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A truncated form of the Kirkwood-Salsburg equation for the hard-sphere gas is solved. An
exact algebraic recurrence relation is obtained for the coefficients of an expansion of the two-
particle correlation function in powers of the activity, z, in the neighborhood of z =0. The
methods of series analysis and Pade approxim~rits allow this solution to be extended to all
z ~ [-1, 11.6048l. An equation of state is obtained which reproduces the first three virial co-
efficients exactly and shows a phase transition at z =11.6048, which appears to be weakly sec-
ond order. It is demonstrated that ~nor modifications of the integral equation could substan-
tially alter the ~r1~&ytiC StruCture Of the SOlutiOn.

I. INTRODUCTION

p, (x» x,) =a(1+f») p, (x,) + p, (x» x,)f» dx3

where

~/kB T/g3
)

X = h/(2&mksT)' ' '

(2)

(3)

f,&
is the Mayer function

f,&
= exp[ —P(x~ —x&)/kent'] —1, (4)

Although the hard-sphere gas has been exten-
sively studied' by both computer simulation' and
truncation of exact hierarchies of equations for
the distribution functions, ' ' a complete descrip-
tion of its thermodynamic properties has not been
obtained. Computer simulations have convincingly
demonstrated the existence of a first-order fluid-
solid phase transition, ' but they appear to be in-
capable of determining the nature of the singular-
ity at the phase transition or the mechanism for
symmetry breaking.

The solution of truncated hierarchies has met
with varying success. Generally, the truncations
are not systematically improvable and, in most
cases, even the truncated equations cannot be
solved exactly. The first Percus- Yevick equation
is an exception to this last statement, but the so-
lution fails to show a phase transition. ''

In this paper, we present the solution to an inte-
gral equation for the pair-distribution function,
which was obtained by truncating the Kirkwood-
Salsburg equation'

and P is the two-particle potential. For the hard-
sphere gas,

~x, -x, [«,
0, Jx, -x, f»,

with & being the diameter of the hard spheres.
Equation (1) was derived by Sabry, ' using a phys-
:cal approximation, and by one of the authors as
the first-order contribution to a perturbative ex-
pansion. " The second derivation has the advan-
tages of being systematically improvable and of
showing that all contributions to p, (x„x,) can be
obtained by solving Eq. (1) with different inhomo-
geneous terms. This last property suggests that
the structure of Eq. (1) may have an importance
far beyond that of the specific approximation which
it represents.

We have expanded the solution to Eq. (1) in pow-
ers of z and have obtained an exact recurrence re-
lation, which involves only algebraic operations.
Using this recurrence relation, we have generated
all coefficients up to the 50th power in z, to about
30 significant digits. The length of the resulting
series enabled us to apply the methods of series
analysis very effectively to obtain both the analytic
properties of the solution and numerical values to
essentially arbitrary accuracy. "

From the solution to Eq. (1) we have obtained an
approximate equation of state for the hard-sphere
gas, which correctly reproduces the first three
virial coefficients and exhibits a phase transition.
Unfortunately, the phase transition occurs at a
density of 2'1% close-packing (as opposed to value
of 63% close-packing given by computer simula-
tion) and predicts a divergence of the isothermal
compressibility, which would be characteristic of
a second-order transition. On the other hand, the
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divergence is weak and we shall present evidence
that a modification of the inhomogeneous term in
Eq. (1) might be capable of describing a first-order
transition.

P, (x„)=2mx„(wo') ' yh(x„, y) dy,

H. METHOD OF SOLUTIGN

Since we are interested in a solution to Eq. (1)
in the gas, all distribution functions are invariant
under arbitrary translations and rotations. p, (x, )

is then independent of x, and is equal to the average
density p. Furthermore, p (x„x,) is a function
only of the distance between the points x, and x, ,
and we shall introduce the notation

x„=x,—x„x„=~x» (.

It will also prove convenient to introduce a unit of
length such that the exclusion sphere has unit
volume:

g wo =1.

As a first step, we shall simplify the inhomo-
geneous term in Eq. (1) by defining the function

p, (x„)= p, (x„)-x e,

h(x, y}=-,' [ (x —y)' —o'], (15}

with the provision that I'„ is zero unless the upper
limit of integration is greater than the lowex limit
(overlap volumes are always positive), i.e. , x»
&(n+1)o. This condition leads to discontinuities
in the derivatives of p, (x») as a function of x» at
the points &»=no. This property, combined with
the explicit form of P„Eqs. (14) and (15), sug-
gests expressing P„ in the form of polynomials
[P"„(x»), x»~ [mo, (m+1)o][, and expressing P„as
a function of the new variables

and the final integral is trivia1. .
The recurrence relation (12) involves exactly

the same angular integration and can be written as

min (ffa, q»+f1)
P„(x„')=2(vo') ' h(x, y)P„,(y) dy,

fnaX (O, x» 0)

o.'= p/(1+x), (9)

so that Eq. (1) takes the form

pi {x»}= &~f»+& {1+f») p. (x i}f»dxii

As the solution of this equation has been shown to
be analytic in the neighborhood of z =0,"we can
expand the solution to Eq. (10) as a power series
in@,

p, (x„)=a+f„+o'(1+f„) —p P„(x„)( x)('r""x
» 1

so that x„&[0,1]. The recurrence relation (12)
then becomes

m i fi (],~ + 1 - f + fft )

P„{x) = Q h, {x,y, )P'„,(v, ) d~', ,
max ( p, x -].- ) + ~)

where

h, (x,y, ) =2o 'h(o(x +m), o(y, +1))

P„(x„)=x»(xo') ' x„'(1+f„)f„P„,{x„)d'x, ,

(12)

for which the first coefficient is given by

where some factors have been explicitly removed
from the expansion coefficients.

Upon substitution in Eq. (10) and equating powers
of z, we find the reeurrenee relation

If we consider the condition that the upper limit
of integration must be greater than the lower limit,
we see that the only values of l which make a non-
zero contribution are m —1, m, and m+1. Again,
from the conditions under which I"„,is nonzero,
we only get contributions from these terms when

pg ~n —2 for /=m+1,

m ~& —1 for l=m,

m «2 for 1=m-1.

The integral in Eq. (12) is the volume of overlap
of two spheres of radius ~ whose centers are a
distance &» apart, and is clearly zero for x» &2&.
After the angular integrations have been per-

To explicitly perform the remaining integrals over
polynomial. s in y, and put the recurrence relation
in a form suitable for numerical evaluation, we
define the expansion coefficients {()(n,m, l) so that

36+2
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and Q(n,m, l) =0 when the conditions (20) are not
satisfied. With the coefficients H, (i,j) defined so
that

s s

k, (x,y)= H, (i,j)x' 'y' ',
=1 1

the final recurrence relation takes the form

(22)

Slt l S

Q(n, m, l) =g p (k+j —1) ' [H, (i, j)Q(n —l, m+1, k)b«, &,~, +H, (i,j) Q(n —1,m, k)Ei, ,k=1 =1 f=l

+H, (i, j)Q(n —l, m —l,k)(b« —6, „&,~,)].
(23)

This expansion involves only algebraic operations,
which are easy to perform rapidly and to a high
accuracy on the computer. %e have obtained all
coefficients up to n = 50 for all values of m and l
to an accuracy of better than 30 significant digits.
The final expression for p, (x„) can now be written
as

p,(x, ~ [m&, (m+1)&])

zp g 3n+2

(1+f„) 1+ z S,(z)

where the functions S,(z) are defined as

(24)

S., (z) = P Q(n, m, l)(ve)"z" '. (25)

III. ANALYTIC PROPERTIES OF THE SOLUTION

Since we have obtained a large number of co-
efficients to a very high accuracy, the methods of
series analysis can be directly applied to find the
analytic properties of the function S,(z) with a
high level of confidence in the validity of the re-
sults. In addition, the investigation of the analytic
properties of these functions is aided by a proof"
that the solution to Eq. (1) is analytic in z as long
as

1 —z f(k) ~0, (26)

where f(k) is the Fourier transform of f», and

takes the form

f(k) = (4&/k')[&cos(ko) —(1/k) sin(k&)]. (27'j

The closest possible critical values of z then
occur at —1 and 11.6048.

The direct application of the ratio method to the
expansions of the functions S,(z) and extrapolation
of the results with the use of Neville tables con-
firms the existence of a nonanalyticity at -1 and
shows it to be a square-root branch point for all
values of m and l. If the branch point is unfolded
by using the transformation

z = z, [ 1 —(1 + 0'], (28)

IV. PHYSICAL RESULTS

To obtain predictions of the thermodynamic be-
havior of the hard-sphere gas from the solution of
Eq. (1), we begin by using the well-known relation-
ship" between the pressure and the value of p2 at
contact

pP/p= 1+ z p p2(o ) . (29)

From Eq. (19), it is seen that this reduces to

PP/p = t) (z ) = 1 + -, [z/(1 + z) ] [1 + z S» (z) ) (30)

and we need only analyze the function S»(z) in or-
der to obtain an equation of state. Unfortunately,
the presence of p in Eq. (30) prevents it from be-
ing a fundamental thermodynamic equation, which
would provide all thermodynamic information
immediately. " There are essentially two ways
of treating this difficulty. The first possibility is
to demand that the product property be satisfied,
i.e.,

with z, =-1 and a=2, we find that the closest sin-
gularity occurs at f=-2. This means that the non-
analyticity at z = —1 takes the form (1+ V'1 +z) ',
where the exponent b depends on m and 1 (for m

=i=1, b=1j.
Applying an Euler transform to move the singu-

larity at —1 to infinity (either with or without first
applying the unfolding transformation), we find the
expected nonanalyticity at z = 11.6048 for all func-
tions S,(z). Neville tables locate the singularity
to an accuracy of better than four significant dig-
its. Since the location of the nonanalyticity is
easily calculated to high accuracy from Eq. (27),
we can make biased estimates of the exponent
which converge considerably faster than the unbi-
ased estimates. A square-root branch point seems
to exist for all & „although convergence was slow
for higher values of l For the functio. n S»(z),
which is shown in Sec. IV to be of central impor-
tance, the convergence was excellent and far few-
er coefficients would have been sufficient to give
the analytic properties to a very high accuracy.



SOL UTION OF A TRUNCATE D KI RKWOOD- SAL SBURG. . .

lim pg(xgg) = p
x12

which leads to

p = z/(1 + z ) .

(31)

(32)

2.0

1.8

1.e

Although the product property is desirable, the
use of Eq. (32') leads to inconsistent thermodynam-
ics. On the other hand, if we allow the violation
of the product property, we can obtain a consistent
thermodynamic description of the system directly
from Eq. (30).

Using the thermodynamic identity

PP/p

1.4

1.0
0 2.0 4.0 6,0 8.0 10.0 12.0

BP p
ez ~ ~ Pz

(33)
FIG. 1. pP/p =PV/Nkz T as a function of the activity

z. The inset shows the square-root singularity at z
=11.6048 on an expanded scale.

we find that

(34)

where the constant of integration has been deter-
mined by the condition

li m (p/z) = 1
g-+ p

(35)

(ideal gas limit). Equation (34) is particularly
convenient for numerical evaluation, since the in-
tegrand can be expressed in the form of a series
in z and the integral can be carried out explicitly.
In fact, a virial expansion for PP in powers of p
can be obtained directly from Eqs. (30) and (34)
by carrying out all operations on the series them-
selves. The first three virial coefficients obtained
are exactly correct, but the fourth is about a fac-
tor of 8 too large and the subsequent coefficients
alternate in sign.

The most accurate numerical evaluation of Eqs.
(30) and (34), however, is obtained by evaluating
e(z) and the integrand in Eq. (34) first and then
performing the subsequent operations algebraically
instead of as series operations. Since both 8(z)
and the integrand in Eq. (34) are nonanalytic at
z, =11~ 6048, we first unfolded the series using
Eq. (28) with z, = z, and a= 2 and then calculated
near-diagonal Pade approximants to the unfolded
series. For more than about 30 coefficients, the
numerical results were unique and consistent to
better than four significant digits.

Figure 1 shows a plot of PP/p vs z. The nonan-
alyticity is seen to be quite weak [approximately
0.025X (1 —z/z, )'~'] and has been shown on an ex-
panded scale in the inset. It should be noted that
the square-root singularities in the remaining
functions, S,(z), are about 10 to 20 times stron-
ger.

In Fig. 2, we have normalized p to the density

.25

.20

p/p.

.15

.10

.05

0
0 2.0 4.0 8.0 10.0 12,0

FIG. 2. p/po as a function of the activity z (p() is the
density at close packing). The inset shows the square-
root singularity at z =11.6048 on an expanded scale.

atclosepacking, p„and plotted p/p, vs z. We
again see a square-root singularity, which is also
shown on an expanded scale in the inset. Unfortu-
nately, the value of p at the singularity is p, = p(z, )
= 0.2716p„which differs significantly from the
Monte Carlo result of about 0.63p~.

Figure 3 shows PP/p, vs z, which is essentially
the fundamental thermodynamic equation. The
nonanalyticity takes the form of (1-z/z, )' and
would not be visible even if the scale were to be
expanded.

The equation of state, PP/p, vs p/p„ is shown
in Fig. 4. P is an analytic function of p and the
nonanalyticity in the fundamental equation is re-
flected only in the vanishing of the slope of this
curve at p, (implying a divergence of the isother-
mal compressibility). The fact that SP/S p = 0 at
p, is difficult to see from the direct plot in Fig. 4,
so we have shown it again on an expanded scale in
the inset. For comparison, Fig. 4 also shows a
dashed line which plots a Pade-Bpproximant equa-



876 ROBE RT H. SWENDSEN AND WILLIAM KLE IN

PP/p,
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FIG. 3. pP/p, as a function of the activity z. This
is essentially the fundamental thermodynamic equation
of the system (po is the density at close packing).

FIG. 4. Equation of state: PP/po as a function of the
density p/p 0 (po is the density at close packing). The
inset shows, on an expanded scale, the vanishing slope
at p =0.2716p, .

tion of state proposed by Hall. " This line provides
an excellent fit to the Monte Carlo results of Adler
and Wainwright. '

Since the divergence of the isothermal compress-
ibility is characteristic of second-order phase
transition (or perhaps a spinodal), we do not have
a description of the first-order transition to the
solid phase. On the other hand, the singularity in
the fundamental equation has been shown to be very
weak, so that, in some sense, we "almost" have
a first-order transition. This result invites specu-
lation on the possibility of an improved version of
Eq. (1) actually describing a first-order phase
transition. With this in mind, we would like to
point out a property of Eq. (1) which might be rel-
evant. Although Eq. (1) is only an approximation
to the second Kirkwood-Salsburg equation, the
exact equation can be written as

p, (x„)=R(x„,p, z)+ z(1+f„) p, (x„)f„d'x„,

(36)

in which the inhomogeneous term contains integrals
over higher-order correlation functions that are
currently unknown. It is, of course, easy to imag-
ine that the singularity we have found could be can-
celled by a corresponding singularity in the in-
homogeneous terms. However, it is perhaps not
so obvious that the singularity in the fundamental
equation can be eliminated [in the sense of p, (& )

being analytically continuable beyond the phase
transition] without changing the analytic proper-
ties of the inhomogeneous term in the physical re-
gion. If the inhomogeneous term were to have the
form

R (x», p,z) = z p(o/x») (1 +f»),

the derivation given in Sec. II would only differ in
the explicit form of the polynomial representation
of P, . Carrying out the analysis of the new func-
tions Ss, (z) in the manner described, we again find

square-root singularities at z = -1 and z = 11.6048
for all functions 8, except ~yy To within the ac-
curacy of the calculation (better than one part in
10") all expansion coefficients are those of the
function

Sz»(z) =(1+&1+z) '. (38)
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Since all thermodynamic properties are obtained
from &y y the equation of state would be analytic al ly
continuable through the phase transition with a
nonzero isothermal compressibility, even though

p, would not be analytically continuable as a func-
tion of z. This property is especially interesting
in the light of aproof by Lanford and Ruelle"
that there exist correlation functions which are
not analytically continuable through the first-order
phase transition. The inhomogeneous term in Eq.
(37) would be consistent with such a. theorem and

would still predict a complete absence of any pre-
cursor effect in any thermodynamic measurement.
Unfortunately, it must be stressed that we have
not derived Eq. (37) on physical grounds and the
desirable properties of the solution given in Eq.
(38) are only an indication of a possible form of a
future theory.
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