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A model has been derived to treat the multistate curve-crossing problem which often arises in diabatic
representations of scattering processes. Transitions between diabatic states are assumed to occur only in the

vicinity of curve crossings and the probabilities are evaluated semiclassically. Otherwise the nuclear trajectories
are treated classically except for tunneling through 1ong-range potential barriers taken into account by the
JWKB approximation. Closed channels are included on an equal footing with the scattering channels. The
model is applied to the problems of symmetric associative (and dissociative) ionization and excitation transfer

in collisions of excited helium with the ground-state atom, using the diabatic representation for the Rydberg
states of He2 presented in the preceding paper. The electronic coupling of the repulsive diabatic states in the
continuum yields much larger ionization cross sections than does direct vibronic coupling of low-lying

adiabatic states to the continuum. The diabatic-states model is shown to be a valid interpretation of associative

ionization in helium. Ionization has a significant effect on some excitation-transfer cross sections. Integrated
cross sections are presented for ionization of helium in the n'S, n P, and n'D states, n = 3,4, and for
excitation transfer from the n = 3 states to states with 2 & n & 4 for collision energies from thermal to 100 eV.
The thermally averaged associative ionization cross sections, in units of 10 "crn', obtained at 300'K are as
follows: Q;(3 S) = 0.06, Q;(3 P) = 2.0, Q;(3 D) = 2.9, Q;(4 S) = 0.6, Q,(4'P) = 1.7, and Q;(4 D) = 4.3.
The results are in quite satisfactory agreement with recent experiments.

I. INTRODUCTION

Helium discharges and afterglows have been
studied experimentally for many years, but the
experiments are complex and knowledge of cross
sections for collisional ionization, recombination,
and energy transfer is still very limited. To de-
termine the effects of different experimental con-
ditions it is very helpful to know what the impor-
tant excitation and relaxation mechanisms are and
to find the energy dependences of the corresponding
cross sections. The present work was undertaken
to examine a postulated theoretical mechanism
for associative ionization (AI, often referred to as
the Hornbeck-Molnar process),

He*(n "+'L) + He(1 'S) -He, "(v) + e, (1)

and to obtain cross sections for this reaction and
the excitation-transfer (ET) process,

He*(n "+'L)+He(1'S)-He*(n' "+'L')+He(1'S) .

(2)
After Tuxen' first identified He, ', Arnot and

M'Ewen' demonstrated that one source of the mo-
lecular ion was the two-body reaction (1) and sug-
gested that He* could be, among other states, the
2'$ metastable state of helium at 19.8 eV. Later,
Meyerott' deduced from collision-enhanced spec-
tra that 22.5+0.5 eV was required to form He, ' in
its ground vibrational state from two helium atoms,
and Hornbeck4 observed that the molecular ions
were formed less than 10 ' sec after the initial

electron excitation. Motivated by these findings,
Hornbeck and Molnar' reinvestigated the appear-
ance potential of He, + and found it to be between
22.5 and 23.4 eV. Hence excitation of He* to n & 3
was established as a necessary, though not suf-
ficient, condition for associative ionization in
helium to occur. More recent measurements,
establishing the appearance potential at about 23.1
eV, appear to rule out participation of the 33$ and
3'$ states. ' ' This value may be compared' to
the value 22.22 eV, given by E&(He) —D,(He~+) +

E„,(He, ') =24.58 —2.47+0.11 eV,"~" which is the
minimum energy required to form He, in its
ground state and which would allow participation
by the 3 "$states though still not by states with
m&3. The higher actual appearance potential has
been interpreted as implying that the He, + re-
sulting from associative ionization is vibrationally
excited, a conclusion consistent with the observa-
tion that the inverse process, dissociative recom-
bination, apparently does not occur for unexcited"
He, +.

Mulliken" proposed a qualitative model for asso-
ciative ionization in helium involving crossings of
B-core Rydberg states of He„which result from
addition of an electron to the repulsive I3(g g'„, 'Z+)
state of He, +, into the continuum delimited by the
potential curve for the attractive A(o o„,'Z+„) ground
state of He, '. He suggested that these B-core
states dissociate to He+He'+e and have deep
stable minima at distances larger than the He, '
equilibrium distance. The higher-lying A-core
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states would cross such partially diabatic B-core
states twice, and if a transition between these
states occurred at the inner crossing but not at the
outer crossing (or vice versa), associative ioniza-
tion could result.

We find it somewhat more convenient for a math-
ematical description of the scattering to use fully
diabatic orthogonal states. With such a represen-
tation, given in the preceding paper (hereafter
referred to as I)," the B-core curves cross into
the continuum in a manner similar to Mulliken's
hypothetical potential curves, but are entirely
repulsive (except possibly for the Van der Waals
region) and dissociate to He+He* in low-lying
excited states. "

Gillen et al. ,
"using the calculated transition

probabilities of Evans et aL" for the lowest 'Z
diabatic states and neglecting higher Rydberg
states, have shown that such a diabatic mechanism
is responsible for collisional ionization in He(2'S)
+He(l 'S) collisions. The mechanism for excita-
tion transfer from states with g ~ 3 is also trans-
parent in this representation. The model derived
to treat the multistate curve-crossing problem
considers the various crossings to be independent
and neglects interference effects. This treatment
has similarities to the trajectory surface hopping
approach of Tully and Preston to reactive scatter-
ing. " Closed channels are included and tunneling
through long-range potential barriers is accounted
for in the JWKB approximation. The model satis-
fies the principle of detailed balancing and con-
serves flux, displaying cusp effects at the thres-
holds of opening channels.

The diabatic representation allowing curve
crossings into the continuum is particularly appro-
priate for describing associative ionization. Koike
and Nakamura" have distinguished two regions
for associative ionization in slow collisions
A*+B-AB' + e depending on whether the energy
of (AB)* is higher or lower than the energy of
(AB)'. In the case of symmetric associative ion-
ization the ionization potential is larger than the
excitation energy in the separated-atom (SA) limit
(otherwise atomic autoionization could occur), and
for the molecular excited-state energy to become
higher than the ionized-state energy a curve
crossing must occur. When the excited-state
curve is the lower, only nonadiabatic coupling to
the continuum can result in ionization. However,
if a crossing occurs and the excited-state curve
becomes the higher, the discrete and continuum
states are then coupled electronically, and the
effect of nonadiabaticity is expected to be negligi-
ble in comparison. Nielsen and Berry" have
carried out calculations on associative ionization
in H*(n = 2)+H collisions by taking the nonadiabat-

icity term as a perturbation. There have been no
measurements of associative ionization of hydrogen
atoms, but their cross sections are two or three
orders of magnitude smaller than the experimental
results in helium. Koike and Nakamura, "with a
different formalism but taking essentially the same
coupling operator, obtained results similar to
those of Nielsen and Berry. In both of these calcu-
lations the excited-state curves used were attrac-
tive and had no crossings with the ion curve. Some
of the potential curves of Nielsen and Berry were
diabatic with respect to other states arising from
the n =3 atomic manifold, but all were adiabatic
with respect to the higher-lying Rydberg states,
and dynamic coupling to them was neglected. No
calculations have been carried out on the hydrogen
system with the present model; thus it is not pos-
sible at this time to say whether or not the repul-
sive diabatic states of H„arising analogously to
those of He, because of the similar core struc-
ture, "would yield larger cross sections. How-
ever, as pointed out in Paper I, coupling between
many adiabatic Rydberg states of helium is essen-
tial to obtain the large observed cross sections.
It should be recognized that for dissociative re-
combination of electrons with He, + in the lowest
vibrational states, only the nonadiabatic coupling
mechanism is available and the observed cross
sections are correspondingly quite small. It is
important to keep in mind that associative ioniza-
tion and its inverse process, dissociative recom-
bination, are generally observed in different re-
gions of phase space.

There have been a number of experimental stud-
ies of associative ionization' '~ and excitation
transfer' "in helium since the early demonstra-
tions already referred to. Most experiments mea-
suring the collisional relaxation rates of excited
states in helium have been based on the pressure
dependence of the observed radiative lifetimes.
Such indirect measurements do not distingui. sh
between excited-state destruction by excitation
transfer and associative ionization, and further
assumptions must be made to separate individual
cross sections. Only recently have direct mea-
surements of these cross sections been possi-
ble."" The present work provides the first
theoretical comparison to experiment, as well as
energy dependencies and cross sections for other
states which have not been observed. The com-
parison to experiment is generally good and con-
firms the diabatic mechanism for associative ion-
ization in helium. The calculations show that the
associative-ionization channel often has a signifi-
cant effect on excitation transfer; thus a two-state
approximation to calculate an excitation-transfer
cross section will generally not be adequate.
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A brief outline of the paper is as follows: The
formalism for dealing with the general multistate
curve-crossing problem is presented in Sec. II.
The essential assumptions made are the following:
The curve crossings are isolated; transitions oc-
cur only at the crossings and with probabilities
dependent only on the potentials in the vicinity of
each crossing; interference effects can be ne-
glected; barrier penetration can be treated by the
JWKB approximation; ionization occurs only via
electronic coupling in the continuum and can be
treated by the JWKB approximation with a local
complex potential; and no nonionizing transitions
occur between resonant states embedded in the
electronic continuum. A simple semiclassical
(Landau-Zener) description of individual curve
crossings is discussed in Sec. IIA, but the subse-
quent formulas are not dependent on this particular
form. In Sec. II 8, matrices describing the effects
of individual attractive curves of the Rydberg se-
ries are given, with separate treatments for the
cases of an open channel, a closed channel, and a
channel in the continuum. Recursion relations are
presented for absorbing the closed channels into
an effective potential. In Sec, II C initial-condition
matrices are defined and reaction probabilities
for inelastic scattering and ionization are obtained
in terms of ihe matrices derived in Sec. IIB. In
Sec. III formulas for the corresponding cross sec-
tions are given. It is shown that the observable
cross sections are averages of cross sections for
scattering with various angular-momentum com-
ponents weighted by their degeneracies. In Sec.
IV, the theory is applied to excitation transfer and

chemi-ionization in the scattering of excited heli-
um atoms by the ground-state helium atom. The
results are compared with experiment and found

to be in reasonably good agreement. Limitations
of the model, imposed by the basic assumptions,
and their effects on He*+He scattering calcula-
tions are discussed in Sec. V.

II. THEORY

A. Curve-crossing parameters

The scattering problem is formulated in the
diabatic representation, using the potential curves
and coupling matrix elements presented in Paper I
for the application to He*+He collisions. " The
diabatic Rydberg states are of two basic types, the
attractive A-core states and the repulsive B-core
states whose potential curves cross all the asymp-
totically higher A-core curves. It is assumed that
all transitions between states of He, occur at curve
crossings; long-range couplings (C,/R', C,/R',
etc.) are neglected and near-resonant excitation-

transfer processes where such couplings are im-
portant are not treated. " Hence A-core states are
coupled with B-core states but A-core states are
not coupled with other A-core states; likewise,
B-core states are not coupled with other B-core
states. The small-angle crossings between some
pairs of A-core states in the region of the minima
occur at smaller distances than do the crossings
with the repulsive curves; they are expected to
have little effect on the AI cross sections (this
would not be the case if nonadiabatic coupling to
the continuum states dominated). These assump-
tions are expected to be good for low-energy scat-
tering.

Since a number of potential curves and crossings
are usually important in a collision, interference
effects are expected to tend to cancel out and were
consequently neglected. Also, the integrated cross
section, which is the subject of primary interest,
is not usually sensitive to interference. The tran-
sition regions associated with various pairs of
potential curves are considered to be independent,
with the transition probability depending only on

the potentials in the vicinity of the crossing. A

further approximation to determine the crossing
probabilities, use of the Landau-Zener (I,Z) for-
mula, ' was checked by Numerov integration of the
two-state coupled equations, with semiclassical
separation of the in-out waves, and found to be
good for the present parameters, but it is not es-
sential to the model. The LZ probability for stay-
ing on the same diabatic curve in a single pass
through a crossing at R„ is given, in the case of
radial coupling, by

where

J v„(R„)/

~„(R,)~(d/dR)(V„- V„)g „
(atomic units are used), with the velocity vs(R„)
determined by

—,'P, vs(R„)' =Z —V»(R„) —(I+ —,')'/(2PR'„ ) . (5)

In the case of angular coupling V» is reply, ced by
~Q„, where 0» is the matrix element (g, ~

L~ ~ g,),
and the angular velocity is given by"

~ =(I+ l)/(VR'. )

The formulas derived in the following section in-
volve p's for many different curve crossings but
are not restricted to usage of the LZ expression,
The transition probability associated with the ith
repulsive curve and the ath attractive curve is
designated p&,—indices i, j, and k are used for
repulsive curves, and indices a, 5, and e for
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attractive curves .By i &j (a&b) we shall mean
that i (a) is energetically lower than j (5).

8. Internal transition matrices

We first consider the case of a single attractive
curve a being crossed by a number, say n„, of
repulsive curves as shown in Fig. 1. Then the
following question must be answered: If the sys-
tem is initially on curve i, with upward (R de-

creasing) or downward (R increasing) motion
tozuaxd curve a specified, what is the probability
that, as a result of the interaction with g, the
system will be on curve j, moving upward or down-
ward gray from a, or dissociating along attractive
curve a? To answer this question four n„~n,
square matrices and two 1&& n„row matrices,
where the subscripts denote members of the set
of repulsive curves, will be defined:

T&, =Probability of i„,-j„„[Fig.1(a)], upward transmission;

T', , =Probability of i„„„-j~,„„[Fig.1(d)], downward transmission;

R&& =Probability of i„~-jd,„„[Fig.1(b)],

Rz, =Probability of id,„„-j„~[Fig. 1(e)],
D', =Probability of i„„-a„„„[Fig.1(c)],

downward reflection;

upward reflection;

upward dissociation;

D', =Probability of id,„„-ad,.„„,[Fig. 1(f)], downward dissociation.

It should be emphasized that these probabilities
describe interaction with curve a only. With the
above notation the inverse "transition" may be
obtained by reversing the directions both of the
arrow and of the directional subscripts (up —down,
dissociation —association). Application of the
principle of microscopic reversibility, which can
be easily demonstrated to hold, shows Tz,. = T',.&,

R&j =R'„., and R&j =R j&. Hence matrices R' and R'
are symmetric but T' and T' will be shown to be
asymmetric. The following conservation relations
can also be proved:

n„

Q (T~)(+R'() +D'=1. (7)

and

nr

Q (T)(+R~))+D( —1,
f=1

for any i.
First consider the case that g is open such that

dissociation along a is energetically possible.
Then if a given transition is possible at all it can
be attained by only a specific path. The results
for the transition matrices are

Pj for g=j,
T""'= 0 for i j&,

~ ~

(9)
j-i

(&-A.) P")(1 1g.} t'or i)i,
0 =)+x

(b) (c)
Ta(OP) T4oP) (9a)

(J 1 ( 1
Ra(OP) —Ro(oP) —(1 p )

~
p j [p

0=x

(e)

x(1-p„) for i &j, - (10)

(11)

(12)

and

FIG. 1. Pictoral representation of the internal transi-
tions described by the probability matrices defined in the
text. (a) Upward transmission T&j., (b) downward reflec-
tion R,'-j; (c) upward dissociation D;'; (d) downward trans-
mission T&;, (e) upward reflectionR j; (f) downward dis-

sociationn

D';.

The following conventions are used with the prod-
uct symbol: The product proceeds from right to
left, and if the upper limit is smaller than the
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lower limit the product is set to unity.
Next, consider the case that curve a is closed,

but the lowest g„o, g„o pg„, crossings of repulsive
curves with a are energetically accessible. The
row matrices D'" and D' " vanish, but the clo-
sure makes possible an infinite series of contribu-
tions to T' ", g' ", and g«c» with the same con-
tribution as in the case of a open being the first

term. The same sum, which takes the form of a
simple geometric series, appears in all the for-
mulas and for conciseness will be designated

,'trO 2m ~rO

&(p.) = Q I .p. ....
=0 (A='Y ( A=t

(14}

The results are

p,.+(l-p, .)1
' '

p,. I p,. '
[P,. 1(l-p,.)&(p.} f»i=i

(A='i+ t

t! =r!! = ' (t n! ) n )( j!!)c(n ) t» (&j
k'=f+ 1

"rO,

(l-p,.) p». I ....Pa. II, .PA. (1-P~.)G(p.} '» i'j
«=j+t ] jt=t ) ()t=t

(15)

R;;" R;j" =(1 —pj, ) [p„, I
'p p„ I

(1 —p„)G(p,) for i ~j,
A=/

(16)

and

nro

Rj',"'=R~i"'=(l-p~, )I ]][p„
I Q P,. I(1-P„)G(p.) for i &j.

(0=/+1 j A=t+1
(17)

In the present formulation, ionization in the
electronic continuum can be taken into account by
the matrices T, 2i', and D describing the influence
of attractive pseudocurves in the continuum. As
a simplification it will be assumed that the only
transition occurring in the continuum is emission
of an electron; i.e., transitions between repulsive
curves are not allowed in this region. In general
one might use a pseudocurve for each vibrational-
rotational level of the molecular ion plus more for
the dissociative continuum, but the above simpli-
fication makes a single pseudocurve suffice. If
the final state of the ion is left unspecified, two
quantities, pfAI and pf ', give the associative and
dissociative ionization probabilities for a given
repulsive curve j crossing into the electronic
continuum; the matrices can be w'ritten

T (cont) ~AIg
fl &f ff ~

D(cont) ~DI

in terms of two phase shifts as follows (omitting
the subscripts for brevity):

P
AI — -27I2 e-2(2' y+R2&

t

PDI 1 e-2/2 + e ' 2"1+2 —e 4 "~+2

(21)

(22)

I AI + ~DI 1 e 4(51+$2)P (23)

A simple way to obtain this form is by solution of
the differential equation

dp/dR =y(R)(1 —p), (24)

where y(R) =I"(R)/v(R) in terms of the autoioniza-
tion width and relative velocity. The ionizing
transition will be assumed to obey the Franck-
Condon principle. The phase shifts g, and g2 can
be calculated in the JWKB approximation as com-
ponents of the imaginary part of the complex phase
shift resulting from scattering by the complex
local potential, "Vj(R) —,'i 1' j(R} Th—e result. s are

and ri, =)7' l(R,)[1—8(R, -R„)]+ 1m
Max{+, &&)

K(R) dR

R(cont) (1 PA( (2O)

and

(25)

Here T and D represent scattering into associa-
tive and dissociative ionization channels, respec-
tively. The ionization probabilities can be written

&(n.)e(n, n, )+tm J K-(n)djt, -(tf!)
M ( .&~)
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where R, is the classical turning point on curve

j, R„ is defined by

b "Tb(1 (Itb-1Rb)-lx(b 1-

6t'=61' '+y' 'R (1 —(TI' 'R'} 'v' ' (38)

v, (R,)- v, (R,)=z- v, ( ) (27)

1 ifR&0
e(R) =

0 ifR &0,
(28)

K(R) =(2ib[E —U, (R) + —,'f I'(R)D' ',
U, (R) = V,(R) (I —.')'/(2uR'),

(29)

(30)

with t/'+ the potential energy of the molecular ion
and all energies measured from a common refer-
ence point,

mb —Rb+Tb(I mb-&Rb)-&6tb-&Zb (39)

(T na+ 1 Tnao+ 1 (40)

The matrices describing the ionization channels,
indexed n, +1, can also be included in this effec-
tive potential if they are closed with respect to
dissociation. The effective potential will be for-
mally treated as just the (n„+ 1)th and last curve
making the following identifications:

and

n'-'(R) = -~(2( )"I"(I/'- -'I )/(U" +-,'I ")
(31)

dna+1 Rnao+ 1

C. Reaction probabilities

(41)

(denoting differentiation with respect to R by a
prime}. It is assumed that

V/(R) —V, (R) &~X —V, (~) for R &&Rd . (32)

Defining R, as the outermost distance at which

V/(R) = V+(R), it should be noted that I'(R) =0 and

ImK(R) = 0 for R &R„. Writing ImK in the more
convenient form

&pl/2Z1/([(R I/ )2+ &/2] 1/2+/ I/ }1/2

and assuming I is not too large, it is clear that

Max(Rc'Rd~ P(R )
01 2

v, (R)
C

(34)

and

1rl2= 2
r(R)

(R R ) Vl(R)
(35)

gnao =(Anao = 0 (38)

where v, (R) is the relative velocity on curve j at
internuclear distance R.

All of the asymptotically closed channels can be
combined into a single effective potential (this will
allow a simpler form for the e(luations in Sec. IIC),
keeping in mind that the probability matrices are
defined such that products should be time ordered
with earliest times to the right. We denote the
number of open attractive curves by n„and the
total number of attractive curves by n, . The ma-
trices K', (8, and 8', where n„~b ~g„are de-
fined analogously to T', R', and R' to describe
the effects of all the closed channels n„&a

&&tog-

etherr. The results are given by the following
recursion relations:

The cross section for any excitation transfer
between open channels and for ionization via any
repulsive curve whose crossing with the electronic
continuum is energetically accessible can now be
determined from the above matrices. For this
purpose two column matrices will be defined to
give the initial scattering conditions. There are
two cases to be considered, a repulsive initial
state and an attractive initial state, as shown in
Fig. 2. Since the problem has been indexed in
terms of the repulsive curves, we wish to know
the initial flux on these curves; to this end X will
be defined to give the effective initial flux upward,
and X the effective initial flux downward. In the
case where the incoming state has repulsive curve
g the result is obviously just

X=O.

(42)

(43)

(0) (b)

ax

a
X

FIG. 2. Pictoral definition of the indices associated
with the initial conditions for the case (a) that the incom-
ing state has repulsive curve ( and the case (b) that the
incoming state has attractive curve e. The continuum
limit is shown schematically as a dashed line and the
diabatic states in the continuum as wavy lines.

In the case where the incoming state has attractive
curve o(, the principle of reversibility shows that
the repulsive curves are first given flux according
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to the transposes of the dissociation matrices D
and D,

X=D (44)

X=D (45)

If the initial state is repulsive, we let e =0 in the
formulas below. Two additional indices associated
with the incoming state will be defined: n„, the
lowest attractive state above the incoming state
asymptotically, and n„, the highest attractive
state below the incoming state asymptotically.
The associative ionization probabilities are then
given by

The excitation-transfer probability is derived
separately for the cases that the final atomic states
dissociate from repulsive or attractive potential
curves.

First consider a repulsive final state. There are
two contributions in the present formulation: An

initial upward trajectory may be reflected by some
higher state and penetrate downward to dissocia-
tion, and an initial downward trajectory may pene-
trate to dissociation (this contribution applies only
if the incoming state is attractive). The result is
given by

nao+1 ( b 1-
P~I= Q ~

T' Rb~ [T' X
b=Z a=& ~=Dig

(n o+~
PAI

~

'
T (46)

+ T' i]X,J n

g=l
(49)

and the dissociative ionization probabilities by

PI ~ (PAI+PDI) (48)

(. nao

(4V)
n J

where the jth component of the column matrix
gives the probability of ionization from the jth
repulsive state. It should be remembered that
index n„+1 refers to the pseudostate represeriting
the effects of all the closed channels and the ion-
ization channels. The total ionization probability
ls

where a superscript f has been used to designate
the transpose of a matrix product. The element
PP"] is the probability of excitation transfer from
the initial state to the atomic state to which the
jth repulsive curve dissociates. Similar contribu-
tions are made to excitation transfer in the case
that the final dissociating state is attractive. An

additional contribution is due to the possibility
that the system on the upward trajectory may dis-
sociate without downward reflection. One more
term is added to allow for the possibility of direct
elastic scattering involving only the initial poten-
tial curve. The result can be written for the open
attractive state c,

no+~ ( '-' )t (b-~ ) ( o-~ — ( ~ )~ ( ~
o'."= o 2l 'I K' ln'lI ]] I'll+o'I( ] I' (~, ,„x+ o'll [ I'

I
e.—,. X+II] [aa. [a. ~

b=M..( „") ('="' J 4'='. ) ('=". ' * &'=" ) *'
&b

"')'='

(50)

where 5, &
is the Kronecker delta and

1 if a&5
8, ~=

0 if a&b
(5l)

(52)

with

/=exp g R dR (53)

Finally, we shall show that a small modification
of the above formulas for the reaction probabili-
ties can take into account a barrier in the incom-
ing channel. The probability P, of tunneling
through a potential barrier is given in the J%KB
approximation by40

where

II(R) =(2g[U, (R) —E]P ',

fl, (R) = V(R)+ (l+ b)'/(2]IR'),

(54)

(55)

&(R,) =A(R, ) =0, (56)

and A(R) is real for R, &R &R, . We assume that
there are no crossings with the initial curve at
distances larger than R, . Denoting the nonreactive
(elastic) probability given by some component of
Eq. (49) or (50) by. P„and the reactive cross sec-
tion for channel v given by some component of
Eqs. (46)—(50) by P„„ the corresponding proba-
bilities, taking the barriers into account, are
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given by

P,'=(I p,—)+p,J,p, +p,I,(1 p,—)pp, + ~ ~ ~

simple average

Q =-'-(Q" Q"), (65)

S„'„=Z„„p,+J „„(1—p, )ap, + ~ ~ ~

] P +PP FV

It is easy to see that

Pe+

(57)

(58)

with all integral values of I included in Eq. (62).
In preliminary reports of this work ' the partial-
wave parameter l was taken as quantized, but the
stepwise increase in l as the scattering energy
increased led to sharp structure in some of the
integrated cross sections as a function of energy.
This incidental structure tended to obscure the
more interesting effects owing to thresholds,
curve crossings, etc. , and may be expected to be
smoothed in a quantum- mechanical calculation.
Consequently it was considered better to treat l
(or b) as continuous and take the integrated cross
section as

P„„=1 . (60)
'x &x

Q = l 'tp(() d(+ f 0"(()d.l ),
0 0

(66}

In the case where there is no barrier or in the
case where the scattering energy exceeds the
barrier height we shall take p, =1 (the disconti-
nuity in p, as g-1 is of little concern since usu-
ally g»1 in our applications).

III. CROSS SECTIONS

The reaction probabilities of Sec. IIC are re-
lated to cross sections for collisions with impact
parameter b =(l+-,')/k by

(61)

where l is the orbital angular momentum and k is
the asymptotic wave number. In the usual partial-
wave expansion, the integrated cross section is
written

Q= QQ(&), (62)

where l„ is the largest integral value of l such
that vs given by Eq. (5) is real at some crossing
under consideration. In the case of scattering of
two identical spin-g particles,

Q = ~(Q:..., + Q".dd, )+ (1 —~)(Q'.d„+Q"....$), (68)

where

(s+1)/(2s+1) for s integral
A. =

s/(2s+ 1) for s half-integral, (64)

g(u) indicates the cross section calculated with the
gerade (ungerade) potential curves, and "even I"
("odd I") implies use of Eq. (62) with only even
(odd) values of I included. In the case of noniden-
tical particles with equal nuclear charge or if
nuclear statistics are neglected, the result is the

where I„(l„')is the value of l which makes vs
vanish at the last accessible crossing for the g
(u) curves. It should be noted that although the
impact parameter is treated as continuous, as-
sumption of a straight-line trajectory is not good
at the low scattering energies under consideration
and is not made. The integral of Eq. (66) was
evaluated by Gauss-Legendre quadrature. To
obtain the integral accurately with the smallest
possible number of quadrature points, it was
found useful to perform the quadrature in seg-
ments,

(67)

where lo = 0, l = L, and E, is the value of E for
which the ith crossing is just accessible; i.e.,
there is a segment for each curve crossing.

In general the observable cross section is a
weighted average for scattering on more than one
initial potential curve. In a collision of He*(n'L)
with He(1 S) the particles can interact with trip-
let, gerade or ungerade, A =0(Z), 1(II), . . . , L
symmetry, and the observable cross section
(neglecting nuclear statistics} is given by

] L
Q(n'L)=

2 1 Q-,'gA[Q('A, n' L+}Q(' A„n' L)],

(68)

where gA=1 for Z states and =2 otherwise. In the
present calculations the diabatic representation of
Paper I, with the long-range coupling deduced
from the adiabatic potential curves, is used. "
Since angular couplings were shown to be negligi-
ble for the transitions under consideration the
terms in the sum over A in Eq. (68) are nonzero
only for A ~Min(L, L') if the final state is
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IV. RESULTS AND COMPARISON WITH EXPERIMENT

As shown in Secs. II and III, the observable
ionization cross section is a statistical average
of cross sections owing to the potential curves of
different symmetries arising from a given excited
atomic level, each of which is in turn a sum of
contributions from the various repulsive curves
of that symmetry which cross into the ionization
continuum. Both of these effects can yield broad

l2 I I I I I I III I I I 'I I I I II I I I I I I I II I I I I I I II

He{3
IO—

g

He*(n"L')+He(1'S). In addition, the neglect of
angular coupling means that the couplings are
block diagonal with respect to each molecular
symmetry, and the matrix calculations of cross
sections for the various molecular symmetries
are independent. Otherwise, two larger matrix
calculations would have to be performed, one for
the gerade states and a second for the ungerade
states. In the case of ionization, all terms with
A & L contribute if the angular momentum of the
ejected electron is left unspecified.

The autoionization widths I'(R) corresponding
to the wave functions of Paper I have not been
calculated so far. The width is expected to be
large near the crossing of the diabatic curve into
the ionization continuum and its integral over the
trajectory is assumed to be sufficiently large
that ionization always occurs when the continuum
is penetrated. Only the total (i.e. , the sum of
associative and dissociative) ionization cross
sections are presented in this paper. This approx-
imation will be discussed further in Sec. V.

I I I I IIIII I I I I IIIII I I I I lllll I I I I IIIII I I I I IIII

IO-

(U 0
U

2—
/ss

p I I I II I I Ialull I I I I Ill I i I Iiiiil I I I IIIII

IO lp lp Ip lp 10
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FIG. 4. Contribution of ~
Z~+ scattering to the ionization

cross section for He(3 P) +He(1 S) collisions. The cross
section is normalized to unit flux on the 3Z curves; i.e.,
it haa not yet been multiplied by the factor gA/(2L +1) in
Eq. (68), but has been multiplied by the factor 2.

structural features in the observable integrated
cross section. In addition, thresholds and closed-
channel resonances tend to introduce narrower
structures. The outstanding features of the cross
sections are easily explainable in terms of the
potential curves of Paper I. We shall look first
at examples of contributions of particular diabatic
curves crossing into the continuum.

The cross section sQ('Z~ 3'S) is shown in Fig. 3
along with its components. The 'Z+ 3s diabatic
curve is repulsive and close collisions cannot
occur at very low energies, resulting in the first
threshold at about 0.08 eV. Tunneling yields the
more gradual onset at this energy rather than a
sharp onset at 0.15 eV which is the barrier height

I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIII

I2—

IO—

He {5 P)+ He

~o

N() 8
~~ 6—

p I I IIII
Ip 10 IO'

E(eV)
IO IO

FIG. 3. Contribution of Z~+ scattering to the ionization
cross section for He(3 S)+He(1 S) collisions. The con-
tribution of each repulsive diabatic curve crossing into
the continuum and the total contribution of all curves of
this symmetry are shown separately. The integrated
cross sections are plotted in units of ao (=0.280&&10
cm2) vs energy (in eV) on a logarithmic scale.

0
IO Ip IO 10

E(eV)
Ip IO

FIG. 5. Contribution of II„scattering to the ionization
cross section for He(33P)+He(1~$) collisions. The cross
section is normalized to unit flux on the 30 curves.
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FIG. 6. Ionization cross section for He(338) +He(1 ~$)

collisions. The component contributions [see Eq. (68)]
are designated in this and the following figures as fol-
lows: a =3Z+ b =3Z+ c =~II d =~II and e =32

g 9 g 5 gj gt g 0

in the adiabatic curve. The crossing of the 2s
diabatic curve into the continuum at 0.07 eV is
already accessible at energies required to pene-
trate the barrier; the next crossing into the con-
tinuum, by the 3s diabatic curve, occurs at 0.93
eV and results in a second threshold. Clearly,
the most direct possible path to ionization at low
scattering energies is from the 'Z+ 2s curve with
the trajectory 3s-3p-2s-i (a diabatic curve is
denoted by the Rydberg electron), whereas at
higher collision energies ionization via the initial
3s curve is possible with no intermediate transi-
tions required. The dip in the cross section at
about 0.30 eV is a typical structure and very easy
to explain. This particular feature is due to the
opening of the 3p inelastic channel and is required
for conservation of flux. The 'Z' 3d diabatic
curve also makes a contribution to ionization at
collision energies in the range 1.1-1.4 eV because
of the closed channels, but the contribution is at
most only about 0.05''„ too small to be shown in

FIG. 8. Ionization cross section for He(33D) +He(l 'S)
collisions. See Fig. 6 for notation.

Fig. 3. The other repulsive diabatic curves make
negligible contributions. In general, a diabatic
curve in the continuum which is accessible only
because of the closed channels yields a relatively
small cross section, but the structural feature is
sometimes still interesting because it is narrow,
i.e., a type of resonance. This effect could possi-
bly be observed as an enhancement of the cross
section for associative ionization into certain
higher-lying vibrational levels.

Two more examples are shown in Figs. 4 and 5,
the 'Z+ and 'Il„contributions to ionization in colli-
sions of He(3'P) with the ground-state atom. The
'Z+ 2s crossing into the continuum lies lower than
the 3'P asymptotic limit and the 'Z+ 3p curve is
mainly attractive, but there is still a very low

energy threshold in the reaction arising from the
small barrier in the 3p curve. The small cusps
in the region 0.5-1.0 eV of the cross section result
from the opening of new inelastic and ionization
channels. The main contribution to the 2s com-
ponent of ionization comes from the path 3p -2s
-i, but a secondary broad maximum in the 2s

12
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FIG. 7. Ionization cross section for He(33P)+He(1~$)
collisions. See Fig. 6 for notation.

FIG. 9. Ionization cross section for He(43S) +He(1 ~S)

collisions. See Fig. 6 for notation.
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contribution occurs around 4 eV owing to paths like
3p-3s-4f-2s-i. A second large 'Z+ contribu-
tion to the ionization cross section comes as the
crossing of the 38 curve into the continuum be-
comes accessible. The 'II„contribution to 3 P
ionization, shown in Fig. 5, is interesting because
an initial repulsive curve still provides a large
contribution to the low-energy ionization cross
section. The 2p contribution has two large peaks.
The low-energy peak (-0.034 eV) results from
following the 3p adiabatic curve past the 3$ avoided
crossing with some tunneling through the barrier-
in diabatic terminology the path is 3p 3d - 2p - i.
The higher-energy peak (-0.80 eV) results from
staying on the 3p diabatic curve through the cross-
ing with the 3d curve, with the main path being
3p-4d-2p-i. The valley in between occurs when
the 3p-3d crossing probability is high but the 4d
curve is not yet energetically accessible. At still
higher energies the direct 3P contribution becomes
dominant.

The observable ionization cross sections, and
their components in Eq. (68), are presented in
Figs. 6-11 for collisions of He(3'S), He(3'P),
He(3'D), He(4'S), He(4'P), and He(4'D), respec-
tively, with the ground-state helium atom. The
contributions of the various molecular symmetries
are labeled as follows: a='Z', 5='Z'„, c='Il, ,
d ='II„, and e ='6 . The 'A„diabatic curves aris-
ing from the 3d and 4d atoms have no crossings
with other diabatic states of this. symmetry and no

pathway to the continuum; therefore they make no
contribution within the present model. A few com-
ments will be made about the main features of
these cross sections.

The '5' contribution to 3'9 ionization has already
been discussed. The 'Z+ contribution is so small
that it is insignificant in Fig. 6; the smallness of
this cross section is a result of the large coupling
matrix elements between the 2p and nd states,

which make it very difficult to penetrate through
the Rydberg series. The main contributions to
3'P ionization have already been discussed in
connection with Figs. 4 and 5. Only at rather high
energies does the '5„'contribution become signif-
icant. There is no mechanism for a 'II contribu-
tion; thus its flux is lost as far as 3'P ionization
is concerned. The He(3'D) ionization cross sec-
tion displays a rather typical behavior. The cross
section is decreasing at low energy, reaches a
minimum, and then begins to increase again. The
decreasing cross section at low energies is char-
acteristic of scattering with initial attractive
curves, and the increasing cross section at higher
energies is characteristic of initial repulsive
curves. At very low energies the classical turn-
ing point on a repulsive curve is outside the re-
quired crossings, whereas at sufficiently high
energies the system can stay on a repulsive dia-
batic curve and penetrate the Rydberg series as
if it did not exist. In the present case low-energy
ionization occurs via the 'II„curves; since there
are no barriers in the non-Z diabatic curves the
cross section continues to increase with decreas-
ing collision energy even at very low energies.
This situation may be contrasted to that of the
3'P cross section. Virtually all of the 'Il„contri-
bution to the 3'D ionization cross section comes
from the 2p diabatic curve, since at energies high
enough for the crossing of the 3p curve with the
continuum to be accessible the crossing of the 3d
and 3p curves is very easily made. At the higher
energies all the various sets of potential curves
tend to contribute to the cross section. At suffi-
ciently high energies (not shown) the ionization
cross section must begin to decrease again since
the particles will not spend enough time in the
continuum for ionization to occur; this will be the
case when v(R) becomes large enough that the
integrals in Eqs. (34) and (35) become small.
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FIG. 10. Ionization cross section for He(4~P) +He(1 ~S)

collisions. See Fig. 6 for notation.
FIG. 11. Ionization cross section for He(4~3) +He(1 ~S)

collisions. See Fig. 6 for notation.



JAME S S. COHEN

The ionization cross sections for the n=4 levels
at low energies tend to be somewhat larger than
the corresponding cross sections for the n = 3
levels for two reasons: the potential barriers, if
present, are lower, and the higher initial total
energy makes more crossings accessible and the
higher crossings have greater crossing probabil-
ities. The 4'S ionization cross section is shown
in Fig. 9. The '5'„contribution is somewhat larger
for 4'S than for 3'S since, for the 4'S, the rather
strongly avoided 2p-3d crossing does not have to

be made. The behavior of the 4'P ionization cross
section shown in Fig. 10 is qualitatively similar
to that of the 3'P. The three relative maxima in
the 'Q„contribution can be ascribed to the diabatic
paths 4p-4d-2p- j, 4p-5d-3p or 2p-i, and

4p-i, in the order of increasing energy. A 'Q

contribution is made but; is relatively small. For
the 4 D ionization cross section shown in Fig. 11,
in addition to the 'll„ low-energy contribution
which also occurs for O'D there is a '5+ contribu-
tion made possible by the asymptotic closeness

I I I I I I I II I I I l I I I II I I I I I I I II I I I I I I I I '

03- 3'S-4 3D

0.2— I.8—

l.2—

I I I I IIIII I I I I IIII

3 P 4 D

O. I—

0

06 —3 S-43 3

0.4—

0 I I I IIIIII

S-4 S3
0.12—

0.08—

I I I I IIII

0.6—

0 I I I I IIIII !

I.8—
3 P-4 S

1.2—

Io- 3 3

0.8—
0.6—
0.4—
0.2—

b

I la~JIW I IHWILlll D IU J IllL

N 0
C7

0.04—

)0 —3 S 3 D
3 3

0.8—
0.6—
0.4—
0.2—

I I I IIIIII I I I Ill

8 —3 S-3 P

0.6—
I I I I I I III I

3 P-3

I I I IU

I I I ILJkld& LLI UJ Ull I J l I Ills '

3 S

30—

20—

IO—

I ) I I I II I Jl I I I I IIIII I I I I IIII

2.5

1,5
I.O

0.5

3 P-2 P

~ I I I II

0
IO IO IO

E(ev)
IO IO 0

IO 10

I~I4~ ~ L LLLl IJ

IO IO 10

E(eV)
F&G. &~- Excitation-transfer cross sections for He(3 S)

+He(1 ~S) collisions. See Fig. 6 for the notation of cross-
section components.

FIG. 13. Excitation-transfer cross sections for He(33P)
+He(3. ~S) collisions. See Fig. 6 for notation.
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of the 4d and 4f levels.
Excitation-transfer cross sections are shown in

Figs. 12-14 for collisions of the ground-state
atom with the O'S, O'P, and O'D excited atoms,
respectively. These states plus the 2'P, 4'S,
4'P, and 4'D are considered as final states.
Cross sections for transfer to the 2'S from the
n = 3 levels are primarily due to nonadiabatic
coupling well away from the curve crossings and

are several orders of magnitude smaller than
those for transfer to 2'P at collision energies of
a few eV or less"—the cross sections shown for
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FIG. 14. Excitation-transfer cross sections for He(33D)
+He(1'8) collisions. See Fig. 6 for notation,

transfer to 2'P were actually calculated as the
cross sections for transfer to either 23P or 2'$.
The transfer-cross-section components are des-
ignated in the same way as they were for the ion-
ization cross sections. In Fig. 12, for 3'9 colli-
sions, all of the reactions are endothermic except
the one yielding the 2'P atom, but it too has a
nonzero threshold owing to the barrier in the 'g'„
potential curve. Note that the 3'5-2'P cross
section is primarily due to 'Z„'scattering, which
makes a negligible contribution in the other cases.
For most of the other collisions in Figs. 13 and
14 several symmetries contribute significantly
to the transfer cross section. As expected, in
most, though not all, cases the primary contribu-
tion to exothermic energy transfers comes from
the attractive initial curves and the primary con-
tribution to endothermic energy transfers comes
from the repulsive initial curves. Excitation-
transfer cross sections for transitions between
the n =4 levels are not presented since long-range
couplings between states with the same n, n ~4,
are expected to be important.

The thermally averaged cross sections for
100 & l &1000 'K, assuming a Maxwellian distri-
bution, are given in Table I. Comparison with
the available experimental measurements is made
in Table II. The measurements of Wellenstein
and Robertson, "'"who used optical pumping to
selectively modulate the various atomic-state
populations, are considered to give the most reli-
able cross sections to date for the a =3 reactions.
The cross sections at the energy kT are also
given in Table II to demonstrate the importance
in some cases of the distributional function as-
sumed; in particular the high-energy tail is im-
portant for the cross sections which have nonzero
thresholds. Considering the simplicity of the
model, the agreement with experiment is quite
satisfactory. The differences are small enough
that they could easily be accounted for by small
adjustments of the potential curves and coupling
matrix elements.

V. DISCUSSION

Associative ionization and some excitation-
transfer processes in helium have been interpreted
in terms of a quantitative diabatic-states repre-
sentation. Instead of doing elaborate quantum-
mechanical calculations based on an expansion
in this representation, a highly intuitive model
was derived to treat the multistate curve-crossing
problem which often arises in diabatic represen-
tations of scattering processes. The model allows
transitions only at curve crossings and assumes
that ionization is caused only by electronic cou-
pling in the continuum. The electronic coupling
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TABLE I. Thermally averaged theoretical cross sections (in units of 10 ~ cm }.~

100 200 300
Temperature ( K)

400 600 800 1000 2000 5000

Q) (33S)
Q'(" )

Q.'(33 )

Q] (43$}

Q) (43P)
Q (43D)

Q (33S 23P)
Q„(33S 33P)
Q„(3'S-O'D)
Q„(33P 23P)
Q„(33P 3 3S)

Q,, (33P ~33D)
(33D ~ 23P)

Q „(33D 3 3S)
(33D 33P)

7x1O '
1.55
4.87
0.20
2.04
5.12
1.16
0
0
0.33
1.01
3xlo '
0.13
0
1.40

0.01
2.13
3.57
0.47
1.87
4.56
4.00
0
0
0.52
1.62
0.08
0.11
0
1.16

0.06
1.99
2.88
0.60
1.66
4.31
5.83
2x10 4

0
0.57
1.78
0.23
0.09
0
1.04

0.14
1.74
2.44
0.65
1.52
4.16
6.92
2x10 3

0
0.57
1.81
0.37
0.08
5x]O ~

0.95

0.30
1.33
1.93
0.6 5
1.41
4.02
8.00
0.03
0
0.55
1.77
0.59
0.0 7
7x]p 4

0.84

0 44
1.08
1.64
0.63
1.42
3.96
8.42
0.10
1x10 '
0.53
1.71
0.73
0.07
3x10 3

0.78

0.53
0.94
1.45
0.61
1.48
3.94
8.53
0.21
9x1O '
0.51
1.65
0.83
0.07
6x10 3

0.75

0.72
0.88
1.06
0.85
1.97
3.95
7.89
0.85
Vxlo 3

0.45
1.42
1.08
0.08
0.03
0.76

0.99
1.37
0.90
2.24
3.07
4.38
5.82
1.47
0.08
0.38
0.94
1.18
0.11
0.05
0.78

' Cross sections smaller than 10 cm are shown as zero.

(configuration interaction)4' yields much larger
ionization cross sections than could be expected
from direct vibronic coupling of low-lying adia-
batic states to the continuum states"; vibronic
coupling is expected to be significant only for
states lying very nea. r the continuum where there
is not an effective purely electronic mechanism
for ionization. Angular dynamic coupling between
diabatic states was found to be negligible for the
transitions considered, "with the result that the
observable cross sections can be obtained as sta,-
tistical averages of cross sections for individual
molecular symmetries obtained in separate and

smaller calculations. The autoionization widths
for the diabatic states embedded in the continuum
have not yet been calculated but were assumed
large. This assumption seems justified for low
collision energies where the classical turning
points are near the crossing into the continuum.
It is expected that the probability per unit time
for emitting a near-zero kinetic energy electron,
as may occur in the vicinity of the crossing, is
large. The observations of Gillen eI; al."that
ionization in He(2'S)+He(1'8) collisions occurs
with high probability when the continuum is
reached and that the electron is generally ejected

TABLE II. Comparison of theoretical and experimental cross sections. Qc,~, is the calcu-
lated cross section at the collision energy E =kT; Q„&, is the thermally averaged cross sec-
tion at temperature T.

Transition

3 S~ ion
33P ion

33D ion

3P 3S
33D 33S .

33P 3 D
3 D 33P

320
320
400
320
400
343
32P
320
32P
320

Qgxp (10 cm )

&0.01'
1.6 ~0.1'
1.4. 2.1b
45+0 5
21; 14b
146 c

2.9 +0.3
&0.01 d

0.067 + 0.005
O.62+ O.O5 '

Q„), (10 "cm')

0.07
1.9
1.7
2.8
2.4
2.7
1.8
6x 10 '
0.26
1.02

Qcalc (10 ~6 cm2)

0
3+2
3.5
3.6
3.0
3.4
2.2
0
0
1.09

~ Reference 23. Error limits represent random spread of data points and do not include
systematic error.

Reference 20.
Reference 21. Measured apparent cross sections for states with n ~ 3. Since the actual

state distribution is not known, no quantitative comparison is possible.
Reference 34. Error limits represent random spread of data points and do not include

systematic error.
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with very low kinetic energy suggest that this
approximation is good at least up to energies on
the order of 100 eV. Also, the agreement of the
results with experiment seems to provide verifi-
cation; nevertheless, the approximation should be
checked by future calculations.

The derived scattering model includes closed
channels, combining them into a single effective
potential on an equal footing with the open chan-
nels. Tunneling through long- range potential
barriers is taken into account by the SWKB approx-
imation. Tunneling into other nonclassical regions
could be included in a similar way but is riot ex-
pected to be very important. Probably the most
serious approximation is the neglect of coupling
away from the curve crossings. This approxima-
tion is quite good for the short-to-intermediate
range crossings, and furthermore, the LZ approx-
imation, though not essential to the model, was
found to be good for such crossings if one of the
states has g) 3. However, long-range coupling,
with or without a curve crossing, is important
for some near-resonant transitions between states
with the same principal quantum number, z ~ 4,
and is in fact responsible for the very large cross
sections for some of these transitions. Results

for such processes have not been presented in the
present work, but possibly could be included in
the model by approximately separating the long-
range and short-range effects. Also, the E and
higher angular-momentum states have not .been
treated since spin-orbit coupling is important in
those cases." Another approximation made is
the neglect of interference effects arising from
multiple trajectories with different phases con-
tributing to the same cross section. This approx-
imation is not considered serious since interfer-
ence effects are expected to tend to cancel out for
a process involving a number of curve crossings,
particularly in the integrated cross section. In-
terference could be included by calculating the
complex probability amplitudes rather than the
magnitudes as in Sec. II, but the convenience of
many of the analytic summations would then be
lost. Formulation in terms of a quantum-mech-
anical optical potential would of course eliminate
most of these restrictions but would require
orders-of-magnitude more computation. In con-
clusion, the diabatic-states model has been shown
to be a valid and highly physical interpretation of
associative ionization in helium and capable of
yielding rather accurate cross sections.

*Work performed under the auspices of the U. S. Energy
Research and Development Administration.
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