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Analytical formula for the radial distribution function
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The most accurate experimental radial-distribution-function data, obtained by thermal-neutron scattering and
x-ray scattering in liquids, have been considered. A number of analytical equations for the radial distribution
function g as a function of the interparticle separation R have been studied. The formula for g(R) finally
chosen gives completely satisfactory agreement with the experimental data, and also with some Monte Carlo
simulations and with theoretical predictions of the Percus-Yevick type. It is expected that the same formula
will be also applicable to at least some of the diffractometric data for amorphous solids.

I. INTRODUCTION II. FORMULATION AND CALCULATIONS

The radial distribution function g(R), where R is
the intermolecular separation, contains essential
information about the equilibrium properties of a
liquid. " Usually measurements of the intensity of
either slow-neutron or x-ray scattering are made;
the diffractometric data are expressed in terms of
the structure factors. The Fourier transforming
of the structure factors then produces g(R). False
undulations of g(R) often appear for small values of
R; thus caution must be exercised in the transfor-
mation procedure. ' In either case, one typically
winds up with a tabulated set of g(R) values.

We may represent relations between the equilib-
rium properties and the radial distribution function
by

F= RgR dR+, .
0

Here F stands for an equilibrium property such as
the configurational energy, the macroscopic pres-
sure, the average number of nearest neighbors of
a molecule in the bulk of the liquid phase, the iso-
thermal compressibility, and so on. The form of
f(R) and the value of fo depend on the choice of the
quantity F fp is either a constant or an explicit
function of temperature T and/or density p.

Equation (1) suggests that an analytical equation
for g(R), as contrasted to the tabulated values of
this function, would be highly desirable. Attempts
in this direction have been made before, but the
problem was found quite difficult. The main peak
of g(R) is as a rule highly asymmetrical and widely
different in both size and shape from the subse-
quent peaks. In this context, the objective of the
present work was to produce an analytical equation
for the radial distribution function, working in the
entire range of R.

g(R) =g.(R) +g~(R) +g.(R),

the terms being defined by

(2)

g. =O, R (B,
g, = ' exp(-B, [ln(R -B,)+B,-10]'),

R&B,

(3a)

g, = exp[-(R B,)'/B, ], R ~B-,
(3b)

gc = 0~ R (B
1 4B4

sin[2vr(R -B,+0 25B,)/B,].
B, —10+(B,—4)R'+(B, —0.01)R' '

(3c)

R )B1
—4B,.

Important work on the present problem has been
done by Franchetti, "and we have considered first
his Eq. (2.1) in Ref. 5. Franchetti expresses g(R)
in terms of coordination number Z; and radii of
consecutive shells around an atom placed at R = 0;
rather arbitrarily, he takes Z, = 12. Calculated
values of g(R) for argon and zinc show reasonable
agreement with the respective experimental data
for larger values of R, but are unacceptable in the
region of the main peak. In our calculations, we
have modified the Franchetti equation somewhat,
treating the coordination numbers and the shell
radii as adjustable parameters. The results were
similar to his own, however, in that the calculated
main peak was always too flat and too broad.

Subsequently, we have tried a variety of equa-
tions which we do not propose to describe here.
The equation which we have finally adopted, and
which gives the best results, represents a sum of
three terms,
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We note that Eqs. (3}could be slightly simplified
by introducing, e.g. , B,'=B, —10, B,'=B, —10, etc.
%e have used a computer subprogram which
searched for values of the B; parameters and which
contained a condition that all unknown parameters
be positive. This is the reason for writing Eqs. (2)
the way we did; the form given here is the one ac-
tually used in the computations.

Let us now explain the three terms in turn. The

g, term takes care of the main peak; at R =B,we
have the point often referred to as the first mini-
mum of g(R). The g, term serves for connection
of the main peak with the sinusoidal tail g, . As for
the latter, its first maximum is evidently at B„
this point is typically fairly close to the second
maximum R» of g(R), such that R[, =B„a dn

the starting value for B, in the computations is
chosen accordingly. Similarly, an approximate
distance between two extrema of the same kind
suggests the starting value for the sinusoidal peri-
od parameter B,.

The parameters B; have been obtained using a
nonlinear least-squares curve-fitting program on
a CYBEB 74 computer. The program (NL%'OOD) is,
along with other computer procedures, performing
essentially the same task, discussed in detail
by Cuthbert and Woods. ' The program produces
an optimized setof B; parameters, a number
of statistical parameters including values of
Student's t function for each of the B,, and the re-
sidual root-mean-square deviation g for the entire
curve. Subsequently, the program Z&PO~L (avail-
able from International Mathematical and Statis-
tical Libraries, Houston) has furnished us with

locations and values of all maxima and minima of
the radial distribution function as given by the fit-
ted analytical formula.

III. RESULTS

Our calculations have been based on recent and

sufficiently accurate g(R) data. Inspecting the val-
ues obtained one notices, first of all, high values
of Student's t parameters, running in many cases
into several hundreds. Since an analytical equa-
tion is considered as acceptable when t values for
fitted parameters are all higher than 2, the t val-
ues here testify well to the soundness of our for-
mula.

The calculations made are summarized in two
tables. Table I characterizes the data used (sys-
tem, temperature, density or pressure, litera-
ture source) and quality of the fit as represented
by o; it also contains locations of the main maxi-
mum of each g(R) curve a.s R .,„and g .,„. Table II
contains sets of B; parameters; consecutive num-
bers in the first column refer to the respective
sets of data as characterized in Table I.

IV. DISCUSSION

Let us briefly consider now in turn all sets of
data and the results obtained. The first set in-
volves the neutron scattering data for Ar of Yarnell
and his colleagues'; there appears to be a general
consensus that these are the most accurate experi-
mental values of g(R) now available. There are 400
points, covering the R range up to 2 ~ 724 nm. All
of equations we have used, from the Franchetti
formula up to Eq. (2), have been tried on this set
of data; only when a satisfactory agreement had

been obtained did we pass to other systems.
%hile these data are relatively the best, and in

spite of a smoothing procedure used by Yarnell
ef aI. ,

' their g(R) curve still contains some oscil-
lations at small values of R. Eliminating a num-
ber of experimental points in this range would pro-
duce a distinct improvement in our value of the re-
sidual deviation g, particularly since some of the
experiment-derived g(R) values are negative. Any

procedure for excluding a number of points, such
as eliminating all negative g values, or else elim-
inating all data below a certain value of R, would

necessarily be somehom subjective and arbitrary.
We have therefore decided to present the value of
g which corresponds to all the experimental points
available. The same applies to all subsequent sys-
tems.

A word on the location of the main g(R) peak at
85 K might be in order. Earlier interaction poten-
tials u(R) for Ar assumed that the potential-energy
minimum n,„;„jA, where k is the Boltzmann con-
stant, is = —120K,while the minimum is located at
R;„=0.38 nm. Differences between various poten-
tials mere minor (u„„.„,~&= —119.4 K, or —119.8 K,
etc. ) until Guggenheim and McGlashan' demon-
strated that &g,„,'k should be of the order of -140 K.
Proposals of u(R) potentials made since then have
shifted accordingly, but R;„—-0.38 nm has re-
mained.

It is a mell-known fact among the liquid-state ex-
perimentalists that the principal peak of g(R} oc-
curs at a position close to but not identical to the
principal minimum of u(R) (cf. Egelstaff, ' Chap. 2).
Since the experiments of Yarnell et gt. have been
made at a temperature not fax from the triple point
of argon and me find from their data that g„„,. is lo-
cated at =0.37 nm rather than at 0.38 nm, we ex-
pect that the future proposals of g(R) for Ar will
take this fact into consideration. Incidentally, one
of us' has found R„„„(u;„)using the Jonah equation'
and the same g(R) data from Ref. 7. The Jonah
procedure is hardly exact; the result obtained, '
however, R,, ;„(u;„)= 0.3728 + 0.0003 nm, is quite
acceptable from the point of view of the value of
R„,.„„(g„„,) now found.
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Let us now consider other available g(R) data for
Ar. Page" has made neutron scattering measux e-
ments at 84.5 K. Since his experimental tempera-
ture is so close to that of Yarnell et gl. , and since
the latter report' that the agreement between their
results and his results is very good, there was
little point in our dealing separately with Page's
results. Furthermore, there are x-ray scattering
results, notably those of Mikolaj and Pings. " New
results from the same laboratory, "however, are
considered to be of higher quality, "and we have
performed calculations for the data of Kirstein and
Pings. " The results axe presented in the tables
as systems 2-12. "Table 5.C, " etc. , refers to the
respective table in the thesis of Kirstein. Since
for each of the thermodynamic states (defined by
temperature and density) studied Kirstein and Pings
have made at least two independent series of mea-
surements, we can make comparisons of the re-
sulting values of R,„and g,„. %hen one also takes
into consideration the respective values of o, it
appears that our Eg. (2) describes the g(R) values
within the limits of experimental accuracy.

For 'He, relatively highly accurate neutron dif-
fraction measurements have been made by Mozer
and his colleagues" for several thermodynamic

states. The results of Mozer et al. are presented
in the form of the structure factors, and Mountain
and Ravechlt" have calculated therefrom the g(R)
values. In oux' computations we have thus used the
values tabulated by Mountain and Havechd. As can
be seen from the respective values of cr in Table I,
the experiments are indeed accurate, and our Eq.
(2) represents them in a satisfactory way.

Neutron diffraction studies for liquid neon" have
been made in the same laboratory as for helium.
DeGraaf and Mozer" do not report the numerical
values of g(R), but the respective tabulated data
have been obtained from Mozex'. " Their experi-
ments were performed at a single temperature, but

under three different pressures; the agreement
with the calculated values is as good for Ne as it
has been for 'He.

Finally, we have considered experimental g(R)
data for metals. Among these, the x-ray data for
sodium of Greenfield, %ellendorf, and %'iser'9 seem
to stand out because of their accuracy (cf. p. 12'I

in Faber'0). Typically again, Greenfield ef al. tab-
ulate the structure factors but not the radial-dis-
tribution-function values. Murphy and Klein, "as-
suming an ion-ion interaction potential u(R) for Na,
have performed Monte Carlo computer simulations

TABLE I. Systems studied, values of cr, and locations of the main peak of g g).

No. System H,ef.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Ar;
Ar;
Ar.
Ar.
Ar;
Ar;
Ar;
Ar;
Ar.
Ar;
Ar;
Ar.

'He.
'He.
4He;
'He
'He;
4He.
'He;
'He;
'He;
4He;

Ne;
Ne;
Ne;
Na
Na;
Na;
Na.

85.0 K,
127.0 K
127.0 K,
127.0 K,
127.0 K
127.9 K
127.0 K
133.0 K
133.0 K
143.0 K
143.9 K,
143.0 K
1.860 K
2.050 K
2.130 K
2.14Q K
2.300 K
2.840 K
2.Q2Q K
2.869 K
1.940 K
2.860 K
35.05 K
35.95 K
35.05 K
273.2 K
373.2 K
273.2 K
373.2 K

vapor-liquid equilibrium
, 1.116 gcm 3

1.116 gcm 3

1.098 gcm 3

, 1.098 gem~
, 1.135 gcm 3

, 1.135 g cm 3

, 1.054 gcm 3

, 1.054 gcm"3
, 0.910 gcm 3

0.910 g cm~
, 0.910 gcm ~

, 0.44 Jcm 3

, 0.44 Jcm 3

, 0.37 Jcm ~

, 0.37 Jcm"3
, 0.38 Jcm 3

, 0.54 Jcm 3

, 0.66 Jcm 3

, 0.79 Jcm 3

, 1.18 Jcm ~

, 127Jcm3
, 2.17 Jcm 3

, 8.00 Jcm~
, 14.18 Jcm~
, the Percus-Yevick equation
, the Percus-Yevick equation
, Monte-Carlo simulation
, Monte Carlo simulation

7

13, Table 5.C
13, Table 5.E
13, Table 5.F
13, Table 5.I
13, Table 5.J
13, Table 5,K
13, Table 5.0
13, Table 5.6
13, Table 5.A
13, Table 5.H
13, Table 5.8
15, 16
15, 16
15, 16
15, 16
15, 16
15, 16
15, 16
15, 16
15, 16
15, 16
17, 18
17, 18
17, 18
21
21
21
21

0.023
0.028
0.028
0.037
0.029
0.027
0.025
0.045
0.027
9.028
0.040
0.035
0.018
0.010
0.922
0.018
0.017
0.917
0.012
9.012
0.011
Q.Q08
0.014
0.015
0.917
0.027
0.018
0.020
0.015

0.3689
0.3831
0.3780
0.3779
0,3787
0.3812
0.3785
0.3827
0.3798
0.3845
0.3713
0.3794
9.3474
0.3507
0.3497
0.3489
0.3490
0.3478
0.3490
0.3490
9.3461
9.3465
0.3088
0.3976
0.3068
9.3575
0.3689
0.3656
0.3689

2.961
2.143
2.074
2.143
2.130
2,069
2.118
2.144
2.960
2.003
2.006
1.971
1.435
1.414
1.458
1.459
1.458
1.455
1.421
1.429
1.434
1.447
2.248
2.315
2.357
2.606
2.386
2.504
2.961
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for the two experimental temperature s of Qreen-
field et al. The simulated structure factors are
in what Murphy and Klein call excellent agree-
ment with the x-ray diffraction data in Ref. 19. In
view of this, we have performed calculations us-
ing the g(R) data for Na obtained by the Monte
Carlo method. Furthermore, Murphy and Klein
give two other sets of g(R) data, again for experi-
mental temperatures of Greenfield et al. , but ob-
tained using the Percus-Yevick approximation; we
have included these data in our calculations also.
We have found that the g(R) curves for sodium pro-
duced by computer simulation as well as those pre-
dicted theoretically using the Percus-Yevick for-
mula are also well represented by our equation.

In conclusion, we expect our g(R) formula to be
applicable to any "decent" liquid. A notable ex-
ception, where experimental g(R) curves are avail-
able but are so involved that an equation more com-
plex than ours may be needed, is, of course,
water. "'"

While we have not made any calculations for sol-
id amorphous materials, our equations might be
worth trying for them also. Amorphous metals

are known to have structures highly resembling
the respective liquid phases, particularly when de-
posited as not-too-thin films (cf. Faber, Ref. 20,
p. 274). Amorphous water will be an exception a-
gain, as is apparent from an acceptable explana-
tion of the behavior of water which, at last, we are
about to receive. " On the other hand, amorphous
semiconductors and organic polymers represent
further classes of likely candidates for the applica-
bility of our equation. Among the latter, we have
several industrially important amorphous materi-
als, such as atactic polystyrene, polymethylmetha-
crylate, and polyvinyl acetate, which from the
point of view of their diffractometric characteris-
tics are indeed liquidlike. "
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TABLE II. B; parameters in the radial-distribution-function equation, rounded to four decimal points.

Data
set No.

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Bg

6.9764
6.9980
7.1613
7.0447
7.1070
7.1348
7.0920
6.7976
7.0904
7.1832
7.3085
7.1985
6.7851
6.7645
6.7663
6.776 7
6.7719
6.7995
6.7504
6.7505
6.6507
6.6357
5.9223
5.8910
5.8688
6.7142
6.7006
6.7118
6.7177

4.1589
5.3964
6.2638
5.7820
6.1477
5.9514
5.9497
5.1424
6.7350
6.7121
6.1605
7.8192
3.5930
4.5025
3.1709
3.2132
3.3398
3.4725
3.7054
3.6123
3.4728
3.3448
3.9113
3.8648
3.7182
5.3526
5.0163
2.92 70
3.0182

11.5344
119.2140
25.4041

120.4440
110.4721

54.1881
6 7.1752

142.6 840
136.2320
39.3 706
18.1966
55.6103

164.4690
94.1455
97.5872

140.9130
94.7252

110.9951
111.8260
90.1885
86.3081
70.2511
19.5204
19.4890
14.4968
38.6855
38.7283
30.2308
32.3613

3.2451
4.6352
3.9655
4.2895
4.1516
3.7948
3.9531
5.7280
4.1196
4.6113
3.6838
4.1737
3.1766
3.3414
3 ~ 2037
3.2069
3.1972
3.1448
3.2561
3.2340
3.2756
3.2538
2.8261
2.7838
2.7459
3.2661
3.3429
3.8040
3.8247

1.9159
3.2534
2.6698
2.5651
2.6319
2.9754
2.8743
3.2732
2.6 526
2.5132
1.8475
2.0 737
2.8122
3.0800
2.9516
2.8653
2.8948
2.8013
3.0882
3.1213
3.2144
3.2 725
1.6494
1.6544
1.6990
2.5901
2.5901
2.9605
2.9616

3.1026
2.2412
2.4491
2.5511
2.5095
2.3127
2.3751
2.1988
2.4291
2.5245
2.8607
2.6802
1.5702
1.2461
1.5484
1.6076
1.5713
1.6233
1.3248
1.3239
1.2246
1.2157
2.3833
2.3887
2.3755
2.5642
2.4583
2.5170
2.4017

1.9270
6.2382
4.0472
3.8628
4.0817
5.0462
4.7950
7.3241
4.5003
3.8272
1.5506
2.9346
3.1205
4.5708
3.2627
3.0693
3.2237
3.0098
3.9579
3.9720
4.3746
4.5000
2.2306
2.2992
2.3948
4.6364
4.4479
4.2 754
4.2292

B8

10.2802
9.4678
9.6055
9.6798
9.6468
9.5094
9.56 52
9.4561
9.5908
9.6091
9.8587
9.7431
9.2149
9.1004
9.1947
9.2203
9.2098
9.2334
9.1214
9.1199
9.0988
9.0950

10.1390
10.1704
10.1704
9.8898
9.8017
9.7575
9.6742

B9

4.0100
0.6703
3.5648
0.5991
0.9273
2.5952
2.2125
0.0669
0.0923
3.2312
3.7368
2.7338
0.2364
1.8833
2.0055
0.8183
2.0663
1.5730
1.5760
2.1447
2.1558
2.5537
3.6384
3.6422
3.8731
3.0000
3.0000
3.3485
3.2970

10 Bio

1.0640
3.6684
1.5654
3.7711
3.4880
2.3142
2.5841
4.0449
4.1771
1.8174
1.7178
2.2591
3.6786
2.8400
2.4841
3.2538
2.4516
2.7979
2.8526
2.4530
2.5212
2.2540
1.7709
1.7098
1.4245
2.0017
2.0255
1.6277
1.6578
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