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Parametric instabilities below the electron plasma frequency tine to relativistic corrections
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We present a model which describes the interaction of a cold homogeneous plasma with a strong linearly
polarized external electromagnetic wave, taking into account relativistic terms. Instabilities appear for
transverse and longitudinal waves when the pump-field frequency is at the same time below the electron
plasma frequency and above but very near the cutoff frequency obtained by Kaw and Dawson with a
nonlinear relativistic theory.

Many authors' ' have shown by means of clas-
sical theories that when the pump-field frequency
wp is slightly greater than the plasma frequency
+„excitation of parametric instabilities growing
as (m, /m, )'~' can lead to anomalous absorption.
On the other hand, Tsintsadze, 4 using the Lorentz
equation for a cold electron plasma, found para-
metric amplification for longitudinal and trans-
verse waves with growth rates proportional to
e=—(Vs, /c)'= v, with Vs, =eZ Jm, &u, . These growth
rates vanish in the classical limit (e- 0), which is
in good agreement with Silin's work which shows
that there is no parametric effect when ions are
considered to be at rest. Relativistic theories
have also been developed in.the case of a circularly
polarized pump field. ' '

In this work we start from Tsintsadze's theory
(linearly polarized pump wave), taking ions into
account in order to study their influence on insta-
bilities owing to relativistic effects. We also find
it necessary to rederive that theory because of a
certain number of flaws in Ref. 4 which stem from
a bad choice of the form of the driver and from the
fact the dipole approximation cannot always be
used. Here we set up a two-fluid hydrodynamic
model from Maxwell's and Lorentz's equations
using an expansion in powers of q. We found para-
metric buildup for both potential and nonpotential
high-frequency (hf) oscillations which take place
further from the usual cutoff density in the over-
dense plasma.

We assume the driver's frequency up to be near
the cutoff frequency; thus we may neglect its spa-
tial dependence and its magnetic field Hp. We sup-
pose too, that Ep is strong enough to make elec-
trons, but not ions, relativistic. However, to
make the calculation easier, we use the Lorentz
equation for both ions and electrons, and we ne-
glect Vs, /c with respect to Vs, /c. We start with
Maxwell's and Lorentz's equations:
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If we linearize these equations by setting

R =Xo+R„R=H„
n =n +n, „, v =v, +v, „,

only Eqs. (1b) and (1f) remain to zeroth order:

vp~ q~ g c~f
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Substituting Eq. (4) into Eq. (3) and using an ex-
pansion in g, we find
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where R, (t ) —= R, dg/d8 and 8 = &u,t Integra. ting Eq.
(2), we find

1gvxf = ———,c8t ' (la)
This is the equation of an anharmonic oscillator,
the solution of which yields R, and v~
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g, (t ) =X,(sin~, t+3etl. sin3&o, t},

v,„(t)=ps ([-;(m,/m )'e —1]coerce, t

+ e[2 (m. /m„) ' —}2]cos3~0t) I

Here
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This calculation also leads to the dispersion re-
lation

(d =(d + &.0 g j)

We consider the kIE, case only. Combining
Eqs. (10) and performing the expansion in e, we
obtain an equation for transverse waves:

(I ~)= ~ ~ &/2

(*+c*a* .'2 ——,'e' co82+, 2)lf, = o, (12)

5@ =
2 (E + m~/mi )ldg. (9)

After Iinearizing the system (1) about equilibrium
and performing a Fourier transformation on the
space variables, we obtain the following set of
equations for the nonequilibrium values:

t%XR, =-—BH

c BI;

I 8@, &w
+ &Cf +ovxu++~mvoct )C dI; c (10b)

ik ~ E, =4w Q q„n, „, (10c)

is the electron plasma frequency reduced by rela-
tivistic effects, alxeady found by Kaw and Dawson.

As we use the dipole approximation, we are
going to specify its domain of validity. %'e know'
that this approximation is equivalent to the neglect
of v, „/Pc relative to unity (p = ups, c). It will be
possible when Vs, /pc = vJp is negligible compared
to unity. Here, in our theory, we neglect terms
of higher order than p'o. Thus the domain of va-
lidity of the dipole approximation can be defined
by vJP» v', or I/tice. This requirement might be
stringent, but it is difficult without a more so-
phisticated theory to predict the influence of the
terms we neglect using the dipole approximation
in the dispersion relation. The dispersion rela-
tj.o11 is

++'+ &', '~' 2O m

P + ~o (APo PS ]
(6)

with 6 = u, —&u*, . The condition I/p» e gives the
maximum value of 5 for which the dipole approxi-
mation is valid,

&u,
"=(u2(1 ——,'e+m, /m, +c2k2/(u2), (13)

1 ——,'e+m, /m, +c202/ru2
'

Eq. (12) is a Mathieu equation similar to the one
obtained by Tsintsadze4 for very large wavelength;
we find the following buildup increment":

y = [(e(u2/16up, )2 —((u,
' —(o,)2] 'I'. (15}

This function has a maximum value for &o =&,
which corresponds to Tsintsadze's result. Figure
1 shows the evolution of the growth rate y vs D
= 5/5„ for 0= 0 and for different values of v„where
5, = &a, m, /2m, represents the minimum difference
between coo and ~~ so that the driver may propa-
gate (&u2, =co*,2+&u2). We can see on these curves
that for a specified pump (v, and &u, are fixed) y
increases with D and that it is reduced by the fact
we take iona into account. This effect becomes
stronger as &o approaches the cutoff frequency.
Finally we see that Tsintsadze's growth xate cor-
responds to a value D~ of D which is out of the do-
main of validity of' the dipole approximation. The
gap between D„=5„/5, and D„ is more important
for smaller values of v, (for v0=0. 2, Dr =2D„).
Still, for the maximum value of the drivex's in-
tensity that we considered (v, = 0.3), the gap be-
comes small and the growth rate given by
Tsintsadze then has a physical meaning.

For longitudinal waves, in the same way as
above, system (10) leads to

D„(u,„} q„
Dcr. (I 2 / 2 l2/2 4s220 78@18
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~~a+~ k ' Voa&l. e++o~ k' Vt& =0 I, =y 0 — ,*„/c'1*i exp —f t vent), „



PARAME TRIC INSTABILITIES BELOW THE ELECTRON. . ~

13
10

where J'„ is the nth-order Bessel function and g
=k ' 7se~&o

Let us consider the high-frequency case [Re(&u)
-~ &o,] and neglect the off-resonant terms. We then
obtain a set of three equations between y, (Q),

y, (Q —&o,), and y, (Q++,), with Q =&a+ &u, . Thus
this system may have a nontrivial solution only if
the determinant of the coefficient matrix is equal
to zero, that is,

—0 +&&
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—(0 —s),)' + (u,'n'

—8 t (&Oq
—2(do)

—u)A1
2

—ae (~~ 2&0)

—(A + (do) + (d~(X

12
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Let us set Q =x+ iy, where x+ ~, andy are, re-
spectively, the frequency and the growth rate of
this mode. A calculation similar to the one per-
formed by Nishikawa' shows that when x+ 0 we
must have 5& 0, and when x =0, we must have
5 & 0. This last case (x = 0 or &u =+ &u, + iy) might
be less interesting, since 5& 0 corresponds to a
driver whose frequency is smaller than the cutoff
frequency, that is, to a region which is roughly
the skin depth and where the intensity of the driver
decreases rapidly. Still, if we perform the cal-
culation corresponding to this case, we find that
when tlat )

PIG. 1. Dependence of growth rate y on the mismatch
for (a) &0 =0.3, (b) &0 =0.2, and, (c) ~0 =0.15 (Nd laser
and hydrogen plasma, 4 c/~0 =0). Dashed lines repre-
sent y in the limit m& ~. Ne produce dotted curves
in the domain where the dipole approximation is not
valid. T represents Tsintsadze's results.

and perform a Laplace transformation on the time
variable, we obtain a set of two equations:

(- &u'+a'&u,')y, ((u)

—
8 f ((de —2CtPO) [y~ ((d + 2(do) +yq ((d -2ldo)]

—(u, QA„y( ((a) -n&uo) =0, (18) 12
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with

A„=J„(a)u —,'6 e[Z, , (a) +J„„(a)]
+gae[Z„, (a) —Z„„(a)]
+~~ ag (1 —Bp)[Z„,(a) —J„~,(a)], (20)

FIG. 2. Dependence of growth rate y on the wave
vectors for F0=0.3 and (a) D=15, (b} D=10, (c) D=5,
(d) D=3 vo

——0.24 and D=3 (d'); F0=0.2 and D=3 (d").
(Nd laser and hydrogen plasma. }
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'f = ~[ —(d~ —A + 2((OgA +K5/(do) ~ ] ~ (2&)

We can now make two remarks: (i} When
q-0 in Eq. (21), we find Nishikawa's matrix coef-
ficient in which the thermal velocity is neglected;
and (ii) if m, -~ in Eq. (23), we have

4y' = —(5'+ 8 e&u*,5). (25)

The maximum value of this growth occurs when

5~ = —,—'6~~*, and is y~ =,—'se(d*, . This growth rate is
the one obtained by Tsintsadze and corresponds to
an instability confined in a region which is the skin
depth.

Now we study the x w 0 ease and find the growth
rate

%'e shall have a real root only if 5 & 0, which is in
contradiction with the 5 & 0 necessary condition of
this xg0 case.

Figure 2 shows that for a fixed value of kc/~,
and vo, y increases with D. Furthermore, for one
p, there is one value A, „of the wave vector for
which the growth rate has a maximum value y„.
On the other hand, for a fixed value of D, y„re-
mains constant and k„ increases when p, de-
creases. The calculation of the threshold of these
instabilities (y =0) allows us to ascertain that they
correspond to yresent laser technology.

To eonelude, only a model taking ions into ac-
count can show the instabilities for potential waves
which were predicted by Tsintsadze.
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