this form of U(1) is substituted into Eq. (3) and the variational principle applied to minimize E with respect to the u_i 's, then the one-electron Schrödinger equations determining the u_i 's are

$$\left[-\nabla_{1}^{2}+V_{C}(1)+V_{X\dagger}(1)\right]u_{i\dagger}(1)=\xi_{i\dagger}u_{i\dagger}(1),$$
(5)

1

Copyright © 1976 by The American Physical Society.

with similar equations for u_{\downarrow} . Here $V_{\chi\uparrow}(1)$ $=\frac{2}{3}U_{\dagger}(1)$. These are the self-consistent-field equations of the X_{α} method, which can be solved iteratively.

Slater has shown² that the $\rho_{1}^{1/3}(1)$ dependence of the exchange potential $U_{+}(1)$, Eq. (4), is easily obtained by certain simplifying assumptions regarding the distribution of the exchange charge which produces the exchange potential $U_{+}(1)$.

The exchange potential being negative means that the exchange charge is removed from the total electron distribution as far as our reference electron is concerned; this is commonly called the Fermi hole. Here, we adopt the sign convention that the exchange charge is negative, and this corresponds to the Fermi-hole density being positive. It will be shown in Sec. II that the total amount of the exchange charge is -1 and that its value at the position of the electron in question, namely, point 1, is $-\rho_+(1)$. Slater assumes that the exchange charge is distributed with a uniform density equal to $-\rho_{+}(1)$ within a sphere centered at point 1. If the radius of this Fermi sphere is $r_{\rm s}$, then from the requirement that the total exchange charge be -1,

$$\frac{4}{3}\pi \gamma_{s}^{3} \rho_{t}(1) = 1.$$
 (6)

The electrostatic potential at the center of the sphere due to this exchange charge is $-3/r_s$ (in rydberg units); thus

$$U_{+}(1) = -3\left[\frac{4}{3}\pi\rho_{+}(1)\right]^{1/3}.$$
(7)

Comparison with Eq. (4) gives a theoretical value of $\alpha = 0.87$. However, to empirically obtain the spin orbitals u_i 's with Hartree-Fock accuracy requires different α values to be used for different atoms; these empirical values are considerably less than 0.87. Consequently, the α value in Eq. (4) has always been treated as an adjustable parameter. Schwarz³ has determined the α values for atoms H through Rn, using the criterion that the total energy computed by the X_{α} method be equal to the Hartree-Fock energy for the atom. These values, denoted $\alpha_{\rm HF}$, show a smooth variation with atomic number Z. $\alpha_{\rm HF}$ falls with atomic number, being around 0.78 for the two-electron atoms, decreasing to a range of 0.72-0.70 for the 3d transition elements and remaining almost constant thereafter at 0.69 (see Table II and Fig. 3). Further, the plot of $\alpha_{\rm HF}$ vs Z (Fig. 3) shows distinct breaks in the slope as each new subshell is filled; the slope remains almost constant within a subshell.

Other criteria have been used^{4,5} to determine α , but they lead to a rather random variation with Zand their use is not usually recommended.⁶ Hence we do not consider such values in this paper.

Lindgren and Schwarz⁷ have analyzed the variation of α with atomic number. They decomposed the total exchange potential in an atom into contributions from the various shells, as well as into self-interaction and interelectronic parts. These quantities were found to vary differently with atomic number and the variation in $\alpha_{\rm HF}$ with Z represents an average of these individual variations. Such an analysis, accomplished by introducing more empirical α parameters, one for each shell, is only a detailed description of the Z dependence of $\alpha_{\rm HF}$.

What is required is a quantitative explanation of the Z dependence of $\alpha_{\rm HF}$ and, if possible, a method of determining the α values nonempirically. It has been shown above that the simple form of the Fermi hole assumed by Slater does not lead to any Z dependence of α . Therefore we examine in detail the nature of the Fermi hole in atoms, and show that a simple modification of the exchange charge distribution in the Fermi hole from the distribution assumed by Slater leads to an exchange potential that depends explicitly on the number of electrons, making α Z dependent. This permits calculation of α values for all atoms (Sec. II). Such a calculation is done for all atoms in the periodic table and the results are compared with the $\alpha_{\rm HF}$ values (Sec. III).

II. DENSITY FUNCTIONS, FERMI HOLE, AND EXCHANGE PARAMETER

It is well known⁸⁻¹⁰ that the electron-electron interaction energy corresponding to the Hamiltonian of Eq. (1) can be described in terms of the spatial part of the reduced density matrix elements. Only the diagonal elements of the oneand two-particle density matrices are needed here and these are defined as^{8-10}

$$\rho(1) = n \int |\psi(1, 2, \dots, n)|^2 d\tau_2 \cdots d\tau_n ds_1 ds_2 \cdots ds_n,$$
(8)

$$\pi(1,2) = n(n-1)$$

$$\times \int |\psi(1,2,\ldots,n)|^2 d\tau_3 \cdots d\tau_n ds_1 ds_2 \cdots ds_n.$$
(9)

Here, $d\tau_i$ stands for the volume element of the *i*th electron and ds, for the spin coordinate. $\rho(1)$ gives the charge density at point 1 and is the probability of finding any of the n electrons at this point. Equation (8) defines this as the number of electrons times the probability of finding a specific electron at point 1. $\pi(1, 2)$ is the pair den-

(9)

sity and gives the probability of finding any of the n particles at point 1 and simultaneously another at point 2. According to Eq. (9) this is equal to the number of pairs times the probability of finding simultaneously a specific pair at points 1 and 2. It follows from Eqs. (8) and (9) and the normalization of ψ that

$$\int \rho(1) d\tau_1 = n, \qquad (10)$$

$$\int \pi(1,2) d\tau_1 d\tau_2 = n(n-1), \tag{11}$$

and that

$$\int \pi(1,2) d\tau_2 = (n-1)\rho(1).$$
 (12)

All information about electron exchange and correlation of their motion is contained in $\rho(1)$ and $\pi(1, 2)$. When the electrons move independently of each other, the corresponding pair-density distribution, which we denote as $\pi^{ind}(1, 2)$, is usually but *wrongly* written as

$$\pi^{\text{ind}}(1,2) = \rho(1)\rho(2). \tag{13}$$

This expression is wrong since it does not preserve normalization. This is easily seen by integrating both sides of Eq. (13) over $d\tau_1$ and $d\tau_2$, which leads to $n^2 - n = n^2$. Therefore Eq. (13) is approximately valid only for systems with very large *n* and not for finite systems such as atoms and molecules, with which we are concerned. Kutzelnigg, Del Re, and Berthier¹¹ have shown that the correct form of the independent pair function is, instead of Eq. (13),

$$\pi^{\text{ind}}(1,2) = \rho(1)\rho(2) - \rho(1)\rho(2)/n.$$
(14)

Following McWeeny,⁸ for a system of definite spin, $\rho(1)$ and $\pi(1, 2)$ may be broken into their spin components,

$$\rho(1) = \rho_{+}(1) + \rho_{+}(1) \tag{15}$$

and

$$\pi(1,2) = \pi_{\dagger\dagger}(1,2) + \pi_{\dagger\dagger}(1,2) + \pi_{\dagger\dagger}(1,2) + \pi_{\dagger\dagger}(1,2) + \pi_{\dagger\dagger}(1,2),$$
(16)

where, for instance, $\pi_{\dagger\downarrow}(1,2)$ gives the probability of finding an electron with spin up at point 1 and another with spin down *simultaneously* at point 2. It is easily seen that

$$\int \rho_{\dagger}(1) d\tau_{1} = n_{\dagger}, \quad \int \rho_{\downarrow}(1) d\tau_{1} = n_{\downarrow}, \quad (17)$$

$$\int \pi_{\dagger \downarrow}(1, 2) d\tau_{1} d\tau_{2} = n_{\dagger}(n_{\dagger} - 1),$$

$$\int \pi_{\downarrow \downarrow}(1, 2) d\tau_{1} d\tau_{2} = n_{\downarrow}(n_{\downarrow} - 1), \quad (18)$$

$$\int \pi_{\dagger,\dagger}(1,2) d\tau_2 = (n_{\dagger}-1)\rho_{\dagger}(1), \qquad (19)$$

$$\int \pi_{\dagger,\dagger}(1,2) d\tau_1 d\tau_2 = \int \pi_{\dagger,\dagger}(1,2) d\tau_1 d\tau_2 = n_{\dagger}n_{\dagger}, \qquad (20)$$

where $n = n_{+} + n_{+}$; n_{+} is the number of spin-up electrons and n_{+} is the number of spin-down electrons. Also, analogous to Eq. (14), for the independent pair functions,

$$\pi_{\dagger \dagger}^{\text{ind}}(1,2) = \rho_{\dagger}(1)\rho_{\dagger}(2) - \rho_{\dagger}(1)\rho_{\dagger}(2)/n_{\dagger}, \qquad (21)$$

and similarly for $\pi_{++}^{ind}(1,2)$;

$$\pi_{\dagger \downarrow}^{ind}(1,2) = \rho_{\dagger}(1)\rho_{\downarrow}(2), \qquad (22)$$

and similarly for $\pi_{\downarrow\uparrow}^{ind}(1,2)$. The pair functions, when the electronic motion is correlated, may be written as⁸

$$\pi_{\dagger,\dagger}(1,2) = \rho_{\dagger}(1)\rho_{\dagger}(2) + \rho_{\dagger}(1)\rho_{\dagger}(2)f_{\dagger,\dagger}(1,2), \quad (23)$$

and similarly for $\pi_{++}(1,2)$;

$$\pi_{\dagger \downarrow}(1,2) = \rho_{\dagger}(1)\rho_{\downarrow}(2) + \rho_{\dagger}(1)\rho_{\downarrow}(2)f_{\dagger \downarrow}(1,2), \quad (24)$$

and similarly for $\pi_{\downarrow\downarrow}(1, 2)$. The *f*'s are the "correlation factors." This name has to be qualified; for the pair distribution of electrons of *unlike* spins, *f* represents the fractional change in π from π^{ind} owing to correlation, as is seen by comparing Eq. (24) with (22). However, for *like*-spin (e.g., $\uparrow \uparrow$) electrons, $(f_{\uparrow\uparrow} + 1/n_{\uparrow})$ is really the *correlation factor*, as follows from Eqs. (21) and (23).

The correlation between electrons of unlike spins is not considered in either the Hartree-Fock or X_{α} theory; in these approximations, $\pi_{\dagger\downarrow}^{ind}$ and $\pi_{\dagger\uparrow}^{ind}$ [Eq. (22)] are used so that $f_{\dagger\downarrow}(1,2) = f_{\downarrow\downarrow}(1,2) = 0$ for all positions 1 and 2. However, it is possible to include such correlations in the X_{α} theory by considering the properties of the "Coulomb hole," so that the solution of the resulting one-electron X_{α} equations leads to fully correlated spin orbitals and eigenvalues. The theory and results of such a study will be presented elsewhere.¹² Here we consider only the correlation between electrons of the same spin.

The conditional probability of finding an electron of \dagger spin at position 2, when one is known to be at position 1 with \dagger spin, is, from Eq. (23),

$$\pi_{\dagger,\dagger}(1,2)/\rho_{\dagger}(1) = \rho_{\dagger}(2) + \rho_{\dagger}(2)f_{\dagger,\dagger}(1,2); \qquad (25)$$

 $\rho_{\dagger}(2)f_{\dagger\dagger}(1,2)$ thus represents the modification in the charge distribution $\rho_{\dagger}(2)$ stemming from the presence of a spin-up electron at position 1.

Now, the total electron-electron interaction energy can be written

$$\left\langle \sum_{i < j} r_{ij}^{-1} \right\rangle = \frac{1}{2} \int r_{12}^{-1} \pi(1, 2) d\tau_1 d\tau_2.$$
 (26)

FIG. 1. Forms of the approximations to the like-spin correlation factor $f \nleftrightarrow (1, 2)$. — - - - : Slater's approximation (Ref. 1); — : present approximation; – – -: correct form (Ref. 14).

Using the spin components of (1, 2) given by Eqs. (22) and (23) in Eq. (26), and comparing the result with the corresponding terms in Eq. (3), it is seen that for the exchange potential,

$$U_{\dagger}(1) = \int r_{12}^{-1} \rho_{\dagger}(2) f_{\dagger \dagger}(1,2) d\tau_{2}.$$
 (27)

This corresponds to an exchange charge ρ^{ex} at position 2, given by

$$\rho_{\dagger}^{\text{ex}}(2) = \rho_{\dagger}(2) f_{\dagger}(1, 2). \tag{28}$$

Furthermore, by integrating Eq. (25) over $d\tau_2$ and using Eq. (19),

$$\int \rho_{\dagger}^{\text{ex}}(2) d\tau_2 = \int \rho_{\dagger}(2) f_{\dagger\dagger}(1,2) d\tau_2 = -1.$$
 (29)

That is, the total amount of exchange charge, which is effectively removed from the distribution as far as the reference electron at position 1 is concerned, is -1. Also, from the Pauli exclusion principle, $\pi_{\dagger,\dagger}(1,1)=0$, so that from Eq. (25) the exchange charge at position 1 of the reference electron is

$$\rho_{\dagger}^{\text{ex}}(1) = \rho_{\dagger}(1)f_{\dagger}(1,1) = -\rho_{\dagger}(1).$$
(30)

Thus the Fermi hole has a density at the position of the reference electron equal to the density of the electrons of the same spin at that point. But at any other point, it may be considerably different from this value, as follows from Eq. (28). This will be especially so in regions of strongly varying electron density. In general, the Fermi hole has a varying density and is not necessarily centered at the position of the reference electron.^{8,13} Slater's assumption of uniform spherical distribution for the Fermi-hole density is therefore rather severe for atoms and molecules.

We now consider the value of the exchange density when positions 1 and 2 are far apart. In this case, we may expect $\pi_{\dagger,\dagger}(1,2)$ to reduce to the independent pair distribution, $\pi_{\dagger,\dagger}^{ind}(1,2)$ of Eq. (21). Then

$$\rho_{\dagger}^{\rm ex}(2) = -\rho_{\dagger}(2)/n_{\dagger}, \qquad (31)$$

for r_{12} large. Physically, this means that when one electron of spin up is far removed from the distribution, the probability of finding a similar electron is reduced by a factor of $1/n_{\dagger}$ everywhere. The same result may be obtained¹⁴ by considering $f_{\dagger \dagger}(1, 2)$ as a slowly varying function for large r_{12} , so that $\rho_{\dagger}^{e_{\dagger}}(2)$ has the form $(\text{const}) \times \rho_{\dagger}(2)$. From Eq. (29), the value of this constant is $-1/n_{\dagger}$; this leads to Eq. (31). Thus the Fermi hole has a density equal to $\rho_{\dagger}(1)$ for $r_{12}=0$, and $\rho_{\dagger}(2)/n_{\dagger}$ for large r_{12} .

We now assume that the electron density is slowly varying around the point 1, so that we may replace $\rho_{\dagger}(2)/n_{\dagger}$ by $\rho_{\dagger}(1)/n_{\dagger}$. This is equivalent to saying that the electron density is uniform within the Fermi hole, but the exchange density, Eq. (28), changes owing to the change in $f_{\dagger,\dagger}(1,2)$ from -1 at $r_{12} = 0$ to $-(1/n_{\dagger})$ at large r_{12} (Fig. 1). We further assume that the Fermi hole is spherical, with radius r_0 , and is centered at position 1, but the density of the hole varies linearly with r, the distance from the center, and is equal to $\rho_{\dagger}(1)/n_{\dagger}$ at the boundary and zero outside. In Fig. 2, this Fermi-hole density distribution is compared schematically with that assumed by Slater. Other, more complicated forms for variation of hole density have been suggested; but these require the introduction of additional arbitrary parameters and are not of much practical value (see Ref. 6 for comments on such methods). Thus

$$\rho_{\dagger}^{\text{ex}}(\mathbf{r}) = a\mathbf{r} + b. \tag{32}$$

Determining the constants *a* and *b* using the boundary conditions, $\rho_{\dagger}^{ex}(r=0) = -\rho_{\dagger}(1)$ and $\rho_{\dagger}^{ex}(r=r_{0}) = -\rho_{\dagger}(1)/n_{\dagger}$, gives

$$\rho_{\dagger}^{\text{ex}}(r) = -\{ [\rho_{\dagger}(1)/r_0](1/n_{\dagger}-1)r + \rho_{\dagger}(1) \}.$$
(33)

FIG. 2. Approximations to the Fermi-hole density distribution (schematic). — --—: Slater's approximation (Ref. 1); —: present approximation. r_s and r_0 are the radii of the Fermi sphere in the two approximations.

Also, Eq. (29) then becomes

$$4\pi \int_0^{r_0} \rho_1^{\rm ex}(r) r^2 dr = -1.$$
 (34)

Substituting for $\rho_1^{ex}(r)$ from Eq. (33) and integrating, we find the radius of the Fermi sphere,

$$\boldsymbol{r}_{0} = \left[\pi (1/n_{+} + \frac{1}{3}) \rho_{+}(1) \right]^{-1/3}.$$
(35)

Notice that in Slater's approximation, the radius of the Fermi sphere is, from Eq. (6), $r_s = [\frac{4}{3}\pi\rho_{\dagger}(1)]^{-1/3}$. This is always smaller than r_0 [Eq. (35)]. Thus one of the effects of the present treatment is to enlarge the Fermi sphere, as shown in Fig. 2.

The potential at the center of the sphere owing to the exchange density is

$$U_{\dagger}(1) = 4\pi \int_{0}^{r_{0}} \rho_{\dagger}^{ex}(r) r \, dr$$
$$= \frac{4}{3}\pi r_{0}^{2}(1/n_{\dagger} + \frac{1}{2})\rho_{\dagger}(1), \qquad (36)$$

using Eq. (33). Substituting for r_0 from Eq. (35),

$$U_{\dagger}(1) = \frac{8\pi^{1/3}}{3} \frac{1/n_{\dagger} + \frac{1}{2}}{(1/n_{\dagger} + \frac{1}{3})^{2/3}} \rho_{\dagger}^{1/3}(1), \qquad (37)$$

with a similar expression for $U_{\downarrow}(1)$, in rydberg units.

Thus the exchange potential for a spin-up electron has an explicit dependence on the number of spin-up electrons in the system, in addition to its dependence on this number through $\rho_{\dagger}(1)$; Eqs. (4) or (7) have no such explicit dependence.

Writing Eq. (37) in the form of Eq. (4) yields

$$\alpha_{t\dagger} = \frac{8}{27} \left(\frac{4\pi^2}{3}\right)^{1/3} \frac{1/n_{\dagger} + \frac{1}{2}}{(1/n_{\dagger} + \frac{1}{3})^{2/3}}$$
(38)

for the exchange parameter for spin-up electrons, and

$$\alpha_{t\downarrow} = \frac{8}{27} \left(\frac{4\pi^2}{3} \right)^{1/3} \frac{1/n_{\downarrow} + \frac{1}{2}}{(1/n_{\downarrow} + \frac{1}{3})^{2/3}}$$
(39)

for the spin-down electrons. The notation α_t is introduced to denote that these are theoretically derived quantities.

III. EVALUATION OF THEORETICAL α VALUES FOR ATOMS

According to Eqs. (38) and (39), the spin-up and spin-down electrons have different α values when their numbers are different in an atom. The values of $\alpha_{t\dagger}$ (or equivalently $\alpha_{t\dagger}$) are computed from Eq. (38) for n_{\dagger} values from 1 to 55. These results are given in Table I, column 2. It is seen that the $\alpha_{t\dagger}$ values steadily decrease with increasing n_{\dagger} , being around 0.8 for small n_{\dagger} and approaching a constant value of 0.728 for large n_{\dagger} . This range of values is remarkably close to the

TABLE I.	Theoretical exchange parameter α_{t} and
scaled theor	etical exchange parameter α'_{t1} from Eqs.
(38) and (42)	as a function of the number of electrons n_{i} .

nț	α_{ii}	ait
1	0.866172	0.841 991
2	0.789938	0.767885
3	0.763868	0.742 543
4	0.751 489	0.730 509
5	0.744 568	0.723781
6	0.740288	0.719621
7	0.737450	0.716 862
8	0.735470	0.714937
9	0.734031	0.713 538
10	0.732 952	0.712490
11	0.732122	0.711683
12	0.731 470	0.711 049
13	0.730 948	0.710 542
14	0.730 523	0.710129
15	0.730174	0.709789
16	0.729883	0.709 507
17	0.729638	0.709268
18	0.729428	0.709064
19	0.729249	0.708 890
20	0.729 095	0.708740
21	0.728 960	0.708 609
22	0.728 842	0.708 491
23	0.728738	0.708 394
24	0.728 646	0.708 304
20	0.728 363	0.708225
26	0.728491	0.708154
21	0.728 267	0.708 033
20	0.728.307	0.707 981
30	0.728 265	0.707 934
31	0 728 222	0 707 892
32	0.728182	0 707 853
33	0.728145	0 707 817
34	0.728111	0.707 784
35	0.728 081	0.707754
36	0.728052	0.707726
37	0.728 026	0.707 708
38	0.728 002	0.707 678
39	0.727979	0.707 656
40	0.727 958	0.707636
41	0.727939	0.707 617
42	0.727921	0.707599
43	0.727904	0.707 583
44	0.727888	0.707567
45	0.727874	0.707553
46	0.727859	0.707539
47	0.727846	0.707527
48	0.727 834	0.707 515
49	0.727 822	0.707 503
50	0.727 812	0.707493
51	0.727 801	0.707 483
52	0.727792	0.707474
53	0.727 782	0.707464
54	0.727 774	0.707457
55	0.727766	0.707448

TABLE II. Theoretical exchange parameters for atoms α_{ta} and α'_{ta} calculated from Eqs. (38), (40), and (42); $\alpha_{\rm HF}$ values are from Ref. 3.

Atomic number	Atom	Electronic configuration	n_{\dagger}, n_{\dagger}	α_{ta}	α'_{ia}	$lpha_{ m HF}$
1	н	1 <i>s</i> ¹	1 . 1	0.994 095	0.966343	0,978 04
2	Не	$1s^{2}$	1, 1	0.866172	0.841 991	0,77298
3	Li	He $2s^1$	2, 1	0.815349	0.792 587	0.781 47
4	Ве	He 2 <i>s</i> ²	2, 2	0.789 938	0.767 885	0.768 23
5	в	He $2s^2 2p^1$	3, 2	0.774296	0.752 680	0.76531
6	С	He $2s^2 2p^2$	4, 2	0.764305	0.742 967	0.75928
7	Ν	He $2s^2 2p^3$	5, 2	0.757531	0.736382	0.751 97
8	0	He $2s^2 2p^4$	5, 3	0.751805	0.730817	0.744 77
9	F	He $2s^2 2p^5$	5,4	0.747644	0.726771	0.73732
10	Ne	He $2s^2 2p^6$	5, 5	0.744 568	0.723781	0.730 81
11	Na	Ne $3s^1$	6, 5	0.742233	0.721 152	0.73115
12	Mg	Ne $3s^2$	6,6	0.740288	0.719621	0.72913
13	Al	Ne $3s^2 3p^1$	7, 6	0.738760	0.718135	0.728 53
14	Si	Ne $3s^2 3p^2$	8,6	0.737535	0.716944	0.72751
15	Р	Ne $3s^2 3p^3$	9,6	0.736534	0.715971	0.72620
16	s	Ne $3s^2 3p^4$	9, 7	0.735527	0.714992	0.72475
17	Cl	Ne $3s^2 3p^5$	9, 8	0.734708	0.714196	0.72325
18	\mathbf{Ar}	Ne $3s^2 3p^6$	9, 9	$0.734\ 031$	0.713538	0.72177
19	К	Ar $4s^1$	10, 9	0.733463	0.712986	0.72117
20	Ca	Ar 4s ²	10, 10	0.732952	0.712490	0.71984
21	Sc	Ar $3d^14s^2$	11, 10	0.732517	0.712 067	0.71841
22	Ti	Ar $3d^2 4s^2$	12, 10	0.732144	0.711704	0.71698
23	V	Ar $3d^34s^2$	13, 10	0.731819	0.711389	0.71556
24	\mathbf{Cr}	Ar $3d^54s^1$	15, 9	0.731620	0 .711 195	0.71352
25	Mn	Ar $3d^54s^2$	15, 10	0.731285	0.710870	0.71279
26	Fe	Ar $3d^64s^2$	15, 11	0.730998	0.710590	0.71151
27	Co	Ar $3d^7 4s^2$	15, 12	0.730750	0.710349	0.71018
28	Ni	Ar $3d^84s^2$	15, 13	0.730 533	0.710139	0.708 96
29	Cu	Ar $3d^{10}4s^{1}$	15, 14	0.730392	0.709953	0.706 97
30	Zn	Ar $3d^{10}4s^2$	15, 15	0.730174	0.709789	0.70677
31	Ga	Ar $3d^{10} 4s^2 4p^1$	16, 15	0.730 024	0.709 643	0.706 90
32	Ge	Ar $3d^{10} 4s^2 4p^2$	17, 15	0.729889	0.709512	0.70684
33	\mathbf{As}	Ar $3d^{10} 4s^2 4p^3$	18, 15	0.729767	0.709 393	0.706 65
34	\mathbf{Se}	Ar $3d^{10} 4s^2 4p^4$	18, 16	0.729642	0.709272	0.706 38
35	Br	Ar $3d^{10} 4s^2 4p^3$	18, 17	0.729 530	0.709163	0.706 06
36	Kr	Ar $3d^{10} 4s^2 4p^6$	18, 18	0.729428	0.709 064	0.70574
37	Rb	$\operatorname{Kr} 5s^{2}$	19, 18	0.729336	0.708 975	0.705 53
38	Sr	$Kr 5S^2$	19, 19	0.729249	0.708 890	0.705 04
39	1 7	$Kr 4a^{-} 5s^{-}$	20, 19	0.729170	0.708 813	0.704.05
40	Zr	Kr 4 <i>a</i> - 58 -	21, 19	0.729097	0.100 142	0.704 24
41	Nb	Kr $4d^4 5s^1$	23, 18	0.729 041	0.708 688	0.70383
42	Mo	Kr $4a^{\circ}5s^{1}$	24, 18	0.728 981	0.708 630	0.70341
43	TC	Kr $4a^{\circ} 5s^{\circ}$	24, 19	0.728 912	0.708 563	0.702 99
44	KU Dh	Kr $4a^{3}55^{4}$	24, 20	0.728 850	0.709 440	0.702 33 0.709 17
45	Kn Dd	Kr 4 <i>a</i> -55* Kr 4 <i>d</i> 10	24, 21	0.128 192	0.108 446	0.704 17
40	Pa	$Kr 4a^{-1}$	40,40 04 00	0.128138	0.100 394	0.701 00
41 10	C4 Ag	$K_{\rm P} 4d^{10} 5s^2$	27, 23 24 24	0.728.646	0.708 340	0.701.43
40	In	$Kr 4d^{10} 5c^2 5h^1$	25, 24	0.728 605	0.708 264	0.701 02
50	Sn	$Kr 4d^{10} 5s^2 5h^2$	26, 24	0.728 565	0.708 226	
	~	111 IN 05 OP	,			

=

_

Atomic number	Atom	Electronic configuration	n _† ,	n ,	α_{ta}	α'_{ta}	$\alpha_{\rm HF}$
51	Sh	$Kr 4d^{10} 5s^2 5b^3$	97	24	0 728 530	0 709 101	
52	Te	$Kr 4d^{10} 5s^2 5b^4$	27	25	0.728.491	0 708 155	
53	T	$Kr 4d^{10} 5s^2 5b^5$	21,	26	0.728451	0.708113	
54	Xe	$Kr 4d^{10} 5s^2 5b^6$	27	20	0.728436	0.708 112	0 600 94
55	Ce	$X_{P} 6 s^{1}$	21,	21	0.720420	0.708.090	0.69984
56	Ba	$X_0 6 s^2$	20, 20	21	0.720.390	0.708.001	0.699.61
57	La	$X_{0} = 5d^{1} \epsilon_{0}^{2}$	40, 00	40 90	0.720.307	0.708 033	0.69927
50	Co	X = 34 05 $X = 4f^2 = c^2$	29,	40	0.728340	0.708 007	0.698 98
50	D=	$X_{2} = 4f^{3} C_{2}^{2}$	30,	28	0.728 314	0.707 982	0.69845
59 60	Nd	$Xe 4f^46s^2$	31, 32	28 29	0.728 291	0.707 959	0.697.65
	nu	AC 47 03	52,	20	0.120200	0.101 931	
61	Pm	Xe $4f^56s^2$	33,	28	0.728 247	0.707 916	
62	\mathbf{Sm}	Xe $4f^66s^2$	34,	28	0.728227	0.707 896	
63	Eu	Xe $4f^7 6s^2$	35,	28	0.728208	0.707 878	0.69575
64	Gd	Xe $4f^7 5d^1 6s^2$	36,	28	0.728189	0.707 860	0.6956
65	Tb	Xe $4f^8 5d^1 6s^2$	36,	29	0.728168	0.707 840	0.69525
66	Dy	Xe $4f^{10}6s^2$	35.	31	0.728147	0.707 819	0.694 53
67	Ho	Xe $4f^{11}6s^2$	35.	32	0.728129	0.707 801	
68	Er	Xe $4f^{12}6s^2$	35.	33	0.728112	0 707 785	
69	Tm	Xe $4f^{13}6s^2$	35.	34	0.728 053	0.707 769	
70	Yb	Xe $4f^{14}6s^2$	35,	35	0.728 081	0.707 754	0.69317
71	Tu	Xo 4 f 14 5d1 6 c2	36	25	0 729 066	0 707 740	0 602 24
72	Hf	$X = 4 f^{14} 5 d^2 6 s^2$	30,	35	0.728.053	0.707 797	0.093 24
73	лл То	$X_{0} 4 f^{14} 5 d^{3} 6 a^{2}$	90 90	20	0.728.040	0.707721	
74	W	$X_{e} 4 f^{14} 5 d^{4} 6 s^{2}$	20,	25	0.728.040	0.707 714	
75	Ro	$X = 4f^{14} 5d^5 6s^2$	<i>4</i> 0	25	0.728 027	0.707 601	
76		$X = 4f^{14} 5d^6 6a^2$	40,	00 96	0.720013	0.707.691	
77	US Ir	$X = 4f^{14} 5d^7 6s^2$	40,	30 97	0.728002	0.707679	
78	Dt	$Xe 4 f^{14} 5d^9 6s^1$	40,	30 90	0.121990	0.707.656	0 602 06
70	Γι Δu	$X_{0} 4 f^{14} 5 d^{10} c^{-1}$	40,	30 20	0.121919	0.707 656	0.693.06
80	Hg	Xe $4f^{14} 5d^{10} 6s^2$	40,	35 40	0.727 958	0.707 636	0.693 01
81	T1	Xe $4f^{14}5d^{10}6s^26p^1$	41.	40	0.727 948	0.707 626	0.692 89
82	Pb	Xe $4f^{14}5d^{10}6s^26p^2$	42.	40	0.727939	0.707 617	
83	Bi	Xe $4f^{14}5d^{10}6s^26p^3$	43.	40	0.727 930	0.707 609	
84	Po	Xe $4f^{14}5d^{10}6s^26p^4$	43.	41	0.727921	0.707 600	
85	At	Xe $4f^{14}5d^{10}6s^26p^5$	43.	42	0.727 912	0 707 591	
86	Rn	Xe $4f^{14}5d^{10}6s^26p^6$	43.	43	0.727 904	0.707 583	0 692 48
87	Fr	Rn $7s^1$	44.	43	0.727 896	0.707 575	0.002 10
88	Ra	$\operatorname{Rn} 7s^2$	44.	44	0.727 888	0.707 567	
89	Ac	$\operatorname{Bn} 6d^17s^2$	45	44	0 727 881	0 707 560	
90	Th	Rn $6d^27s^2$	46,	44	0.727 873	0.707 553	
Q1	Da	$Bn 5f^2 6d^1 7c^2$	47	11	0 797 966	0 707 540	
99	ra U	$Bn 5f^3 6d^1 7c^2$	41, 10	-1-1 11	0.141000	0.101 040	
92 93	Nn	$Bn 5f^57e^2$	чо, 10	-1-1 //	0.141000	0.101 040	
94	יים חיי	$Bn 5f^67e^2$	ч <i>э</i> , 50	 11	0.121000	0.101 000	
95	⊥u ∆m	$\frac{1110}{2}$	50, 51	11	0.141041	0.101 041	
96	лш Ст	$\frac{1}{2} \frac{1}{2} \frac{1}$	51, 59	44	0.727.826	0.101 022	
90 97	BP	$Rn 5f^86d^17s^2$	52,	44 15	0.127836	0.707517	
95	DK Cf	$Rn 5f^{10} 7c^2$	52, 51	40 47	0.141830	0.707 511	
90	UI Fo	$n_{10} = 117^{2}$	51, 51	41	0.121822	0.707 504	
100	ES Fm	Rn $5f^{12}7s^2$	51, 51.	40 49	0.727817 0.727811	0.707 493	
			<u> </u>			5	
101	Md	Rn $5f^{13}7s^2$	51,	50	0.727806	0.707488	
102	Lw	$\operatorname{Rn} 5f^{14}7s^2$	51,	51	0.727801	0.707483	
103	No	Rn $5f^{14} 6d^1 7s^2$	52,	51	0.727796	0.707478	

TABLE II. (continued)

empirically determined $\alpha_{\rm HF}$ values for atoms (see Table II). As $n_{\dagger} \rightarrow \infty$, Eq. (39) gives a limiting value of 0.7275, which may be compared with the α value of $\frac{2}{3}$ for an electron gas of uniform density.^{15,16}

In the X_{α} method, different α values for electrons of different spin are not generally used, whereas, according to Eqs. (42) and (43), when n_{\dagger} and n_{\downarrow} are different, different α values must be used. This result may be of particular importance in the spin-polarized X_{α} calculations,^{1(a)} and we will return to this point in Sec. IV. For open-shell atoms, the $\alpha_{\rm HF}$ value is determined by making the total energy of the atom calculated by the X_{α} equal to an average of the energies of the various multiplets; this average is calculated using the hyper-Hartree-Fock method.^{1(b)}

Within the present theory, to compute an average theoretical α value for the atom (α_{ta}) for comparison with the α_{HF} values, the following simple averaging is used:

$$\alpha_{ta} = (n_{\dagger} \alpha_{t\dagger} + n_{\downarrow} \alpha_{t\downarrow})/(n_{\dagger} + n_{\downarrow}), \qquad (40)$$

where n_{\dagger} and n_{\downarrow} refer to the number of spin-up and spin-down electrons in the ground-state configuration of the atom, and $\alpha_{t\dagger}$ and $\alpha_{t\downarrow}$ are the corresponding values calculated using Eqs. (38) and (39). These average values α_{ta} are given in Table II for all atoms in the Periodic Table. The available³ $\alpha_{\rm HF}$ values are also given in Table II for comparison. The α_{ta} and $\alpha_{\rm HF}$ are plotted as a function of the atomic number Z in Fig. 3.

The Z dependence of α_{ta} given by Eqs. (38)–(40) is seen to be in very good agreement with the empirically found Z dependence of α_{HF} (Fig. 3). This shows that the nature of the Fermi hole assumed

FIG. 3. Plot of α_{ta} , α'_{ta} , and $\alpha_{\rm HF}$ vs atomic number.

in Sec. II to derive Eqs. (35)-(40) is essentially correct and adequately describes the situation in atoms. Quantitatively, the α_{ta} values, although close to the $\alpha_{\rm HF}$ values, are consistently higher. Thus the limiting value of $\alpha_{\rm HF}$ for large Z is around 0.69, while the theoretical limiting value is 0.7275. To compare the theoretical α_{ta} values with the $\alpha_{\rm HF}$ values, this theoretical limiting value can be adjusted and the corresponding α values for atoms computed. For this purpose, Eq. (38) is expressed by

$$\alpha_{t\dagger} = C \frac{1/n_{\dagger} + \frac{1}{2}}{(1/n_{\dagger} + \frac{1}{3})^{2/3}}, \qquad (41)$$

where C = 0.69953 reduces Eq. (41) to (38) and corresponds to the limiting value of 0.7275 for α_{t+} . Reducing the value of C to 0.680, i.e., using

$$\alpha'_{t\dagger} = 0.68 \frac{1/n_{\dagger} + \frac{1}{2}}{(1/n_{\dagger} + \frac{1}{3})^{2/3}},$$
(42)

corresponds to a limiting value of 0.7072. These $\alpha'_{t\,i}$ values are also given in Table I, column 3. The corresponding average α values for atoms, denoted as α'_{ta} and computed using the averaging process of Eq. (40), are given in Table II and plotted in Fig. 3. These are seen to be in closer agreement with $\alpha_{\rm HF}$.

We now turn to the fact, mentioned in Sec. I, that the slope $\partial \alpha_{\rm HF} / \partial Z$ is discontinuous at every atomic subshell. This is evident from Fig. 3. The theoretical slope, $\partial \alpha_{ta} / \partial Z$ or $\partial \alpha'_{ta} / \partial Z$, is seen from Fig. 3 to have exactly the same behavior as $\partial \alpha_{\rm HF}/\partial Z$; the magnitudes of the slopes are also in good agreement. The apparent linearity of the slope within each subshell is a direct consequence of the dependence of α on the number of electrons, Eqs. (38) and (39), of the Aufbau principle and of Hund's rule, which determine the ground-state configuration of atoms. From Eq. (38) and the numerical values of Table I it is seen that α_{tt} falls nonlinearly with n_{\dagger} ; so does $\alpha_{t\downarrow}$ with n_{\downarrow} . When a subshell is being filled with electrons, n_{+} increases with atomic number while n_1 remains constant until the subshell is one-half filled, according to Hund's rule for the ground state, and n_{\dagger} remains constant while n_{\dagger} increases until the two values are equal when the subshell is full. Consequently, $\alpha_{t\dagger}$ falls nonlinearly and $\alpha_{t\dagger}$ remains constant until the subshell is one-half filled; then $\alpha_{t\dagger}$ remains constant and $\alpha_{t\dagger}$ falls nonlinearly until the subshell is full. Thus within the subshell the atomic α_{ta} value is an appropriate average [cf. Eq. (40)] of a nonlinearly varying quantity and a constant; consequently, the variation in α_{ta} becomes almost linear. This is schematically shown in Fig. 4. The discontinuity in the slope $\partial \alpha_{ta} / \partial Z$ at the beginning of every subshell arises

FIG. 4. Variation of $\alpha_{t \dagger}$, $\alpha_{t \dagger}$, and $\alpha_{t a}$ in atomic subshells according to Eqs. (42)-(44), showing approximate linearity (idealized in the figure) of $\alpha_{t a}$ within each subshell and the discontinuity in slope $\partial \alpha_{t a} / \partial Z$ at the beginning of each subshell. (Purely schematic.)

from the fact that α_{ta} is dependent on both n_{t} and n_{t} and the ratio of these two changes at every subshell. These breaks will be more pronounced for light atoms (small n_{t}) for which the variation in α_{tt} is large. These facts are easily verified from Fig. 3.

From the n_{+} and n_{+} values in Table II, which reflect the ground-state electronic configuration of elements, note that slight deviation from the regular behavior of α vs Z is predicted for Cr, Nb, Dy, and Cf. The available $\alpha_{\rm HF}$ values show these predicted deviations (Table II).

Thus all details of the empirical Z dependence of the $\alpha_{\rm HF}$ values are well reproduced by the present theoretical α_{ta} values. This confirms that the model of the Fermi hole assumed in Sec. II is essentially correct and is sufficient to describe the hole in atoms, and hopefully in molecules and solids as well.

IV. DISCUSSION

It has been shown that the Fermi sphere has a density $\rho_{\dagger}(1)$ at the center and $\rho_{\dagger}(1)/n_{\dagger}$ at points far from the center. Assuming a linear variation of the hole density within the sphere with these boundary values leads to an expression for the exchange potential which retains the simple $\rho_{\dagger}^{1/3}(1)$ dependence of the X_{α} theory, but shows that α values depend explicitly on the n_{\dagger} , the number of electrons. These theoretical values of α are found to reproduce almost quantitatively the empirically determined $\alpha_{\rm HF}$ values as well as all details of their dependence on atomic number.

Efforts have been made¹⁷ to arrive at a single, Z-independent α value that could be used for all atoms, but this involves the introduction of another Z-dependent parameter β and terms involving the derivative of ρ in the exchange potential. It is clear from the present study that the Z dependence of α has a theoretical basis, and arises naturally without introducing any arbitrary parameters. Therefore the use of a Z-independent α value is unjustified.

Another important result from the present work is that for an atom or ion with a different number of spin-up (n_{\dagger}) and spin-down (n_{\dagger}) electrons, there are two different values of α , namely, α_{tt} for spin-up electrons and α_{t+} for spin-down electrons, Eqs. (38) and (39). Thus the difference in the exchange potential for the two types of electrons arises not merely from the difference in the electron densities $\rho_{+}(1)$ and $\rho_{+}(1)$, but also from the difference in $\alpha_{t\dagger}$ and $\alpha_{t\downarrow}$. This fact has important consequences in calculations of properties such as magnetic behavior and contact hyperfine interaction using the spin-polarized X_{α} method. As an illustration, we take the case of the contact hyperfine interaction in the Mn^{2+} ion discussed by Slater.^{1(c)} The magnitude of the contact hyperfine structure is a measure of the spin density at the nucleus arising from the selectrons and is a stringent test of the exchange approximation. In the particular case of the Mn²⁺ ion the sign of the hyperfine structure corresponds to an excess of spin-down electrons over spin-up electrons at the nucleus. The spin-polarized X_{α} calculations predict the correct sign, but underestimate the magnitude; Slater has therefore concluded that this feature will prevent the use of the X_{α} method if very accurate calculations of contact hyperfine structure are desired. The deficiency of the X_{α} method can be removed if the dependence of α on the number of electrons is considered. In the spin-polarized X_{α} method a single average α value is normally used for both spin-up and spindown electrons. But in the Mn^{2+} ion $n_{+}(=14)$ $>n_{\downarrow}(=9)$ and consequently (see Table I) $\alpha_{t\uparrow}$ $< \alpha_{ta} < \alpha_{t\downarrow}$. Thus, for instance, the spin-up electrons will have a less negative exchange potential and higher energy, compared to the use of the average α_{ta} . This would result in increasing the density of the spin-down electrons at the nucleus and decreasing that of the spin-up electron there, from the corresponding values obtained by the use of a simple average α . Thus the magnitude of the spin density at the nucleus and hence that of the contact hyperfine structure would be increased. Numerical calculations are underway to test these qualitative predictions. Wilson et al.¹⁸ used in a calculation on the $\rm Mn^{*2}$ ion different α values, $\alpha_{\rm HF}(\mathbf{A})$ and $\alpha_{\rm HF}(\mathbf{A})$ for different spins, the two α values being empirically determined. Contrary to the present theoretical results, they used $\alpha_{\rm HF}(\mathbf{A}) > \alpha_{\rm HF}(\mathbf{A})$, which leads to the wrong sign for the spin density at the nucleus.

Finally, the use of different α values for elec-

trons of opposite spin is of paramount importance in describing the whole range of magnetic properties that depend on the small energy differences between spin-up and spin-down electrons.

- *Research supported by the National Research Council of Canada.
- ¹J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4, (a) p. 56, (b) p. 293, (c) p. 65. This volume is concerned mainly with the X_{α} method and contains an extensive bibliography.
- ²J. C. Slater, Adv. Quantum Chem. <u>6</u>, 1 (1972). ³K. Schwarz, Phys. Rev. B <u>5</u>, 2466 (1972); Theor. Chim. Acta (Berlin) 34, 225 (1974).
- ⁴I. Lindgren, Phys. Lett. <u>19</u>, 382 (1965); Ark. Fys. <u>31</u>, 59 (1966).
- ⁵E. A. Kmetko, Phys. Rev. A 7, 37 (1970).
- ⁶J. C. Slater, Phys. Rev. B <u>5</u>, 844 (1972); J. C. Slater and J. H. Wood, Int. J. Quantum Chem. 4S, 3 (1971).
- ⁷I. Lindgren and K. Schwarz, Phys. Rev. A 5, 542 (1972).
- ⁸R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).

- ⁹P. O. Löwdin, Phys. Rev. <u>97</u>, 1474 (1955).
- ¹⁰W. Kutzelnigg, Topics in Current Chemistry (Springer, Berlin, 1973), Vol. 41, p. 31.
- ¹¹W. Kutzelnigg, G. Del Re, and G. Berthier, Phys. Rev. 172, 49 (1968).
- ¹²M. S. Gopinathan and M. A. Whitehead (unpublished).
- ¹³V. W. Maslen, Proc. Phys. Soc. Lond. A <u>69</u>, 734 (1956).
- ¹⁴R. McWeeny, Int. J. Quantum Chem. 1S, 351 (1967).
- ¹⁵R. Gaspar, Acta Phys. Hung. <u>3</u>, 263 (1954).
- ¹⁶W. Kohn and L. J. Sham, Phys. Rev. <u>140</u>, A1113 (1965).
- ¹⁷F. Herman and K. Schwarz, Computational Solid State Physics (Plenum, New York, 1972), p. 245.
- ¹⁸T. M. Wilson, J. H. Wood, and J. C. Slater, Phys. Rev. A 2, 620 (1970).