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Analytic atomic form factors for atoms and ions with Z & 54*
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The independent-particle model of Green, Sellin, and Zachor (GSZ) with parameters fixed by an ab initio
variational procedure is used to obtain approximate atomic form factors for all atoms and ions with Z ( 54.
For convenience of application we replace the electron density obtained using Poisson's equation from the
GSZ potential by an approximating sum of Debye or Yukawa functions. This sum implies a corresponding
approximating sum of Debye or Yukawa potentials for the GSZ potential. These steps lead to convenient
analytic form factors whose parameters may all be fixed in terms of the two GSZ parameters. In this way, we
can define approximate form factors for any of the 1485 species with Z & 54. For most of these (- 1300 ionic
species), no previous form-factor calculations have been reported.

I. INTRODUCTION

As a result of four recent studies, ' 4 the two
parameters characterizing the independent-parti-.
cle-model (IPM) potential of Green, Sellin, and
Zachor' (GSZ) have been determined for the 1485
atoms and positive ions having 54 or fewer protons
in the nucleus. These potential parameters were
obtained by an ab initio variational procedure"
in which the two potential parameters are varied
so as to minimize the expectation value of the
exact Hamiltonian of the particular species in
question. In the present work we use electronic
densities associated with these GSZ-IPM potentials
to obtain the atomic form factor of each of these
species. For convenience of application we repre-
sent these form factors in analytic forms whose
parameters can be readily obtained from those
listed in Ref. 4.

II. GSZ-IPM POTENTIAL

The GSZ-IPM potential can be written in atomic
units as

V(r) =2((X- I)[I —n(r)] -Z//r,

with the screening function O(r) given by

~~(r) =[(n/&)(e'-1)+1] ',

and where N is the total number of electrons in the
atom or ion, Z is the number of protons in the nu-
cleus of the species in question, and x is the dis-
tance from the center of the atom or ion. The pa-
rameters g and $ are determined by the variational
procedure ' mentioned above.

If we assume an atom or ion has a spherically
symmetric electron density p(r), we can write the
elastic form factor &(q) as

where q is the magnitude of the momentum trans-
ferred in an elastic collision in which the atom or
ion was initially at rest. Knowing V(r), the aver-
age potential an electron experiences at a distance
r from the atomic center, we can determine p(r)
and, therefore, F{q). We have a choice of two
methods for obtaining p(r). Using V(r), given by
Eq. (1), as the atomic potential, we can solve the
Schrodinger equation to obtain the single-electron
wave functions. The electron density is then given
by

p(r) = Q g+(r)g, (r), (4)

where g, ( r) is the wave function of the ith elec-
tron. Alternatively, we can obtain p(r) from
Poisson's equation. The potential in Eq. (1) con-
sists of a contribution from the electron-nucleus
interaction and a contribution due to the interaction
between an electron at ~ and the other N —1 elec-
trons. From Eq. (1) we see that we can represent
the contribution per electron which this latter
interaction makes to V(r) as

v(r) = 2[1 —Q(r)]/r.

=(eke '"/4vr)p(&r),

H+(H —l)e rr
~(~ )

[H - (H - I)e-'"]'

Using v(r) in Poisson's equation we can obtain the
average density per electron. We find that

p(r)/N= (1/4vr) d'Q/dr'

F(q) = 4v p(r) ~ r' dr
0 Q'9
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the integral in Eq. (9) becomes

A B" (e' ~ (*()~ ~)' v* ~ ('(( ~ ())*

C
q' ~ (*() ~)*)'

(10)
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FIG. l. Radial. potential for the neutral zine atom
obtained from Schrodinger' s equation (solid line) and
Poisson' s equation (dashed line).

III. ANALYTIC FORM FACTOR

8ubstituting Eq. (6) into Eq. (3) and with R = $r,
we can express the form factor as

F, „(q)= —" e ~p(R) sin(qR/g) dR,
o

(9)

where we have indicated explicitly the dependence
of the form factor on $ and q. The integral in Eq.
(9) cannot be performed analytically with P (R)
given by Eq. (7). However, p(R) can be accurately
approximated by a sum of exponentials which leads
to an analytic form factor. Thus, if we approxi-
mate Eq. (V) by

The GSZ potential is not self-consistent and,
consequently, the two densities of Eqs. (4) and (6)
are not identical. In particular, the density of Eq.
(4) shows shell structure, but the density of Eq. (6)
does not. In Fig. 1, we show the radial densities,
4vr'p(r), of neutral zinc obtained by both methods.
The solid line, which represents the radial densi-
ties obtained from the wave functions, shows ob-
vious shell structure, and it agrees very closely
with the radial density for zinc obtained by Herman
and Skillman. ' The dashed line, which represents
the radial density obtained using Poisson's equa-
tion, evidences no shell structure, but represents
a reasonable "smooth average" of the solid curve
which could be useful for many purposes. Further-
more, as we shall see, such functions can be ac-
curately represented in a way which leads to an
analytic expression for the form factor [Eq. (3)].
In this way, we can obtain an analytic form factor
for any of the 1485 species for which the GSZ po-
tential parameters are known.

It should be noted that the density function p{r) cor-
responding to p(r) [see Eq. {6))is the well-known
Debye function or Yukawa function and that the
corresponding potential function is also a Debye
or Yukawa function.

To reduce the number of parameters in Eq. (10)
and to ensure a good fit, we demand that

lim Pe(R) = lim p(B) = I/IP,

Pe(0) =P(0) =2H 1, - (12)

n, ( R)d'r = J[ n(B/g) d'(B/g) =1,

where ne(R) =HPe(R)e e/4vR. These conditions
can be satisfied if we choose

1 1 28-1 —1 H

2H- 1 —1/EP 1 1
(1+n)' H H (14)

C = 1/H',

(16)

with D = I/(I+ a)' —1/(1+ P)'.
For the 1485 atoms and positive ions with Z ~ 54,

the values of ( and g, presented in Ref. 4, yield
values of H which range between 0.5 and 5.5. By
nonlinear least-squares fitting of pe(R) to P (B),
we determined the two remaining unfixed param-
eters, n and P, for 0.5 ~ II ~ 6.0 and 0 ~ R ~ 5.0.
The values of e and P we obtained are presented
in Table I along with the corresponding values of
II. The fits we obtained are excellent for values
of II such that O. V ~ II ~ 1.5. For this range of H,
with the values of a and P in Table I, pe(R) is us-
ually well within 1% of p(R) in the range of R we
considered. The quality of the fits gradually de-
gx'ades as H incx'eases from 1.5 ox' decx'eases from
O. V. Nevertheless, they are still very good. This
can be seen in Fig. 2, where we have plotted



ANALYTI{ ATOMIC FORM FACTORS FOR ATOMS AND IONS. ..

2.0 with

FIG. 2, The solid lines are plots ofpz{R}-1/02 vs R
for H = 0.55 and H = 6.0 obtained with the appropriate
values of e and P from Table I. The x's and+'s are the
values of P (R)-1/H~ plotted vs R for H = 0.55 and 0 = 6.0,
respectively.

p(R) —1/H' and ps(R) —1/H' against R for H =0.55
and for 0=6.00. These plots represent the two
poorest fits we obtained, with the largest meaning-
ful differences ( = 12/o) occurring for R = 0.2 to 0.4.

As a further check on the quality of the fits, us-
ing Eq. (6),we took the antiderivative of He Ps(R)
twice with respect to R and compared the re-
sulting screening function with the initial GSZ
function [see Eq. (2)]. In this comparison we found
that for 0.5~H& 3.5, there is always less than a
2% difference and usually less than a 1% difference
between the two functions for all values of R for
which the screening function is non-negligible. For
3.5 & 8& 6.0, the percent differences are always
less than 10%. Thus, over the range of II of in-
terest to us, our fit gives an adequate representa-
tion of both the density and potential as sums of
Yukawa or Debye functions.

IV. CONCLUSIONS

The potential function corresponding to our ana-
lytic form factor is

Vs(r) =2[%- 1 —Z- (H 1)A~(r) j/r-

TABLE I. Values of o,' and P obtained by fitting pz{&)
to p{&), along with the corresponding values of &.

0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.750
0.800
0.854
0.900
0.950

1.0949
1.1158
1.1271
1.1477
1.1489
1.1612
1.1764
1.1709
1.1910
1.2981
1.4863
1 ~ 6302
1,7599
1.8831

1.0954
1.1036
1.1212
1.1346
1.1442
1.1555
1.1591
1.1798
1.1735
1.1105
1.0427
1.0182
1.0066
1.0013

1.050
1.100
1.150
1.300
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000

2.1091
2.2271
2.3397
2.6701
3.1041
4.1915
5.2712
6.3233
7.3406
8.3223
9.2732

10.189
11.074
11.931

1.0008
1.0038
1.0080
1.0256
1.0560
1.1497
1.2556
1.3666
1.4808
1.5983
1.7209
1.8462
l.9756
2.1090

This representation of the GSZ potential as a sum
of Coulomb and Yukawa potentials may, of itself,
be a useful by-product of our study. These poten-
tials have been subjected to a great variety of anal-
yses in nuclear and particle physics, some of
which might be adapted to atomic physics. Since
the density we are attempting to fit is itself a
smoothed version of the actual density, we feel the
quality of the fits we present here are more than
adequate for most purposes. %hen more accurate
results are needed, the density obtained from Eq.
(4) should be used and the desired form factors
calculated numerically. '

With FF „(q) given by Eq. (11), A, B, C, a.nd y
given by Eqs. (13)-(16), and o. and P obtained by
interpolation from Table I, we have an analytic
expression for the form factor of all atoms and
positive ions with Z ~ 54. The required values of
q and ( and, therefore, of EX can be readily ob-
tained from Ref. 4. In Figs. 3 and 4 we have plot-
ted samples of F«(q) obtained from Eq. (11) for
several different species against X =q/4v =sin
(8/2)/X where 8 is the scattering angle and A is
the wavelength of the scattered particle. %e have
included in these two figures corresponding plots
of F(q) obtained from Hartree-Fock (HF) wave
functions"" and Thomas-Fermi ('TF}potentials, "'"
where such results exist.

The relationships between the HF, TF, and GSZ
form factors illustrated in these graphs are fairly
typical. Neither the plots of the TF nor those of
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FIG. 4. Plots of the form factors for two ionic species
calculated by the GSZ, TF, and HF methods.

FIG. 3. Plots of the GSZ from factor vs X =sin(0/2)A
for various species with Z = 30. The appropriate values
of N can be found on the graph. Plots of the TF and HF
form factors for the neutral are also shown.

the GSZ form factors have any of the undulations
resulting from shell structure in the electron den-
sity which the plots of the HF form factors evi-
dence. Nevertheless, both the TF and GSZ form
factors represent rather good smoothed averages
of the HF form factors for Xs 13 A '. Since the
parameter variation of the GSZ potential reflects
the shell structure of the periodic table, the F(q)
of GSZ is usually in better agreement with that of
HF than is the F(q) of TF for 1.0 ~ X & 10.0 A '.
For large X&15 A ' both the TF and GSZ form
factors are too large. Several workers" "have
shown that at large values of X, the form factor
should go as X ', but the GSZ form factor in Eq.
(11) goes as X ' for large X and, using Moliere's'
fit to the TF potential, we can obtain an expression
for F(q) similar to Eq. (11) with the corresponding
large-X behavior. This behavior of the IPM and

TF form factors at large X is to be expected since
the large-X behavior of the form factor is deter-
mined by the small-x behavior of the electron den-
sity, and both the GSZ-IPM and the TF model yield
densities via Poisson's equation which are singular
at the origin (GSZ as r ' and TF as r '~'). Fur-
thermore, for such large values of X, the dominant
contribution to the form factor comes from inner-
shell electrons, particularly K- shell electrons.
Except for species with small Z, the K-shell elec-
trons should be handled relativistically. Since
this work is based upon the nonrelativistic Schro-
dinger equation, caution should be exercised on
their use for X&10-13 A '.

For X=10-13A ' the analytic form factors pre-
sented here, which are very simple to obtain, are
rather good approximations to the results of the
more sophisticated and accurate calculations which
are available for neutral"" and some ionized
species. " " More importantly, the form factors
encompassed by this work can be used to represent
many (-1300) ionic species for which no such pre-
vious calculations are available.
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