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Inelastic transition form factors in the H atom
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Arbitrary inelastic transition form factors in the H atom have been exactly evaluated in closed form by a
group-theoretical method. The final expression contains exactly known 0{4)and 0{2,1) representation

functions and a single trivial finite sum. We also give the square of the form factors summed over l and I' and
obtain as a special case the result of Massey and Mohr.

I. INTRODUCTION

The arbitrary inelastic excitation form factor
of the hydrogen atom is an important quantity in
atomic theory and in many applications, espe-
cially astrophysics, involving highly excited
states. Therefore an exact closed expression for
this quantity (and hence for the oscillator strengths
and cross-section formulas) is quite essential.
This goal has been partially achieved through var-
ious degrees of approximations. ' Massey and
Mohr' mere first to evaluate the excitation of the
H atom from its ground state to an arbitrary stat:e
by using explicitly the spatial wave functions.
Homever, the general expressions for arbitrary
transitions become too complicated to compute
by this method.

In a previous paper' an algebraic approach was
used to evaluate the arbitrary transition form fac-
tors, and general expressions were given, how-

ever, as complicated sums over certain Clebsch-
Gordan coefficients. The purpose of the present
paper is to considerably simplify these expres-
sions by using the exactly known O(4) and O(2, 1)
representation functions. The final expression
is reduced to a single finite sum. We further sum
the square of the inelastic form factors over l and
l', the initial and final angular momenta. The re-
sult is again a single finite sum over known func-
tions. Finally, we show how in the special case
our formulas reduce to the Massey-Mohr result,
and relate the singularities of the form factor via
anomalous threshold to the binding energy [cf. dis-
cussion after Eq. (20)j. The final results are an-
alytic in n and hence valid also for noninteger n
values; the latter oeeur for scattering states for
which n is pure imaginary.

Besides the Massey-Mohr result, ' there are a
number of other, more recent papers dealing with
the same topic. Holt considers bound-free transi-
tions from 2s and 2P levels to continium. ' Sobe-

slavsky' gives a semiclassical treatment of tran-
sitions for large n values. In tmo papers Beigman
and co-workers" start from a general integral
representation of the form factors obtained from
Coulomb Green's functions and make expansions
in powers of I/n and I/n', i.e. , for large n and
4n. The bound-free transitions have also been
considered in detail by Matzusama. '

II. PRELIMINARIES

We give here a brief discussion of the signifi-
cance and interpretation of the relatively nem al-
gebraic techniques used in Sec. III. A detailed
technical introduction to the subject can be found
in the recent book by Englefield, ' and in Ref. 9.
More specifically, the derivation of the algebraic
form of the current operator from the SchrMinger
picture has been recently described in detail. "

The algebraic description of the spin states and
more generally the states of the H &tom for fixed
energy by the representations of the groups SO(3)
and SO(4), respectively, is well known. It turns
out that the totality of states of the atom for all
energies also belongs to the representation space
«a group —this time the noncornpact group
SO(4, 2). This group also contains the current
operator and is called the dynamical group of the
system; it incorporates all of the information about
the atom and its electromagnetic interactions. The
dynamical group of a system is determined as
follows: From the dynamical variables of the the-
ory (e.g. , r and p, in the spinless case) and their
enveloping algebra (i.e. , r, r', rxp, P', etc. ), we
construct a Lie algebra L such that the Hamilton-
ian H of the system is a function of the Lie algebra
(i.e. , a function of the generators or their combi-
nations). If this is the case then H acts on an ir-
reducible representation of L, and this represen-
tation provides a complete set of states for the
problem. The calculation of matrix elements can
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then be reduced to those of the group elements in
the carrier space of the representation, which we
call the space of the grouP states. Next, for pro-
blems involving external interactions there re-
mains the identification of the interaction terms
as a function of the group elements. For the inter-
action of the bound electron with an external elec-
tromagnetic field A(x) we start from the two-
body problem with the interaction term
—(e/2m, )[p,.A(x, )+ A(x, ) p,]. The transformation
between the dynamical variables r„p„etc., and
the genel"Rtors J gg of the dynamical group leRds
easily to the form of the current given below in
Eq. (2), which is the starting point of this paper.
Because we start in general from a two-body pro-
blem the masses of an electron and a proton ap-
pear in the formulas, but for the nonrelativistic
form factors of the bound electron the final re-
sults depend only on reduced mass.

The significance of the dynamical group SO(4, 2)
does not end in providing methods of calculations
of matrix elements. The group contains the sym-
metry group SO(4) of H a.s a subgroup, as well as
the transformations corresponding to Galilean or
Lorentz transformations, and provides a natural
way of describing a composite system in a covar-
iant way as a single "elementary entity. " This
point of view has been useful in the physics of
fundamental particles, where we are aware of
the composite nature of the particles (say a pro-
ton) but cannot yet identify the constituents or
the forces that hold the constituents together.

We present thus an exact evaluation of the four-
vector vertex function

I ~(q) = y„*.....(x)e*'"'")"'"Z.y„,.( ) d'x (1)

by group-theoretical methods ()1 is the reduced
Ixlass).

Equation (1) admits three different interpreta-
tions: (i) Fourier transform of the charge and

current distribution of the atom; (ii) the inelastic
transition matrix element of the interaction in an
external electromagnetic plane wave of momen-
tum q; and (iii) the imparting to the outgoing atom
in the final state (n'f'm') a momentum q (boost) by
the external field, from an initial state (nlm) at
rest. The last interpretation provides the algebra-
ic reformulation. The coordinates x'= ()1/m, )x are
the generators of the Galilean-boosts transforma-
tions. In fact, the most concise and elegant for-
mulation of the Kepler problem leads to the group
0(4, 2), the conformal group, with its 15 genera-

[nlm& = (1/n)e 'a~~4~ ~nlm&, 8„=ln(n), (4)

where ~nfm& are the "group states. " With these
notations the vertex function (1) can be written as
the matrix element of a general group element

I'„= (1/nn')(n'Vm' ~e" "4~e "~~'"~» '»)

x Z„e "".(n-fm&,

where we have assumed, without loss of gener-
ality, a boost in the z direction and have put E
=q, m),. Equation (5) is the starting point of our
lnve stlgRtlon.

We shall denote the charge form function +, by

In'1 '~'
(1/enny)(niPmi ~eie„gc~~e1(&/a)(135-1 34)

x(I,„—I.„)e '""5(nlm&.

We simplify this equation by using the operator
ld entity

ea -'e"= a+ e[a, a1+ (6'/2))[a, [a, &1]+ "
and the Lie commutation relation

[I» I cl= &[Z~cIac+Za-& c sac& &-»Iacf-
to obtain

I "„,".'"= (1/n')(n'f'm'j G(I,„-I.„)~nfm&, (6)

G=e '6~" ~~~e'E+~» ~»), H„,„=in(n/n').

The action of the 0(4„2)-group generators on the
canonical basis ~nlm& are discussed in detail else-
where. '" We quote here the relevant expres-
sions:

tora I»= I-a„(A, 8=1,2, 3, 4, 5=0, 6) composed
of S (angular momentum), A (Lenz vector), M

(boost operators), 1'& (a current four vector), and

a dilation operator T plus a scalar S. The theory
is relativistic and one can also evaluate the rela-
tivistic counterpart of (1), but we shall perform
here the nonrelativistic calculation.

As described in earlier papers" the current
operator Z„ in (1) with components

Z„=fl; q/2m, )
is represented in algebraic formulation by

(I.„-I.„);-I.„+—' (I„,-I.„)—,

i=1, 2, 3, (2)

where a is an arbitrary scale parameter and the
boost generators are represented by

M, = -(~/c)(I„, —I,,),
where m~ is the proton mass. The operators L»
act on the physical states denoted by
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L„~nlm) = n~nl m),

L«)nlm) =-,'[(n —l}(n+ i+1)]') '(n+1, l, m)

+,'-[(n+ l)(n —l —1)]'~')n —1, l, m) .
Therefore

I„",'
' ' = (1/n')(n(n'l'm'~ G~nlm)

[(n —l}(n+ l+ 1)]'~'
x (n'i'm'~ G~n+1, l, m)

[(n + l)(n —l —1)]'~'

x(n'1'm'(G)n —1, l, m)j .
The matrix elements of the finite transformations
G = e ' ~'~ 45 ei "'L35 34 can be very easily eval-
uated, especially because the operators L„, -L35,
and L„form an O(2, 1) subalgebra. The technique
is standard and quite straightforward. ' One usu-
ally parametrizes G in terms of Euler angles a,
P, andy such that

e-i Bni~L45 eixn(L35-L34) e-i&L34e-i SL45 e-i)'L34

uses the 2x2 quaternion representation of O(2, 1),
and evaluates both sides explicitly to get the angles
a, P, andy in terms of 8„„and Kn, i.e. , one uses
the two-dimensional representation

cosh-,'8= cosh2P cos-,'(o. +y),
sinh 8=sinh pcos-,'(o. —y),
nk(coth, ' 8 —-1)sinh 8= sinh P sin —,'(n -y),

—,'nk(coth-, '8 —1) sinh 8= cosh-,'P sin —,'(o. +y) .
Solving these equations, we get

sinh-', p= [1/2(n'n)' '][(n' -n)'+ K'n "n']' ',
cosh-,' p = [1/2(n'n)'~'][(n'+ n)'+ K'n "n']'~',

sino. = Kn/sinhP,

coso. =, (n" —n'+ K'n "n'}
2n'n sinhP1, 1=tanh P ——,(n —n')n' slnh p1, 1= coth p ——,(n+n')n' slnh p

siny = -Kn'/sinhP,

cosy = —,(n' —n" + K'n "n')
2n'n sinhP

1= -tanh-,'P+ —(n' —n)
n slnh p

1, 1= -coth-,'P+ —(n'+ n)
n slnhp

(8)

1 1 1
L4, ——PZ(Typ L35 P ZO2p L34 QV3

where the oi are the usual Pauli matrices. Using
these on both sides of the expression for G and
comparing the coefficients of unity and of the o,
matrices we obtain the following four equations
(8= 8„,„):

Also, the matrix elements of G
=e ' 34e '~L45e '& 34 can be easily derived in a
parabolic basis in which the operator L34 is diag-
onal, and one can express" these matrix elements
(they exist only when m =m') in terms of O(4) and
O(2, 1) representation functions, i.e. ,

(n'1'm~G~nlm) = Q D(-o()I", g!,!! ! V(P)„, „""'D(-y)I"~'['!,
! !, 0-7- min(n-~m~-l, n' ~m~-1),

where the O(4) representation function

(-'(P+Q) -'(P —Q) j' !( /l(P+Q)
D(8)!'P!.=e"-[(2~+1)(2~ + 1)]~~' g IJyJ gm

my
m m —m -mj y m1 1 1

(10)

and the O(2, 1) representation function

V(p)' „=. . . (tanh-,'p) "(cosh-,'p) '"+,(k-n, 1 —n —k; 1+m-n; -sinh' p) (m -n)1 (m- k)!(m+ k —1) I

(tanh-'P) "(cosh-'P) ~ P "" '[1 —2tanh'-' ]

in which the Jacobi polynomial is defined as
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Therefore using Eq. (8) we obtain

D( &)g"',i ')+,
I I

V(P)','+ + D( r)g",i I+

min(n'- Iml-ls n- Iml)

2 [(n l)(n+ l+ 1)1 Q D( g2)g 'll+, ~r(l ,V(P).'",."g' D( y) -g, I I+1 I !ill

min(n'-Iml-l, n- Iml&)

2 [(n+ l)(n —l —1)]'f' p D( g2)g', iml+P, Iml V(P)))'')g-g' D( r)g-, Iml+P lml

r=p

This expression can be written in a more compact form as

mjn (n —1m I-]., n- lm I-&)

I"„g'™=—, g p a, (n, l)D(-(g}g'.i'I+ . I )V(p)„, '„';;D(-r)g i'i 'r.
l I

(13)
r= 0 6=02&1

where

a,(n, l) = n, a»(n, l) = —2'[n(n+ 1) —l(l + 1)]' '.
Furthermore, in the above expression it is understood that the function V(P) „vanishes when n, m&k.
[This is also clear from Eq. (11),]

Equation (13) is the exact expression for the charge form factor of the H atom and it can be readily
computed using Eqs. (8), (10), and (11). For large n, n', l, and l' one could make use of the standard
computer programs for the CG coefficients of Eq. (10), because this coefficient involves only a finite
sum, "j.e. ,

(l + l, + m, )!
I =(-1)'2-'1 g) ' ' ', 2F2(-l —m, -l+l, —l„l,—m, +1; l, —l, —m+1, -l —l, —m„1),

m~ m2 Vl/ 1 2

where

(l —l, + l,)!(l+ l, + l, + 1)!(l + m)! (l, + m, )!(l, —m, )!(l, + m, )!

or

(l+m}!(l,+ l, —l)!(l—m)! (l —l, + l,}!(l+l, —l,)!
) m, m, -m$ (l, +l, +l+1)!(l,—m)!(l, +m)!(l, —m, )!(l,+m,}!

(-1) (l+ l, —m, —Z)!(l, + m, + Z)!~ Z!(l—m-Z)!(l —l, + l, —Z)!(l, —l, +m+2)! '

where

M = max[0, l, —l, —m), N = max(l —m, l —l, + lj.
However, one might find it convenient to use the integral form of the self-conjugate O(4) representation
function D(gg. )IP',o! derived by Vilenkin. g2 We quote here his result:

D(n)I. ! =a, f ( scno+ gcosies)ngrC, '„' ' . . Cg" '(cosa)(sinn)2 "gf&, (14)
cosA cos ~ + i sinn

0

where

(P —l')! (1 — )!(l — )!(P+ l' ~ 1)!'(2 l ~ 1)(2f ~ 1))
' l''

g f, lm (P-j)!(j+m)!(l'+m)!(P+j+1)!

and C"„(cosP) is the Gegenbauer polynomial. " For practical computation one might find the following
identity" useful:
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cosncos&+isinn y~m j!(j+m)!(P—j)!,(cose + s cos6 sine) C~ cose+ E sine cos6 2 (vl —2) 1

1+cos6
8 =0

min( j-m, a) (-1)'P

)
(s —t)!(P —j —s + t)!(j —t)!(j —m —t)! (m + t)!t! '

Next, we want to deduce from Eq. (12) the expression for the form factor for excitation to an arbitrary
(n'l'0) state from the ground state (100). We obtain

I"'"=—[D(- )'"' '"V(P)' D(-y)"'" —(1/~)D( —u)'" '"V(P)' &(-y)""

-(1/~)D(-o)', "', , ', ;"V(P)' D(-y)' '].
The special values of O(4) and O(2, 1) representation functions can be very easily computed" from Eqs.
(10) and (11). We here quote the final results:

D(-y)"'" = »(-y)"" = cosy, D(-y)"" = -i siny

n' —l' —1 'D(-n)!"' "&= (-i}'2' (2l'+ 1)'/'l'! ' (sinn)" C(coen)","1,0, 0 n'(n'+ l')! n'-1-/' &

[n'-z, o] (' )' i z/o i)
lj2

D(- ).. . ; =(-') 2 (2( +i) l . ((, i)(, o,(, ,)i

x [1'(sino. )' '(coen)C(coen)„"", , ~ —2(l'+ 1)(sino.')'" 'C(coso)„' ", , .], (15')

V(p)„', , = ~n (tanho p)" '(cosho p) ',
V(P)„', , =(1//K))('n' (n' —l)(tanhoP)" '(coshoP) ' —)(2 v n' (tanhoP)" (cosho~P) ',
V(P)'„. , = (1/v 6 ) [(n' —1)n'(n'+ 1)]'/'(tanh, '-P)" '(cosh P) '.

One can also easily derive Eq. (15'}by substituting the following identity" into Vilenkin's formula, Eq.
(14), for j =m:

(—1)"' ' i' " (l' —m)!(m —1/2)!(P+l'+1)!

cose+ i sine cos8 -~c cos6 ~,"/' sing 2~'1dg,
0

w'lth

C:(&)=1.
Therefore, using the special values of the representation functions, we obtain

) o 1
( )( 2) (2 )y/o ) (n l 1) (, )) (tanhoP) 1

(n'+ l')!, (cosh —,'Psinh P)'Bn'

&&[[(sinh P cosh,—'P)'Bn' —4n'(n' —1) sinhoP cosh P cosy+ Bn'(sinh P)'coshoP cosy

—4n'l' coso. sinh-,'P cosh-,'P siny/sinn] C(cos)'„'". ..
+ Bn'(l'+ 1}sine sinh P cosh P siny)C(coso. )„'.", , .] .

In this equation we take the fourth and the fifth terms in the curly bracket together and for the fourth term
we substitute the recurrence relation
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(n+ 2v) C(coen)"„=2vC(cosn)'„" —2v (coen) C(coen)'„"j

(terms 4+ 5) = 4n'(n'+ 1) cosn sinh-, p cosh; p(siny/sino)C(cosjr) j ", ,

—Bjj'(l'+1) cosa sinh-,'P cosh~P{siny/sinjj. )C{cosn)„'

+ Bn'(f'+ 1) sinh —,'P cosh,'-{-{siny/sinn)C(coen)j ", ,

%'e then substitute the recurrence formula

(jj+ v)C(coscj)„"= vC(cosjr)„"" vC(coscj)„"",

into the first term of Eq. (16a) and make some rearrangements to obtain

(terms 4+ 5) = [4jj'(jj'+ l}(f'+1}(sinh—,'P)'C(cosa)~j",' j.+4jj'(jj' —l)(f'+ l)(cos2P)'C(coscj)~j"', j

+ Bjj'(f'+1) sinh2p cosh2p(siny/sinjj'. )C(coscj)„"2.p]
—[Bjj'(jj'+ l)(l'+ 1)(sinh-,'P)'+ Bjj'(f'+ 1) cosa sinh-,'P cosh-,'P(siny/sino. ')]

&& C(cos jr) j';2 j,—2jj'(jj" —l)C(cosoj)~"jjj,
+ [8jj'(f '+ 1)(sinh —,

' p)' - 4jj'(jj'- 1)(l'+ 1)]C(cos&)„'."~j. .

(16a)

We then substitute the above into Eq. (16}, use the values of cosjj., sinn, cosy, and siny from Eq. (8), ap-
ply Eq. (17) very generously to enjoy many cancellations, and eventually obtain

8n/2 (n+l )t (cosh2P slnhpP

x[4jj'{jj'+l)(sinh-,'p)'C(cosn)~j"'j j.—Bnj2(stnh-,'pcosh-,'p)C(cosn)j,"~j,
+ 4jj'(jj'- 1)(cosh-,'P)'C(cos jr)~j"'~j, ] .

From Eq. (8) we get

(sin jr)'= 2'K"jjjj' [(jj'- 1)'+K'jjj2] 'I'/[(n'+ 1)'+If'jj"j'~',
(ta~-'P)"'=f [(& 1)'+If'n "]/[(n +1)'+If'n "]]"~',

1/(cosh —,'P sinh-,'P)'=2'jj"[(jj'- 1)'+K'jj"] '~'/[(jj'+1)'+E'jj"]'~'.

Therefore Eq. (18) becomes

I )I yh f 1/2 f f' I yb2 yP g2q (ne~ge 3)/2
IN vo

( )
j 22j~+3( I) + (j2fjI)11/2( f lj) j & j' If'j

(jj'+ f')! — [(jj'+ 1)'+K'n "]&""j"'&~'

x f(jj'+ 1)[(jj'- 1)'+K'jj"]C(coen)j:" .—2jj'[(jj'- 1)'+IPjjj2]'~'[(jj'+ 1)'+E'n "]'~'C(cos jr)&", ,,

+ {jj'-1)[(jj'+1)'+K'jj"]C(cosa)j,".'j.),
where

cos~ (jj2 1 +E2n j2)/ [(n I l )2 +Al22]l/2[( l n1+)2 ~yPnl2] jl 2

As expected, apart from the phase { i)', Eq. (19)
is exactly the same expression derived by Massey
and Mohr, ' who made explicit use of the spatial
wave functions of the hydrogen atom. The phase
term ( i) j does -not matter, since after all what
we measure is the absolute square of the ampli-
tude. One can even get rid of this phase by asso-
ciating it with the definition of O(4) harmonic func-
tions just as the way Vilenkin" does, and in that
case it will not appear in Eq. (15'). The exact

derivation of the Massey-Mohr formula from our
general expression Eq. (12) assures the exactness
of the latter.

Furthermore, we find that from Eqs. (12) and

(11}the form factor I+j™becomes singular at
cosh —,'P =0. This means by Eq. (8)

K' = —(jj '+ jj)'/jj "jj'= 2[~B„+~&z ]',
where B„=-1/2jj' is the binding energy of the
states ~jjlm). This value of If' exactly coincides
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with the anomalous threshold of the triangular
diagram (Fig. 1), which can be easily evaluated
using the Cutkosky rules. " Looking at Fig. 1 one
would have expected a singularity of the form fac-
tor at a momentum transfer squared equal to
(2m,c')'. This is not so because of the special
values of the masses in the triangular diagram of
Fig. 1. Equation (20) means that the form fac-
tors have the correct singularity structure as
required by the general principles of 8-matrix
theory. Conversely, the position of the singularity
determines the binding energy and hence the mass
formula for the composite system.

Finally, we derive an expression for the inelas-
tic cross section. For this we substitute the fol-
lowing two recursion relations" of the O(4) rota-
tion functions (t= r+ ~m (—) in Eq. (12):

FIG. 1. Fe~~~n diagram for scalar three-point func-
tion vrhich gives an anomalous threshold the same as
Eq. Po).

[(n —l)(n +1 + 1)] D( y)g l ( (
—=[(n —t)(n+t+ 1)] (cosy)D( —y)g

+i
2 1 2 2

(n —t)(n —t —1) (siny)D(-y), „",',~,
(t + I m I + 1)(t- I m I + 1}

+ t
1 (n + t)(n+ t+ 1) (siny)D(-y), ,",'~. (t+ Iml)(t- Iml)

[(n+l)(n —f —1)]' 'D(-y), ~~$
~

[(n+t)(n ———t —1)]' 2(cosy)D(-y)~~", ')

2 1 2 2
(n+t)(n+t+ 1) (siny)D(-y)(t+ Im I+ 1)(t —Im I+ 1)

2t+1 2t- 3

—i 1 1 (n —t)(n —t —1) (siny)D(-y), ",",', ,
(t+ Iml)(t- iml)

2t+ 1 2t —1

After substitution and simplification we obtain

mrna ' 1,n 1)
f n l~m D( a)tn ji03 V(P)0+1 D( y)L'n +03

(21)

min{ - n-1& t 1 2 Im I2 |/2
D(-~)'. ..'i.",[b,V(P)",„.,—b.V(tI),",',]D(-y)',;,."„",.,

2 nl2 X/2
+ („„)(,t, )

D(-&);,).1[b.V(@~,."-b V(@~, .]D{-y}, ', l.l,

where we have used the following relation:

[n —K+1)(n+K)]'t2V(P) „„+[(n—K)(n+K —1)]' 'V(P), = . [(m —n) —2n sinh' —,'P]V{P)

which can be easily derived using Eg. (11), and the identity

c(c —1),E,(a —1;b —1;c —1;x)—abx(l —x),E,(a+ 1; b+ 1;c+1;x)+c[(a+b—1}x—(c 1)]2E,{a,b; c;x)=0.

Also, in Eg. {22) the coefficients a„b„and b, are given by

4 =n —(cosy/sinhto [(n'- n) —2n sinh'-,'P] = (1/n) 4n'4'K'/[(n'+ n)'+ n "n'K'][(n' —n)'+ n "n'K'],

b, = [(n t)(n t 1)]"', b, = [(n + t)(n + t + 1)]"' .

(23)
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One might notice that in Eq. (22)

P.~(P).':,'.„-5,1 (P)",',]
P D(8),';.„'D(-8)', J

' =5,; (25a.)

=P, l (P)„",'...—5.1 (P)",„,]„.„.„

y(p)~Ã ~(p)1 F

[see Eq. (11)].
In order to obtain the excitation cr oss section,

we square Eq. (22), sum over all final states
(1', m), and average over the initial states (f, m).
The summations over 1' and 1 (0 « 1' «n' —1;
0 «$ «n —1) can be very easily performed (with
fixed value of m) using the orthogonality condition
of the O(4) rotation functions, i.e.,

Z D(8)iY]'-]D(-84%.']-] = '~ ~- ~ (25b)

Because the above-mentioned recursion relations
of the D functions are not yet known, we use Eq.
(25a) by keepmg lm I

f]xed for the summation over
I' and l. %e obtain

But the summation over m is not easy here, unless
there exist some recursion relations of the D func-
tions which would absorb the terms (t+ 1)' —~m

~

'
and t'-

~

m ~' and give other D functions with coef-
ficients independent of t, 1', and ~m ~. ln the lat
ter situation one can perform the summation over
f', f, and ~m

~

using the general orthogonality
relation

~», Im] —If», II)] ~2~ns Im I l n, 1ml

g2 min( n j.)
&(p)»,'„~(p)»,',

0

min( n 1)
+ ~,„„sm'W [&,(t) 1'(P)»,'...1'(P)»,'„+&.(t) &(P)»,',~(P)»,', +~,(t) 1'(P)»,'.,~(P)»,'„,],

where

(t+1)' —Im I' t' —Im I'
~ (t)= (2t+1)(2t+2)(

—t)( t )+
(2t 1)(2t 1)(

(t+ 1)' Im I' t'- Im I'
t)=

( )(2 2)
(n+t)(n+t+1)+

( )( )
(n —t)(n —t —1

A, (()= —2[(n+()(n+(+()( —()(n ) ()]"* -~-).
Equation (26) is the exact analytic expression for the (n', n) excitation cross section for fixed direction of
polarization. The corresponding generalized oscillator strength' is given by

f(If2)n', Im] (» n) q(ff2)n', Im]
ns lml gg2 n, lml ~

where ]R=m,e'/2I' is the Rydberg energy and a, =i'/m, e' is the Bohr radius. The optical (dipole) oscil-
lator strength is obtained at the limit of zero momentum transfer, i.e.,

y», ])))] 1 ~fyt2)», ]m]
n, Iml n, lml

E ~0

ln this limit, various quantities appearing in Eq. (26) will acquire the following values:

tanh'-, 'P = [(n' —n)/(n'+ n)]'+ O(IF), cosh'-,'P = (n'+ n)'/4n'n+ O(If' ), sinh' —,'P = (n' —n)'/4n'n+0(Z'),
(29)

sin'y = [n "n'/(n' )'( n' n)-']+Kn' O(K+'), A' = (1/n') [16n "n'/(n'+ n)'(n' —n)']f1'+ O(&'),
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(-)). '
(

' ~ &)'( +&)) "* '- "
( '4 )*) &"&

(2t + 1)! (n' t —I) !(n —t —1) ! n ' +n 4n'n

x,F,(t + 1 —n, t + 1 —n ', 2 t + 2;—4n 'n/(n ' —n ) ) .
In order to obtain the last expression we have used the following identity in Eq. (11):

,F,(- a, b; c;x) =
) ,

(- x) ,F,(- a, 1 —a —c; 1 —a b; 1/x) .(a + b —1)!(c—1)!
a+c—

Clearly, for the optical oscillator strength f+4 [Eq. (28)] the first term in Eq. (26) does not contribute
(vanishes as K') and only the second term contributes, i.e. ,

min (n'-j., n- j.)

where V(P)„' „ is g y q ( ).
over t may be performed according to whether one
is interested in the emission (n'&n) or absorption
(n')n) oscillator strength.

We may also see the behavior of the excitation
cross section in the infinite-momentum limit
(K'- ~) and for large values of n and n' (n, n'- ~)
f»m Eq. (26). We can express each V function in

Eq. (26) in terms of Jacobi polynomials such as
P„""(I—2tanh' —,'p), using Eq. (11). If we use the
identity

cosh' ~P =Kn~(1+2/K'n') .
Now one can use the Mehler-Heine type asymptotic
formula,

Jim d P~~"(I —x2/2d') = (zx) ~J~(x),

and infer that the total excitation cross section
would behave asymptotically as the product of two
Bessel functions J,(2/K). Similar conclusions have
also been reached by Beigman et al. ' This reduc-
tion is in fact expected, because in the infinite-
momentum limit the orthogonal subgroup O(2, 1)
contracts" to the Euclidean subgroup E(2) and
consequently the Jacobi polynomials become
Bessel functions.

and Stirling's formula [x!= V (2x)x""t'e "] for the
asymptotic limits n, n, '- ~, then each term
(I/n')V(P)'„, „ in Eq. (26) behaves as

(2/K)'
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