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In Slater’s statistical exchange approximation, the Fermi hole is assumed to be spherical and uniform in
density. This leads to an exchange potential that depends on an adjustable parameter a which is different for
each atom. The value of this parameter is determined empirically for each atom, usually by equalizing the
total energy of the atom calculated by the X, method to that calculated by Hartree-Fock theory. In this paper
an explicit dependence of a on the atomic number Z is developed by considering a linear variation of the
Fermi-hole density, with the proper boundary values. This permits the calculation of theoretical a values for
all atoms in the periodic table; these are reported. These theoretical a values reproduce the Z dependence of
the empirical a values in all details. Further, it is shown that electrons of opposite spin should have different a
values—a result that has important consequences in X, calculations of magnetic properties and hyperfine

interactions.

I. INTRODUCTION

Slater’s statistical approximation to the ex-
change potential has proved' a practical and rea-
sonably accurate method of obtaining approximate
one-electron solutions to the Schrodinger equation
for atoms, molecules, and solids. In the statis-
tical approximation, the exchange potential is pro-
portional to the 3 power of the local charge den-
sity; the proportionality constant contains an ad-
justable parameter o which has to be determined
for each atom. Several criteria are used to deter-
mine these a values.? The different o values for
different atoms, and the possibility of determining
these values in several ways, reduces the stature
of the X, theory to a parametric theory. There-
fore it is desirable to enquire whether the propor-
tionality constant in the exchange potential can be
derived for each atom from purely theoretical con-
siderations. Such an enquiry would lead to a
greater understanding of electron exchange in at-
oms. This is the purpose of this paper.

The one-electron Schrddinger equation in the X,
method determining the spin orbitals u; is easily
derived.! The nonrelativistic Hamiltonian is

H=3 fi+ D 75 (1)
i i<j
where f; is the one-electron operator consisting of
the kinetic and potential energies in the field of the
nucleus (or nuclei for molecules), and the second
term is the coulomb interaction between pairs of
electrons. The total electron density at a point

1, p(1), can be written as the sum of the density
due to the spin-up electrons, p,(1), and that due to
the spin-down electrons, p,(1). These charge den-
sities are defined by

14

py(1)= D gty (Lugy(1), (@)
i

and similarly for p,(1). Here n;, is the occupa-
tion number of the spin orbital #;,. The expecta-
tion value of the total energy is then given by,

B =3 [t () dr,
o3 [ o ( [ ptayritar,+ U,(1)> ar,

o3 [ 00 ([ p@rars vw)ar. @

The first term is the sum of the kinetic and nu-
clear-electron attraction energies. The second
and third terms correspond to the electron-elec-
tron interaction energy written separately for
spin-up, 4, and spin-down, ¥, electrons. In each
term, f p(2)75: dT, represents the electron-elec-
tron Coulomb potential at point 1, and U,(1) is
called the exchange potential acting on a spin-up
electron at this point. U,(1) is a negative term
which removes the self-interaction energy of elec-
trons wrongly included in the Coulomb term, and
also accounts for all exchange effects. Slater’s
statistical approximation sets U,(1) (in rydberg
units) as

Uy(1) = -9a[(3/4m)py (1)]'/3, )

with a similar expression for U,(1); a is the pa-
rameter discussed above. When this form of U(1)
is substituted into Eq. (3) and the variational prin-
ciple applied to minimize E with respect to the
u;’s, then the one-electron Schrddinger equations
determining the u;,’s are

[V + V@) + Vi p (D ]y 4 (1) = £ 44 (1), (5)

1
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with similar equations for #,. Here V,;(1)
=2U,(1). These are the self-consistent-field equa-
tions of the X, method, which can be solved itera-
tively.

Slater has shown? that the p}/3(1) dependence of
the exchange potential U,(1), Eq. (4), is easily
obtained by certain simplifying assumptions re-
garding the distribution of the exchange charge
which produces the exchange potential U,(1).

The exchange potential being negative means
that the exchange charge is removed from the
total electron distribution as far as our reference
electron is concerned; this is commonly called
the Fermi hole. Here, we adopt the sign conven-
tion that the exchange charge is negative, and this
corresponds to the Fermi-hole density being posi-
tive. It will be shown in Sec. II that the total
amount of the exchange charge is -1 and that its
value at the position of the electron in question,
namely, point 1, is —p;(1). Slater assumes that
the exchange charge is distributed with a uniform
density equal to —p4(1) within a sphere centered
at point 1. If the radius of this Fermi sphere is
7., then from the requirement that the total ex-

s
change charge be -1,

$nripy(1)=1. (6)

The electrostatic potential at the center of the
sphere due to this exchange charge is =3/7, (in
rydberg units); thus

Uy(1) = ~3fmpy (). (7)

Comparison with Eq. (4) gives a theoretical value
of «=0.87. However, to empirically obtain the
spin orbitals #;’s with Hartree-Fock accuracy re-
quires different o values to be used for different
atoms; these empirical values are considerably
less than 0.87. Consequently, the a value in Eq.
(4) has always been treated as an adjustable pa-
rameter. Schwarz® has determined the a values

" for atoms H through Rn, using the criterion that
the total energy computed by the X, method be
equal to the Hartree-Fock energy for the atom.
These values, denoted o, show a smooth varia-
tion with atomic number Z. oy falls with atomic
number, being around 0.78 for the two-electron
atoms, decreasing to a range of 0.72-0.70 for the
3d transition elements and remaining almost con-
stant thereafter at 0.69 (see Table II and Fig. 3).
Further, the plot of oy vs Z (Fig. 3) shows dis-
tinct breaks in the slope as each new subshell is
filled; the slope remains almost constant within
a subshell.

Other criteria have been used*® to determine «,
but they lead to a rather random variation with Z
and their use is not usually recommended.® Hence
we do not consider such values in this paper.

Lindgren and Schwarz’ have analyzed the varia-
tion of a with atomic number. They decomposed
the total exchange potential in an atom into con-
tributions from the various shells, as well as into
self-interaction and interelectronic parts. These
quantities were found to vary differently with
atomic number and the variation in o, with Z
represents an average of these individual varia-
tions. Such an analysis, accomplished by intro-
ducing more empirical a parameters, one for
each shell, is only a detailed description of the
Z dependence of ayy.

What is required is a quantitative explanation
of the Z dependence of o and, if possible, a
method of determining the o values nonempirical-
ly. It has been shown above that the simple form
of the Fermi hole assumed by Slater does not lead
to any Z dependence of a. Therefore we examine
in detail the nature of the Fermi hole in atoms,
and show that a simple modification of the ex-
change charge distribution in the Fermi hole from
the distribution assumed by Slater leads to an ex-
change potential that depends explicitly on the
number of electrons, making o Z dependent. This
permits calculation of a values for all atoms
(Sec. II). Such a calculation is done for all atoms
in the periodic table and the results are compared
with the ayp values (Sec. III).

II. DENSITY FUNCTIONS, FERMI HOLE,
AND EXCHANGE PARAMETER

It is well known®'° that the electron-electron
interaction energy corresponding to the Hamilto-
nian of Eq. (1) can be described in terms of the
spatial part of the reduced density matrix ele-
ments. Only the diagonal elements of the one-
and two-particle density matrices are needed here
and these are defined as®™°

p(1)=nj "p(l’ 2, ... ,”)Fde At ds,ds, -t ds,,
®)

7(1,2)=n(n - 1)

xj lo(1,2,...,n)Rdr, - -+ dT,ds, ds, " ds,.

©)

Here, dT; stands for the volume element of the ith
electron and ds; for the spin coordinate. p(1)
gives the charge density at point 1 and is the prob-
ability of finding any of the n electrons at this
point. Equation (8) defines this as the number of
electrons times the probability of finding a spe-
cific electron at point 1. (1, 2) is the pair den-
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sity and gives the probability of finding any of the
n particles at point 1 and simultaneously another
at point 2. According to Eq. (9) this is equal to
the number of pairs times the probability of find-
ing simultaneously a specific pair at points 1 and
2. It follows from Eqgs. (8) and (9) and the nor-
malization of ¢ that

j p(1)dr,=n, (10)

j n(1,2) dr, dry=n(n - 1), (1)
and that

j m(1,2) dry=(n - 1)p(1). (12)

All information about electron exchange and cor-
relation of their motion is contained in p(1) and
m(1,2). When the electrons move independently

of each other, the corresponding pair-density
distribution, which we denote as #'*¥(1, 2), is usu-
ally but wrongly written as

7" (1,2)=p(1)p(2). (13)

This expression is wrong since it does not pre-
serve normalization. This is easily seen by in-
tegrating both sides of Eq. (13) over dr, and dr,,
which leads to n®> - n=72. Therefore Eq. (13) is
approximately valid only for systems with very
large » and not for finite systems such as atoms
and molecules, with which we are concerned.
Kutzelnigg, Del Re, and Berthier'* have shown
that the correct form of the independent pair func-
tion is, instead of Eq. (13),

741, 2) = p(1)p(2) - p(1)p(2)/n. (14)

Following McWeeny,® for a system of definite
spin, p(1) and 7(1, 2) may be broken into their spin
components,

p(1)=p4(1)+p, (1) (15)

and
m(1,2)=myy(1,2)+my , (1,2)+ 7, 4(1,2)+ 7, ,(1,2),
(16)

where, for instance, my,(1,2) gives the probability
of finding an electron with spin up at point 1 and
another with spin down simultaneously at point 2.
It is easily seen that

J’ py(1) dTy =ny, J p1) dry=n,, amn

J my4(1,2)dT dT,=n4(ny - 1),

(18)
I 7,4,Q1,2)d7r dT,=n,(n, ~ 1),

[ 71,2 a7,= g - 10, (19)

I Wf;(l,Z)d‘rld'rz:fn,,(l,z)d'rld‘rz:n,n,,

(20)

where n=ny+n,; n is the number of spin-up elec-
trons and 7, is the number of spin-down electrons.
Also, analogous to Eq. (14), for the independent
pair functions,

81, 2) = py (1)p4(2) = py (1)p4 (2)/ny, (21)
and similarly for m{*(1, 2);
ﬂifnf(ly 2) =p1(1)p{ (Z)y (22)

and similarly for #{"{(1, 2). The pair functions,
when the electronic motion is correlated, may be
written as®

m11(1,2) =0, Wpy @)+ 01 Doy 711 (1,2, (23)
and similarly for m,,(1, 2);
Ty ‘(1, 2) = p’(l)P;(Z)'*' Pf(l)P;(z)ff l(ly 2)7 (24)

and similarly for =, 4(1,2). The f’s are the “cor-
relation factors.” This name has to be qualified;
for the pair distribution of electrons of unlike
spins, f represents the fractional change in 7
from 7'* owing to correlation, as is seen by com-
paring Eq. (24) with (22). However, for like-spin
(e.g., 14) electrons, (fy4+1/n,) is really the cor-
relation factor, as follows from Eqgs. (21) and (23).

The correlation between electrons of unlike spins
is not considered in either the Hartree-Fock or
X, theory; in these approximations, 7}*} and wi*
[Eq. (22)] are used so that fy,(1,2)=f,,(1,2)=0
for all positions 1 and 2. However, it is possible
to include such correlations in the X, theory by
considering the properties of the “Coulomb hole, ”
so that the solution of the resulting one-electron
X, equations leads to fully correlated spin orbit-
als and eigenvalues. The theory and results of
such a study will be presented elsewhere.'? Here
we consider only the correlation between electrons
of the same spin.

The conditional probability of finding an electron
of 4 spin at position 2, when one is known to be at
position 1 with ¢ spin, is, from Eq. (23),

my4(1,2)/py (1) =py(2) + py(2) 4 4(1, 2); (25)

p4(2)fy4(1,2) thus represents the modification in
the charge distribution p,(2) stemming from the
presence of a spin-up electron at position 1.

Now, the total electron-electron interaction en-
ergy can be written

<Zr;§> =;: J rizm(1,2) dr dT,. (26)

i<j
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f“(1,2)

-1.0

FIG. 1. Forms of the approximations to the like-spin
correlation factor f#(1,2). — --—: Slater’s approxi-
mation (Ref. 1); —: present approximation; — — —: cor-
rect form (Ref. 14).

Using the spin components of (1, 2) given by Egs.
(22) and (23) in Eq. (26), and comparing the result
with the corresponding terms in Eq. (3), it is seen
that for the exchange potential,

U= [ 7ier @140, D dr,. (21)

This corresponds to an exchange charge p®* at
position 2, given by

oF@) =py@)f14 (1, 2). (28)

Furthermore, by integrating Eq. (25) over d7, and
using Eq. (19),

[ or@an= [ 0@51 0, 2ar=-1. (@9)

That is, the total amount of exchange charge,
which is effectively removed from the distribution
as far as the reference electron at position 1 is
concerned, is —1, Also, from the Pauli exclusion
principle, m44(1,1)=0, so that from Eq. (25) the
exchange charge at position 1 of the reference
electron is

P (1) =py(1)f44(1,1) = ~p4 (1). (30)

Thus the Fermi hole has a density at the position
of the reference electron equal to the density of
the electrons of the same spin at that point. But
at any other point, it may be considerably differ-
ent from this value, as follows from Eq. (28).
This will be especially so in regions of strongly
varying electron density. In general, the Fermi
hole has a varying density and is not necessarily
centered at the position of the reference elec-
tron.®!® Slater’s assumption of uniform spherical
distribution for the Fermi-hole density is there-
fore rather severe for atoms and molecules.

We now consider the value of the exchange den-
sity when positions 1 and 2 are far apart. In this
case, we may expect m,,(1, 2) to reduce to the in-
dependent pair distribution, 7{*(1,2) of Eq. (21).

Then
PF(2) = —py(2)/ny, (1)

for 7,, large. Physically, this means that when
one electron of spin up is far removed from the
distribution, the probability of finding a similar
electron is reduced by a factor of 1/n, every-
where. The same result may be obtained* by con-
sidering f44(1, 2) as a slowly varying function for
large 7,,, so that p§(2) has the form (const) X p4(2).
From Eq. (29), the value of this constant is —1/n;;
this leads to Eq. (31). Thus the Fermi hole has a
density equal to py(1) for 7,,=0, and p;(2)/n,; for
large 7,,.

We now assume that the electron density is slow-
ly varying around the point 1, so that we may re-
place p4(2)/ny by py(1)/ny. This is equivalent to
saying that the electron density is uniform within
the Fermi hole, but the exchange density, Eq.
(28), changes owing to the change in f},(1, 2) from
-1 at 7,,=0 to —~(1/n,) at large 7, (Fig. 1). We
further assume that the Fermi hole is spherical,
with radius #,, and is centered at position 1, but
the density of the hole varies linearly with r, the
distance from the center, and is equal to p4(1)/n,
at the boundary and zero outside. In Fig. 2, this
Fermi-hole density distribution is compared sche-
matically with that assumed by Slater. Other,
more complicated forms for variation of hole den-
sity have been suggested; but these require the
introduction of additional arbitrary parameters
and are not of much practical value (see Ref. 6
for comments on such methods).

Thus

pf(r) =ar+b. (32)

Determining the constants a and b using the bound-
ary conditions, p§ (r=0)=-p,(1) and p§(r=7,)
=-py(1)/ny, gives

pP() = ~{lps(1)/7, 1A /ny - D)r+py(1)}. (33)

>

—Fermi hole density ——

Pyt \’
e}

rs To To—>

FIG. 2. Approximations to the Fermi-hole density
distribution (schematic). — --—: Slater’s approximation
(Ref. 1); —: present approximation. 7, and 7, are the
radii of the Fermi sphere in the two approximations.
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Also, Eq. (29) then becomes TABLE L. Theoretical exchange parameter o and
scaled theoretical exchange parameter o}y from Egs.
tn Jro pﬁ‘('r)'rzd'}’= 1. (34) (38) and (42) as a function of the number of electrons ny.
0
_— x . 74 S3T) oty
Substituting for p§*(») from Eq. (33) and integrat-
ing, we find the radius of the Fermi sphere, 1 0.866172 0.841 991
(st DO I B vt
Notice that in Slater’s approximation, the radius 4 0.751489 0.730509
of the Fermi sphere is, from Eq. (6), 7, 5 0.744 568 0.723781
=[47p,(1)]/3. This is always smaller than 7, 3 g'zggigg 8‘22 gg;
[Eq. (35)]. Thus one of the effects of the present 8 0.735 470 0.714 937
treatment is to enlarge the Fermi sphere, as 9 0.734 031 0.713538
shown in Fig. 2. 10 0.732952 0.712490
The potential at the center of the sphere owing 1 0.732 122 0.711 683
to the exchange density is 12 0.731470 0.711 049
70 13 0.730948 0.710 542
U,(l)=41rJ. pS(r)rdr 14 0.730523 0.710129
° 15 0.730174 0.709789
=421 /ny + 3)py (1), (36) 16 0.729883 0.709 507
17 0.729 638 0.709268
using Eq. (33). Substituting for », from Eq. (35), 18 0.729428 0.709 064
1/3 1 19 0.729 249 0.708 890
U’(1)=87'3/ (1%’::‘;)22/3 p4/3(1), (37) 20 0.729095 0.708 740
21 0.728 960 0.708 609
with a similar expression for U,(1), in rydberg 22 0.728 842 0.708491
units. 23 0.728738 0.708 394
Thus the exchange potential for a spin-up elec- 24 0.728 646 0.708 304
tron has an explicit dependence on the number of 25 0.728 565 0.708225
spin-up electrons in the system, in addition to its 33 g‘zg jgé g'zgg (1)23
dependence on this number through p,(1); Egs. (4) 28 0.728 367 0.708 033
or (7) have no such explicit dependence. 29 0.728 314 0.707 981
Writing Eq. (37) in the form of Eq. (4) yields 30 0.728 265 0.707 934
1 31 0.728 222 0.707 892
a“=2—87'(23ﬁ)1/3(7]’_%%:)_§,§ (38) 32 0.728182 0.707 853
tTs3 33 0.728145 0.707 817
: 34 0.728111 0.707 784
for the exchange parameter for spin-up electrons, 35 0.728 081 0.707 754
and 36 0.728 052 0.707726
8 (Am2\'/* 1/nm,+1 37 0.728 026 0.707 708
a,, —ﬁ(-3—-> W (39) 38 0.728 002 0.707 678
39 0.727979 0.707 656
for the spin-down electrons. The notation a, is 40 0.727 958 0.707 636
introduced to denote that these are theoretically 41 0.727 939 0.707 617
derived quantities. 42 0.727 921 0.707 599
43 0.727 904 0.707 583
III. EVALUATION OF THEORETICAL o VALUES FOR ATOMS 44 0.727 888 0.707 567
45 0.727 874 0.707 553
According to Egs. (38) and (39), the spin-up and ig g;;; Ziz g’;g; gzg
spin-down electrons have different a values when 48 0.727 834 0.707 515
their numbers are different in an atom. The val- 49 0.727 822 0.707 503
ues of &, (or equivalently o, ,) are computed 50 0.727 812 0.707493
from Eq. (38) for »n, values from 1 to 55. These 51 0.727 801 0.707 483
results are given in Table I, column 2. It is seen 52 0.727792 0.707 474
that the a,; values steadily decrease with increas- 53 0.727 782 0.707 464
ing n,, being around 0.8 for small », and ap- 54 0.727774 0.707 457
proaching a constant value of 0.728 for large ;. 55 0.727766 0.707 448

This range of values is remarkably close to the
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TABLE II. Theoretical exchange parameters for atoms ¢, and o}, calculated from Egs.

(38), (40), and (42); oy values are from Ref. 3.

Atomic number Atom Electronic configuration n,, n, Qg Qiq [

1 H 1s! 4,1 0.994095 0.966343 0.97804
2 He 1s? 1,1 0.866172 0.841991 0.77298
3 Li He 2s! 2,1 0.815349 0.792587 0.78147
4 Be He 2s? 2,2 0.789938 0.767885 0.76823
5 B He 2s%2p? 3,2  0.774296 0.752680 0.76531
6 c He 2s22p? 4,2 0.764305 0.742967 0.75928
7 N He 2s22p° 5,2 0.757531 0.736382 0.751 97
8 0 He 2s%2p* 5,3 0.751805 0.730817 0.74477
9 F He 2s22p° 5,4 0.747644 0.726771 0.737 32
10 Ne He 2s%2p® 5, 5 0.744568 0.723781 0.73081
11 Na Ne 3s! 6, 5 0.742233 0,721152 0.73115
12 Mg Ne 3s? 6, 6 0.740288 0.719621 0.72913
13 Al Ne 3s23p! 7, 6 0.738760 0.718135 0.72853
14 si Ne 3s?3p? 8, 6 0.737535 0.716944 0.72751
15 P Ne 3s%3p? 9, 6 0.736534 0.715971 0.72620
16 S Ne 3s23p? 9, 7 0.735527 0.714992 0.72475
17 cl Ne 3s23p® 9, 8 0.734708 0.714196 0.72325
18 Ar Ne 3s%3p® 9, 9 0.734031 0.713538 0.72177
19 K Ar 4s! 10, 9 0.733463 0.712986 0.72117
20 Ca Ar 4s? 10, 10  0.732952 0.712490 0.71984
21 Sc Ar 3d'4s? 11, 10 0.732517 0.712067 0.71841
22 Ti Ar 3d®4s? 12, 10 0.732144 0.711704 0.716 98
23 \% Ar 3d%4s? 13, 10 0.731819 0.711389 0.71556
24 Cr Ar 3d°4s! 15, 9 0.731620 0.711195 0.71352
25 Mn Ar 3d%4s? 15, 10 0.731285 0.710870 0.71279
26 Fe Ar 3d%4s? 15, 11  0.730998 0.710590 0.71151
27 Co Ar 3d"4s? 15, 12 0.730750 0.710349 0.71018
28 Ni Ar 3d%4s? 15, 13 0.730533 0.710139 0.708 96
29 Cu Ar 3d1%4s! 15, 14 0.730392 0.709953 0.706 97
30 Zn Ar 3d1%4s? 15, 15 0.730174 0.709789 0.70677
31 Ga Ar 3d104s%4p! 16, 15 0.730024 0.709643 0.706 90
32 Ge Ar 3d104s%4p? 17, 15 0.729889 0.709512 0.706 84
33 As Ar 3d1%4s?4p3 18, 15 0.729767 0.709393 0.706 65
34 Se Ar 3d1°45? 4p* 18, 16 0.729642 0.709272 0.706 38
35 Br Ar 3d104s%4p5 18, 17 0.729530 0.709163 0.706 06
36 Kr Ar 3d1%4s?4p® 18, 18 0.729428 0.709064 0.70574
37 Rb Kr 5s! 19, 18 0.729336 0.708975 0.70553
38 Sr Kr 5s? 19, 19  0.729249 0.708890 0.70504
39 Y Kr 4d!5s? 20, 19 0.729170 0.708813 0.704 65
40 Zr Kr 4d%5s? 21, 19  0.729097 0.708742 0.704 24
41 Nb Kr 4d*5s! 23, 18 0.729041 0.708688 0.70383
42 Mo Kr 4d®5s! 24, 18 0.728981 0.708630 0.70341
43 Tc Kr 4d°5s? 24, 19 0.728912 0.708563 0.702 99
44 Ru Kr 4d"5s! 24, 20 0.728850 0.708502 0.702 53
45 Rh Kr 4d®5s! 24, 21  0.728792 0.708446 0.70217
46 Pd Kr 4d1? 23, 23 0.728738 0.708394 0.701 58
47 Ag Kr 4d'%5s! 24, 23  0.728691 0.708346 0.70145
48 cd Kr 4d!%5s? 24, 24 0.728646 0.708304 0.70114
49 In Kr 4d'°55? 5p! 25, 24 0.728605 0.708264 0.701 02
50 Sn Kr 4d!°5s% 5p? 26, 24 0.728565 0.708226
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TABLE 1I. (continued)

?

Atomic number Atom Electronic configuration ny, =, Qyq Qg Ay

51 Sb Kr 4d195s? 5p° 27, 24 0.728530 0.708191
52 Te Kr 4d105s2 5pt 27, 25 0.728491 0.708155
53 1 Kr 4d!% 552 5p° 27, 26 0.728458 0.708112
54 Xe Kr 4d!% 552 5p8 27, 27 0.728426 0.708090 0.699 84
55 Cs Xe 6s! 28, 27  0.728396 0.708061 0.699 61
56 Ba Xe 6s° 28, 28  0.728367 0.708033 0.69927
57 La Xe 5d! 6s° 29, 28  0.728340 0.708007 0.698 98
58 Ce Xe 4f26s? 30, 28 0.728314 0.707982 0.69845
59 Pr Xe 4f%6s? 31, 28  0.728291 0.707959 0.697 65
60 Nd Xe 4f%6s? 32, 28  0.728268 0.707 937
61 Pm Xe 4f%6s? 33, 28 0.728247 0.707916
62 Sm Xe 4f86s? 34, 28  0.728227 0.707896
63 Eu Xe 4f76s? 35, 28  0.728208 0.707878 0.69575
64 Gd Xe 4f75d! 6s? 36, 28  0.728189 0.707860 0.6956
65 Tb Xe 4f85d1 652 36, 29 0.728168 0.707840 0.69525
66 Dy Xe 4f106s? 35, 31  0.728147 0.707819 0.694 53
67 Ho Xe 4f 1 6s? 35, 32 0.728129 0.707 801
68 Er Xe 4f1%26s? 35, 33 0.728112 0.707785
69 Tm Xe 4f136s? 35, 3¢ 0.728053 0.707769
70 Yb Xe 4114 6s? 35, 35 0.728081 0.707754 0.69317
71 Lu Xe 4114 5d! 652 36, 35 0.728066 0.707740 0.69324
72 Hf Xe 4114542652 37, 35 0.728053 0.707 727
73 Ta Xe 4f145d%6s2 38, 35 0.728040 0.707 714
74 w Xe 4114544 652 39, 35 0.728027 0.707 702
75 Re Xe 4f145d56s? 40, 35 0.728015 0.707691
76 Os Xe 4114 545 6s° 40, 36  0.728002 0.707 679
77 Ir Xe 4114547 652 40, 37  0.727990 0.707 668
78 Pt Xe 4f154°6s! 40, 38  0.727979 0.707656 0.693 06
79 Au Xe 4f 145410 65! 40, 39  0.727968 0.707646 0.69301
80 Hg Xe 41145410652 40, 40  0.727958 0.707636 0.692 90
81 Tl Xe 4f145d1%s? 6p! 41, 40  0.727948 0.707626 0.692 89
82 Pb Xe 4115410 6s? 6p? 42, 40  0.727939 0.707617
83 Bi Xe 4f145d16s26p° 43, 40  0.727930 0.707 609
84 Po Xe 41145410652 6p* 43, 41  0.727921 0.707 600
85 At Xe 41 5d41%65%6p° 43, 42 0.727912 0.707591
86 Rn Xe 41145410652 6p° 43, 43 0.727904 0.707583 0.69248
87 Fr Rn 7s! 44, 43 0.727896 0.707575
88 Ra Rn 7s? 44, 44 0.727888 0.707 567
89 Ac Rn 6d!7s? 45, 44 0.727881 0.707 560
90 Th Rn 6d%7s? 46, 44 0.727873 0.707 553
91 Pa Rn 5f%6d!7s? 47, 44 0.727866 0.707 546
92 U Rn 5f%6d' 7s? 48, 44  0.727860 0.707 540
93 Np Rn 5f57s? 49, 44  0.727853 0.707533
94 Pu Rn 5£67s? 50, 44  0.727847 0.707 527
95 Am Rn 5f77s? 51, 44  0.727841 0.707 522
96 Cm Rn 5/764d! 7s? 52, 44  0.727836 0.707517
97 Bk Rn 5f86d! 7s? 52, 45 0.727830 0.707 511
98 cf Rn 5f1075? 51, 47 0.727822 0.707 504
99 Es Rn 57172 51, 48  0.727817 0.707 500

100 Fm Rn 5f127s? 51, 49  0.727811 0.707493

101 Md Rn 5f137s? 51, 50 0.727806 0.707 488

102 Lw Rn 5f147s? 51, 51  0.727801 0.707 483

103 No Rn 571 6dl7s? 52, 51  0.727796 0.707 478
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empirically determined @, values for atoms (see
Table II). As ny —», Eq. (39) gives a limiting val-
ue of 0.7275, which may be compared with the «
value of £ for an electron gas of uniform den-
Sity.ls'ls

In the X, method, different a values for elec-
trons of different spin are not generally used,
whereas, according to Eqgs. (42) and (43), when
ny and n, are different, different @ values must
be used. This result may be of particular impor-
tance in the spin-polarized X, calculations,'‘®
and we will return to this point in Sec. IV. For
open-shell atoms, the a,; value is determined by
making the total energy of the atom calculated by
the X, equal to an average of the energies of the
various multiplets; this average is calculated
using the hyper-Hartree-Fock method.*®

Within the present theory, to compute an aver-
age theoretical o value for the atom (a,,) for com-
parison with the ay values, the following simple
averaging is used:

a,,=(npay+n,a,,)/ (ny+n,), (40)

where 74 and n, refer to the number of spin-up
and spin-down electrons in the ground-state con-
figuration of the atom, and a,; and a,, are the
corresponding values calculated using Egs. (38)
and (39). These average values «,, are given in
Table II for all atoms in the Periodic Table. The
available® ay, values are also given in Table II
for comparison. The a,, and oy are plotted as
a function of the atomic number Z in Fig. 3.

The Z dependence of a,, given by Eqgs. (38)-(40)
is seen to be in very good agreement with the em-
pirically found Z dependence of ayp (Fig. 3). This
shows that the nature of the Fermi hole assumed

79] . ap
. @tg
-

f-—

FIG. 3. Plot of a;,, @{,, and ay;Vvs atomic number.

in Sec. II to derive Eqgs. (35)-(40) is essentially
correct and adequately describes the situation in
atoms. Quantitatively, the a,, values, although
close to the a, values, are consistently high-
er. Thus the limiting value of ay for large
Z is around 0.69, while the theoretical lim-
iting value is 0.7275. To compare the theoretical
a,, values with the ayy values, this theoretical
limiting value can be adjusted and the correspond-
ing a values for atoms computed. For this pur-
pose, Eq. (38) is expressed by

1/ny+3
Oy —Cmm, (41)
where C=0.699 53 reduces Eq. (41) to (38) and cor-

responds to the limiting value of 0.7275 for a,,.
Reducing the value of C to 0.680, i.e., using

1/n,+‘§‘

r
a”-O.SBW, (42)

corresponds to a limiting value of 0.7072. These
a}y values are also given in Table I, column 3.
The corresponding average a values for atoms,
denoted as a}, and computed using the averaging
process of Eq. (40), are given in Table II and plot-
ted in Fig. 3. These are seen to be in closer
agreement with ay.

We now turn to the fact, mentioned in Sec. I,
that the slope aam-/ 8Z is discontinuous at every
atomic subshell. This is evident from Fig. 3. The
theoretical slope, 9a,,/8Z or 8a;,/dZ, is seen
from Fig. 3 to have exactly the same behavior as
8a,;/8Z; the magnitudes of the slopes are also in
good agreement. The apparent linearity of the
slope within each subshell is a direct consequence
of the dependence of a on the number of electrons,
Egs. (38) and (39), of the Awfbau principle and of
Hund’s rule, which determine the ground-state
configuration of atoms. From Eq. (38) and the nu-
merical values of Table I it is seen that a,, falls
nonlinearly with n,; so does a;, withn,. When a
subshell is being filled with electrons, n; in-
creases with atomic number while », remains
constant until the subshell is one-half filled, ac-
cording to Hund’s rule for the ground state, and
ny remains constant while », increases until the
two values are equal when the subshell is full.
Consequently, a,, falls nonlinearly and a,, re-
mains constant until the subshell is one-half filled;
then a,, remains constant and a,, falls nonlinear-
ly until the subshell is full. Thus within the sub-
shell the atomic a,, value is an appropriate aver-
age [cf. Eq. (40)] of a nonlinearly varying quantity
and a constant; consequently, the variation in o,
becomes almost linear. This is schematically
shown in Fig. 4. The discontinuity in the slope
3a,,/9Z at the beginning of every subshell arises
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1 J 1
Subshell i Subshell (i+1)

Z ———

FIG. 4. Variation of o;4, @; 4, and a;, in atomic sub-
shells according to Eqs. (42)—(44), showing approximate
linearity (idealized in the figure) of o, , within each sub-
shell and the discontinuity in slope 8a,,/8Z at the be-
ginning of each subshell. (Purely schematic.)

from the fact that a,, is dependent on both n, and
n, and the ratio of these two changes at every
subshell. These breaks will be more pronounced
for light atoms (small #,) for which the variation
in a,, is large. These facts are easily verified
from Fig. 3.

From the n, and »n, values in Table II, which
reflect the ground-state electronic configuration
of elements, note that slight deviation from the
regular behavior of a vs Z is predicted for Cr,
Nb, Dy, and Cf. The available o, values show
these predicted deviations (Table II).

Thus all details of the empirical Z dependence
of the ayy values are well reproduced by the pres-
ent theoretical a,, values. This confirms that the
model of the Fermi hole assumed in Sec. II is es-
sentially correct and is sufficient to describe the
hole in atoms, and hopefully in molecules and sol-
ids as well.

IV. DISCUSSION

It has been shown that the Fermi sphere has a
density p,(1) at the center and p,(1)/n, at points
far from the center. Assuming a linear variation
of the hole density within the sphere with these
boundary values leads to an expression for the
exchange potential which retains the simple p}/3(1)
dependence of the X, theory, but shows that a
values depend explicitly on the n,, the number of
electrons. These theoretical values of a are
found to reproduce almost quantitatively the em-
pirically determined ayy values as well as all
details of their dependence on atomic number.

Efforts have been made'” to arrive at a single,
Z-independent a value that could be used for all
atoms, but this involves the introduction of another
Z -dependent parameter g and terms involving the
derivative of p in the exchange potential. It is
clear from the present study that the Z dependence
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of a has a theoretical basis, and arises naturally
without introducing any arbitrary parameters.
Therefore the use of a Z-independent a value is
unjustified.

Another important result from the present work
is that for an atom or ion with a different number
of spin-up (n,) and spin-down (x,) electrons,
there are two different values of &, namely, a;y
for spin-up electrons and a;, for spin-down elec-
trons, Eqgs. (38) and (39). Thus the difference in
the exchange potential for the two types of elec-
trons arises not merely from the difference in
the electron densities p,(1) and p,(1), but also
from the difference in @,y and @,,. This fact has
important consequences in calculations of prop-
erties such as magnetic behavior and contact
hyperfine interaction using the spin-polarized
X, method. As an illustration, we take the case
of the contact hyperfine interaction in the Mn?*
ion discussed by Slater.'‘® The magnitude of the
contact hyperfine structure is a measure of the
spin density at the nucleus arising from the s
electrons and is a stringent test of the exchange
approximation. In the particular case of the Mn?*
ion the sign of the hyperfine structure corresponds
to an excess of spin-down electrons over spin-up
electrons at the nucleus. The spin-polarized X,
calculations predict the correct sign, but under-
estimate the magnitude; Slater has therefore con-
cluded that this feature will prevent the use of the
X, method if very accurate calculations of contact
hyperfine structure are desired. The deficiency
of the X, method can be removed if the dependence
of a on the number of electrons is considered. In
the spin-polarized X , method a single average «
value is normally used for both spin-up and spin-
down electrons. But in the Mn®* ion 74 (=14)
>n,(=9) and consequently (see Table I) a,
<a.,<a,. Thus, for instance, the spin-up elec-
trons will have a less negative exchange potential
and higher energy, compared to the use of the
average a,,. This would result in increasing the
density of the spin-down electrons at the nucleus
and decreasing that of the spin-up electron there,
from the corresponding values obtained by the
use of a simple average a. Thus the magnitude
of the spin density at the nucleus and hence that
of the contact hyperfine structure would be in-
creased. Numerical calculations are underway to
test these qualitative predictions. Wilson et al.'®
used in a calculatjon on the Mn* ion different o
values, ayp(4) and a, (V) for different spins, the
two a values being empirically determined. Con-
trary to the present theoretical results, they used
@y (4) >ayp(¥), which leads to the wrong sign for
the spin density at the nucleus.

Finally, the use of different o values for elec-
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trons of opposite spin is of paramount importance
in describing the whole range of magnetic proper-

ties that depend on the small energy differences
between spin-up and spin-down electrons.

*Research supported by the National Research Council
of Canada.
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