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A diabatic-states representation for scattering of triplet helium atoms, with n & 3, by the ground-state helium
atom is presented. Ab initio calculations have been performed on the X+„, 'Il „, and 'Lkg Rydberg states of
He2. Matrix elements for radial and angular coupling between the orthogonalized diabatic states have also
been evaluated. The angular couplings are quite weak, with the result that molecular states with different
electronic symmetries are effectively uncoupled in low-energy collisions. The crossing by a repulsive diabatic-
potential curve through the Rydberg series and into the continuum is shown to be an effective mechanism for
associative ionization. Some qualitative observations on associative ionization and dissociative recombination
are made.

I. INTRODUCTION

Collisions involving excited-state moleeular-
helium interactions provide interesting eases for
interpretation in terms of both adiabatic and non-
adiabatic potential curves. Among these processes
are dissociative recombination, associative ion-
ization (the Hornbeck-Molnar process'), and var-
ious inelastic excitation transfers. Although the
complete set of adiabatic states is an adequate
basis for a scattering calculation, it is nom mell.
known that these states do not necessarily pro-
vide a good physical picture of even low-energy
collisions. However, a small number of linear
combinations of these states can sometimes pro-
vide a more direct physical representation in which
reasonable approximations to the scattering pro-
blem become evident. ' Lichten' has shown that
such states provide a simple explanation of ex-
perimental results for large-angle scattering in
He' +He resonant charge exchange, whereas the
adiabatic-potential curves do not. The extreme
case of the so-called "diabatic" states can be ob-
tained by freezing the orbitals active in the col-
lision in the form they have intheunperturbedatom.
Sometimes it may be desirable to allow the di-
abatic orbitals to incorporate some effects of po-
larization or non-symmetry-breaking interactions,
without permitting the drastic change of character
occurring in the adiabatic wave functions. '

The Rydberg states of the He, molecule provide
an especially simple case since the He, '. core has
only two basic configurations, the attractive
1o' lo„, '5'„, 4 core and the highly repulsive
lo'g 10'g~ Zg~ + core. The potent1al curves for
the states of He„obtained by freezing the core
and adding an electron in a frozen Hydberg orbital,
are smooth and fall into two distinct classes,
whereas the adiabatic-potential curves can be
quite tortuous. Much experimental and theoretical

work has been done to determine adiabatic-poten-
tial curves for the helium molecule, ' and more
recently interest has been aroused in nonadiabatic
states. Previous work is suggestive of a diabatic
mechanism for associative ionization and dis-
sociative recombination in helium, but no quan-
titative evidence has been provided.

O' Malley, ' motivated by the pronounced humps
resulting from avoided crossings in some of the
adiabatic curves of helium, has used the projected-
orbital method to obtain a II„2P diabatic state of
He, . Guberman and Goddard' have calculated po-
tential curves using frozen-orbital wave functions
for the low-lying excited 'Z~, „states of He, . Steets
and Lane' have inferred a 'Z,' 2 diabatic potential
curve by smoothly joining different adiabatic
curves. Description of the processes of associ-
ative ionization and dissociative recombination
would require a large number of adiabatic states
since, as Mulliken' has pointed out, no adiabatic
state of He, crosses into the continuum delimited
by the ground-state He, ' potential curve. That is,
coupling between different adiabatic states must
be large even for high Rydberg states. On the
other hand, in the diabatic representation, states
having the same core (& or B) tend to have paral-
lel potential curves and to be only weakly coupled
in collisions. Also, the coupling of a &-core curve
at its crossings with a series of A. -core curves
will be shown to approach zero rapidly as the con-
tinuum limit is approached. Hence the diabatic
states serve as a good basis for a finite-state
scattering calculation.

In the present work a sufficiently complete set
of diabatic states has been calculated to quantita-
tively demonstrate, using a simple scattering
model, that the diabatic-states mechanism for as-
sociative ionization is a correct and straightfor- .

ward interpretation.
Results for the 'Z~„, 'G~„, and 'd~ states are
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presented in this paper. Diabatic wave functions
and energies, in terms of which the scattering is
interpreted, were first determined; then, con-
figuration interaction between these states was
allowed to derive the corresponding adiabatic
states. The states were described by slightly gen-
eralized valence-bond-type wave functions. Each
configuration is a sum of Slater determinants con-
structed to be an eigenfunction of the molecular
symmetry operations and spin. The two He, +

curves were obtained using single configurations
of elliptic orbitals with nonlinear parameters
optimized at each internuclear distance. The core
was then frozen and not allowed to adjust to the
presence of an added outer electron. In the spirit
of a diabatic description, the Rydberg electron
was represented by a valence-bond orbital which
was allowed to adjust at finite internuclear dis-
tances only to the extent required to preserve
orthogonality among the different states. The mix-
ing necessitated by the orthogonality constraint is
quite small at intermediate distances (ft& 2ao).
The Rydberg orbitals were determined in sepa-
rated-atom calculations and, in the case of non-S
states, were found to be quite like hydrogenic
orbitals. The resulting states form an orthogonal
approximate diabatic set.

As discussed in the following paragraph, the de-
rivative coupling between pairs of these states is
expected to be small. Nevertheless, in the case
of closely spaced Rydberg states this interaction
may result in nonlocalized transitions, which are
not expected to make much difference to associ-.
ative ionization from low Bydberg states and are
not taken into account at present. The possibility
of describing states ggithin each manifold (g or +
core) adiabatically was considered but was decided
against since the resulting states often do not sat-
isfy the Massey criterion for adiabaticity; in any
event, the scattering description is not expected
to be strongly dependent upon this choice.

The nature of the coupling depends on the rep-
resentation of the collision problem (adiabatic or
diabatic basis, center-of-mass or separated-atom
origin, space-fixed or body-fixed coordinates" )
and can take the form of potential coupling (H, ),
radial derivative coupling (d/dA), or angular de-
rivative coupling (d/d8 or d/dC). By definition,
there is no potential coupling between adiabatic
states. The potential coupling among the calculated
diabatic states is easy to obtain from the Hamil-
tonian matrix. A definition of the diabatic repre-
sentation as one in which the radial derivative
coupling vanishes has been attempted" but suffers
some limitations. " In any event, the frozen-orbit-
al states do not rigorously satisfy this criterion.
The contribution to radial derivative coupling can

nevertheless be expected to be small since the
radial extent of the Rydberg orbital is usually
large compa, red to the internuclear separation at
which crossings between A.- and &-core states
occur; i.e., as the internuclear distance changes,
the change in the orbital relative to either nucleus
is small and hence the radial derivative has been
neglected. Angular couplings, known to be im-
portant for 2s -2P inelastic transitions in helium
scattering, "have been calculated and shown to be
negligible compared to radial couplings for states
with principal quantum numbers n ~ 3. Hence the
complexity of many scattering calculations, in-
cluding those involving ionization or recombina-
tion, can be reduced since only the set of states
which are connected by potential coupling need be
considered.

Calculations of cross sections using the diabatic
representation are presented in the following pa-
per. Some features, such as the vibrational and
electronic excitation levels of the collision re-
actants and products in dissociative recombination
and associative ionization, can easily be estimated
by just examining the potential curves and coupling
matrix elements in the diabatic representation,
and are discussed in this paper.

II. CORES FOR THE RYDBERG STATES

The non-s Rydberg orbitals of the helium atom
are, to a good approximation, hydrogenic with
unit nuclear charge (the exception of s orbitals is
discussed in Sec. IIIA). Since the maximum charge
of the main lobe of a hydrogenic orbital occurs at
about n(n —1)a„afrozen atomic Rydberg orbital at-
tached to an unperturbed He, + core should be a
good approximation to the molecular Rydberg
states formed from n ~ 3 atoms, at least for inter-
nuclear distances where the interaction is appreci-
able. The present calculations required He, wave
functions which were simple but still yielded ac-
curate potential curves. Simplicity was dictated
by the need for large numbers of Rydberg states,
and accuracy of the potential curves avoids the
necessity of empirical and somewhat arbitrary
energy adjustments. %ave functions which met
these criteria nicely were of the type

where Q~s and &f&s~ are elliptic (prolate-spher-
oidal) orbitals, 1s„' and Iss are Slater-type orbit-
als (STO), A and & label the two nuclear centers,
the vertical bars designate Slater determinants,
and the + and —signs yield states of 'Z,' and 'Z„'
symmetry, respectively. The elliptic orbitals are
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defined by"

x (2)
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where g =(rz +re)/R and g =(x„-t's)/R at inter-
nuclear distance A, and where y is the azimuthal
angle about the internuclear axis. The result of
the inversion operator on Q~e is Qs~ =(- 1) Q~s
(6-6, y- —y). It may be noted that for 6=+y the
orbitals are centered on the nuclei, and for y=0
the orbitals are centered at the midpoint of the
molecule. In the separated-atom limit $(0, 0, 0)
has the property of becoming a 1+ STO located on
center A or B, with nonlinear parameter 26/R
= +2y/R = 1.68'15 for He. The He' STO is primed
to indicate that it has a different nonlinear param-
eter, n =2.0, in the separated-atom limit. The
nonlinear parameters were optimized at each in-
ternuclear separation, but the 1s' orbital changed
neg1igibly. Near the equilibrium position (R = 2.0a,),
the optimized parameters of the elliptic orbital
for the 'Z„' state are 26/R = 1.82 and 2y/R = + 1.63.
At the same distance the optimized parameters
for the 'Z~ state are 26/R = 1.73 and 2y/R = t 1.68.
As expected, more charge moves toward the cen-
ter of the molecule in the case of the bonding

state.
The resulting potential curves are shown in Fig.

1. The 'Z„' ground-state potential curve is in quite
good agreement, undoubtedly somewhat fortu-
itously, with the very accurate configuration-inter-
action calculation of Liu." A well depth of 2.424
eV was obtained as compared to Liu's best value
of 2.469 +0.006 eV. The 20 vibrational levels de-
termined by analysis of the calculated curve using
Numerov integration are also shown in Fig. 1.
The 'Z~ potential curve is in good agreement with
the configuration-interaction calculation of Gupta
and Matsen' at 8 ~2@0. At A&1.5@0 this curve is
not a good approximation to the true adiabatic
curve, as there is a series of avoided crossings'"
arising from configurations not included in the
wave function, Eq. (1). However, this region is
of little concern in the present low-energy ap-
plications since the repulsion of the potential at
such short internuclear separations (~ 19 eV) is
much greater than the ionization potential of the
lowest excited state of the helium atom (& 5 eV);
i.e., the He*+He scattering system would have to
stay on a repulsive diabatic curve high into the
continuum in order to be affected.

Perhaps some justification is appropriate for
the optimization of nonlinear parameters of the
elliptic orbitals which were used in the cores of
otherwise frozen-orbital wave functions. The core
electrons, which have a lower principal quantum
number and see a larger effective nuclear charge,
have much higher velocities than the Rydberg elec-
trons and hence tend to be more adiabatic in be-
havior. Furthermore, the change in the orbital
exponents with internuclear distance is gradual,
and in the energy range of interest here there are
no curve crossings.
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III. EXCITED MOLECULAR STATES OF He2

A. Rydberg orbitals

As already discussed, the molecular Rydberg
orbitals are quite similar to the corresponding
separated-atom Rydberg orbitals except for the
effects of avoided crossings and orthogonality
constraints. In the case of non-S states, theatom-
ic Rydberg orbitals were taken to be hydrogenic;
for the convenience of using standard integral
routines, these were expanded in terms of STO's,

-O. IO
I 5

R(ao)

FIG. 1. Calculated potential curves for He2+ . The
vibrational levels in the ground state are shown. The
point labeled "exact minimum" is the result of a cal-
culation by Liu (Ref. 15).
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tween potential curves arising from the same n

quantum level tend to occur at large distances
and with small crossing angles, with this tendency
increasing as n increases and the atomic energies
get closer together.

Small potential barriers occur in most of the
diabatic states of Z symmetry. The existence of
such humps, termed "nonobligatory" by Mulliken, '
has been well documented. '" In most cases the
humps which arise independently of any curve
crossing are significantly smaller in the adiabatic
curves, being reduced by the potential coupling
with nearby diabatic states. One exception is the
'Z„' 3d state, whi. ch has a quite high barrier, about
0.3 eV in the diabatic and adiabatic potential
curves. It can also be observed that the 'Z~ Sd
potential is quite repulsive at large distances.
This behavior can be understood as follows: The
repulsive long-range potential results from the
exchange forces which tend to exclude electron
probability of the excited atom from the closed-
shell ground-state atom (these forces should not
be confused with Vari der Waals forces which may
result in attraction at still larger distances). The
greatest effect should occur when the maximum
charge extends toward the ground-state atom.
This is achieved by the Z state with the highest

angular momentum which is possible with a prin-
cipal quantum number that is still low enough that
the charge is not too radially diffuse. That is, for
potential curves arising from n=2, 3,4, . . . , the
strongest long-range repulsion is expected in the
Z 2P, Z Sd, Z 4f, .. . states, respectively, by the
first criterion; it turns out that n=3 best satisfies
the two criteria simultaneously. As also predicted
by the above argument, the non-Z states exhibit
very small or no potential barriers.

IV. COUPLING MATRIX ELEMENTS

A. Radial coupling

The radial coupling, connecting diabatic states
of the same electronic symmetry, is mainly po-
tential coupling, V»(A), i.e., owing to the off-
diagonal matrix elements of the electronic Hamil-
tonian. For example, the A-dependent matrix
elements coupling the repulsive 2s, Ss, and 3d
states of 'Z,' symmetry to several attractive A. -
core 'Z,' states are shown in Figs. 7, 8, and 9,
respectively. The parameters for these and other
radially coupled curve crossings are given in
TaMe II. The convergence of the matrix element
(nliH, ln'l') toward zero as n' increases for given
n, l, andi', with n'&n, is apparent. Also, for

TABLE I. A. Calculated vibrational levels of ground-
state He2+. B. Energies and internuclear distances of
crossings of repulsive diabatic curves with the He2+

potential curve. He& Z 2s Coupling

I I

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A
E„(eV)'

0.107
0.315
0.514
0.705
0.887
1.059
1.222
1.376
1.520
1.654
1.779
1.893
1.997
2.091
2.173
2.245
2.305
2.354
2.390
2.414

State

3g+ 2s
3s
3d
4s
4d

'Z„' 2p
3p
4p

3IIq 3d
4d

'0„2p
3p
4p

34' 3d
4d

B
E„(eV~'

0.63
1.48
1.64
1.89
1.99

1.14
1.63
1.94

1.56
1.94

0.72
1.60
1.95

1.64
1.97

R„(ao)

2.74
3.41
3.58
3.91
4.07

3.12
3.56
3.98

3.49
3.98

2.81
3.53
4.00

3.57
4.03

-0.002

-0.004

-0.006

-0.008

-0.010

-0.012
I

R&ao)

Energies relative to minimum of He2+ potential
curve. D~ =2.424 eV,

FIG. 7. Potential coupl. ing of the repulsive ~ ~~+ 2s
diabatic state to the attractive p and f states of that
symmetry. The curve-crossing points are circled.
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at the velocity satisfying

(5)

—,
'

yves(R„)' =E —V»(A„) —(l + —,')'/2 PA,' .
It is easy to demonstrate that convergence with
increasing n is rapid. Consider the crossing
undergone by a repulsive diabatic state with the
members of a Rydberg series arising from higher
principal quantum number atomic states, say n~ 3.
Suppose that the coupling decreases as n ' ' and
that the slopes of the potential curves and the ef-
fective velocities are all about the same. '4 %'ith
these assumptions and taking typical values for a
thermal-energy collision, suppose the LZ param-
eter is given by y„=5/n'. [For example, at the

given n, l, and n', with n'&n, the coupling tends
to decrease as IE'-ll increases. The coupling at
the lowest diabatic curve crossing in He„between
the 'Z~ 2s and 'Z~ 2P states, has previously been
shown to be quite large. "

To obtain an idea of how the matrix elements Vy2

are reflected in transition probabilities for jumping
from one diabatic curve, V„, to another, V„, at
the crossing distance 8„, consider the Landau-
Zener (I.Z) formula"

p e 2 7I

9

where

crossing velocity corresponding to the collision
He *(3'P)+He at an asymptotic energy of 0.027 eV
with I =0, the formula derived from the parameters
in Table II for the 2s-6P, 'Z~ crossing is 4 3/. n',
and the behavior of V»(2s-nP, 'Z~) for n this large
is very nearly n ' ' j.Then the probability of
crossing through curves n=3, 4, . . . , N,

P„=exp[ 2r-(y, +y, + ~ ~ ~ +y„)], (7)

is given by 0.31 for N=3, 0.19 for N=4, 0.13 for
N=6, 0.10 for N=10, and 0.09 as N

It may be noted in Figs. 7-9 that some of the
potential-coupling matrix elements have extrema
and zeros. This structure can be shown to be re-
lated to the nodal structure. of the Rydberg orbit-
als. At sufficiently large internuclear distances,
the matrix elements all decay exponentially, as ex-
pected. The orthonormalization procedure slightly
changes the couplings quantitatively but does not alter
the basic nodal structure. In a two -state calculation
it is easy to show that the smallest energy gap
between two adiabatic curves which have an avoided
crossing is twice the potential coupling between
the zero-order configurations at their crossing
point. This relation is still sometimes useful in
determining effective couplings even in multicon-
figuration calculations. However, in the case of
the excited He, potential curves, the crossings
are generally too close together to isolate a par-
ticular pair of diabatic curves. The long-range
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-0.0 IO
I

R(a )

- 0.040
I

R(ao)

FIG. 8. Potential coupling of the repulsive &~+ 3s
diabatic state to the attractive p and f states of that
symmetry. The curve-crossing points are circled.

FIG. 9. Potential coupling of the repulsive ~ ~~+ 3d
diabatic state to the attractive p and f states of that
symmetry. The curve-crossing points are circled.
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TABLE II. Parameters for radially coupled diabatic-curve crossings.

States E(Rq ) States E(R„) &~2«x~

2s-3p
4p
4f

-5p
-5f
-6p
-6f

Bs-Bp
4p
4f

-5p
-Gf
-6p
-ef

3d-4p
4f

-5p
-5f
-6p
-ef

4s-4p
4f

-5p
-5f
-6p
-6f

4d-4f
-Gp
-Gf
-6p
-6f

2.96
2.85
2.88
2.85
2.83
2.77
2.77

4.45
3.79
3.79
3.61
3.61
3.54
3.60

4.29
4.25
3.87
3.90
3.84
3.88

5.37
5,10
4.38
4.41
4.36
4.28

8.29
5,13
4.99
4.74
4.57

—0.0902
-0.0795
-0.0817
—0.0788
-0.0768
-0.0693
—0.0699

-0.0616
-0.0490
-0.0490
-0.0431
-0.0482
—0.0404
-0.0428

-0.0409
-0.0405
-0.0356
-0.0362
-0.0350
-0.0357

—0.0345
-0.0336
-0.0281
-0.0285
—0.0278
-0.0267

-0.0290
-0.0244
-0.0239
—0.0277
-0.0215

0.1336
0.1524
0.1527
0.1619
0.1690
0.1778
0.1648

0.0160
0.0505
0.0526
0.0714
0.0660
0.0630
0.0650

0.0194
0.0221
0.0406
0.0369
0.0343
0.0424

0.0053
0.0086
Q.Q211
0.0226
0.0262
0.0343

Q.0017
0.0066
0.0099
0.0188
0.0225

—1.07 E-2
-6.19 E —3
-2.59 E —3
-4.24 E —3
—2.11 E —3
-3.04 E —3
—1.55 E —3

3.59 E —8
8.01 E —5
1.03 E —3

-1.30 E —4
1.06 E —3
1.62 E —5
8.44 E —4

—4.52 E —3
-6.48 E —3
-3,82 E —3
-4,12 E —3
-2,78 E —3
-2.69 E —3

—4.85 E -4
2.61 E —5
5.35 E-4

—3.25 E —4
5.04 E —4

GPE 4

-2.30 E —3
-8.89 E —4
-2.68 E —3
—1.12 E —3
-2.09 E —3

2p-3 s
-Bd
-4s
-4d
-Gs
-5d
-5g
-6s
-6d
-6g

Bp-Bd
-4s
-4d
-5s
-5d
-5g
-6s
-6d
-eg

4p-4d
-5s
-5d
-5g
-6s
-6d
-6g

2p-Bd
-4d
-Gd

-Gg

3.93
3.53
8.45
8.33
3.30
3.25
3.26
3.24
3.18
3.24

4.52
4.26
3.96
3.91
8.77
3.84
3.78
3.77
3.77

5 04
4.80
4.47
4.61
4.43
4.42
4.33

3.14
2.97
2.93
2.91

-0.0883
-0.0695
-0.0660
-0.0599
-0.0587
-0.0555
-0.0563
-0.0549
-0.0513
-0.0553

-0.0511
-0.0475
-0.0417
-0.0404
-0.0364
-0,0385
—0.0369
-0.0365
-0.0866

-0.0296
-0.0283
-0.0254
-0.0267
-0.0249
-0.0248
-0

~ 0238

-0.0916
-0.0791
-0.0751
-Q.0729

0.0471
0.0716
0.0794
0.0902
0.0941
0.1064
0.0977
0.0996
0.0974
0.0988

0.0218
0.0265
Q. 0442
0.0470
0.0563
0.0508
0.0555
0.0502
0.0602

0.0095
0.0143
0.0195
0.0181
0.0239
0.0280
0.0294

0.1029
0.1317
0.1500
0.1482

8.05
-3.06
-3.04
-1.87

2.44
-1.31
-4.04
—2.17
-9.97
-3.86

E —3
E —2
E —3
E —2
E —3
E —2

E —3
E —3

-4.78 E —4
-1.63 E —3
-3.35 E —3

6.78 E —6
1.25 E —3

-2.31 E —3
1.53 E —5

-1.91 E —2
—9.87 E —3
-6.26 E —3
-2.37 E —4

-4.39 E —3
2.41 E —3

-9.59 E —3
—1.10 E —3
-6.64 E —3
-1.69 E —5

6 9PE 4
-4.66 E —3
-9.79 E —5

Bd-4p
4f

-5p
-5f

4d-4f
-5p
-5f

Bd-4f
-Gf
-ef

4d-4f
-Gf
-6f

4.09
4.00
3.77
3.75

&10
4.71
4.67

4.13
3.86
3.84

8.75
4.76
4.48

-0.0467
-0.0452
-0.0406
-0.0399

—0.0268
-0.0265

3Q

-0.0437
-0.0380
-0.0374

-0.0313
-0.0261
-0.0235

0.0341
0.0360
0.0542
0.0499

0.0128
0.0154

0.0339
0.0470
0.0517

4.8 E —5
0.0150
0.0278

-1.19 E —8
-6.51 E —3
-8.69 E —4
-3,57 E -8

—7.06 E -4
-1.96 E —3

-4.97 E —3
-2.98 E —3
-1.88 E —3

-1.50 E —6
—1.59 E —3
-1.23 E —8

3p-3d
-4d
-5d
-5g

4p-4d
-5d
-5g

4, 04
3.78
3.80

6, 34
4.68
4.66

-0.0568
-0.0450
-0.0388
-0.0394

-0.0319
-0.0265
-0.0263

0.0035
0.0872
0.0532
0.0509

0.0016
0.0149
0.0171

1.91 E-4
-4.28 E —3
-2.97 E —8

5.50 E —5

3.88 E —5
-1.57 E —3

4.37 E —5

~ All quantities in atomic units. Helative to He+ + He separated-atom energy.
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crossings which tend to occur between molecular
states arising from the same principal quantum
level are an exception. For these relatively flat
crossings, long-range polarization effects, re-
flected in the adiabatic potentials, tend to reduce
the effective coupling. The coupling matrix ele-
ments deduced from the adiabatic potentials in
these cases are given in Table III. These modi-
fied matrix elements may be better representa-
tions of the effective coupling in a two-state ap-
proximation or in a model where transitions are
assumed to occur only in narrow regions around
the curve crossings. In a complete treatment,
e.g., converged close coupling, such modifications
are of course unnecessary.

TABLE III. Effective radial-potential coupling for
long-range crossings, derived from adiabatic-potential
curves.

States V(2 (R„)

'Zg+ 3s-3p
4s-4p
4d-4f

4.63
5.37
8.5'

2.01 E- 3
5.2 E- 4
2.8 E- 3

B.g 4d-4f

&g 4d-4f

11.3

9.49

1,38 E- 6

2.09 E- 6

4.39
5.1

8.8 E- 4
8.0 E—4

Ilu 3p-3d
4p-4d

6.02
6.72

1.38 E —4
2.87 E- 5

All quantities in atomic units.
No minimum was found in V~&g}—V22+), but the

function does have an inflection point at which these
values were determined.

B. Angular coupling

In addition to the radial coupling between states
of like symmetry, there is angular coupling, of
the form Q»=((, ~L, ~g,), between electronic states
whose components of angular momentum along the
internuclear axis differ by +1, e.g., Z and 0, H

and &, etc (Th.e z axis is taken along the inter-
nuclear line and the y axis perpendicular to the
plane of the collision. ) This coupling has been
shown to be the dominant source of inelastic tran-
sitions between the 1s2s and 1s2P states of he-
lium, " since the corresponding radial potential
coupling is so large that the particles tend to fol-
low the adiabatic curves. " In fact, the very strong
mixing of 2P character into the 'Z 2s adiabatic
state results in the unusually large angular-cou-
pling matrix element. The mixing is not nearly

TABLE IV. Parameters for angularly coupled
diabatic- curve crossings. '

States EP )

2s- 3p
4p
4f

3s-3p
4p
4f

3d-4p
4f

4s-4p
4f

4p-3d
4f-3d

-4d

3.09
2 ' 92
2.88
4.65
3.87
3.80
4.41
4.28
5.43
5.18
3.99
3.98
6.13

-0.1014
—0.0861
-0.0823
—0.0636
—0.0514
-0.0493
-0.0417
—0.0407
—0.0346
-0.0339
-0.0451
—0.0449
-0.0309

0.1236
0.1466
0.1522
0.0170
0.0500
0.0521
0.0192
0 ~ 0213
0.0054
0.0074
0.0344
0.0367
0.0023

-2.67 E- 2
—2.09 E- 2

2.93 E 3
-1.40 E- 1

2.02 E- 2
—1.27 E- 3
-1.27 E —2

2.43 E- 1
1.19 E—1

-1.93 E- 4
-1.89 E- 2

1.69 E —1
3.23 E- 3

3d-4f
4d-4f
4p-3d
4f-3d

4.02
8.10
4.20
4.11

-0.0456
—0.0313
—0.0448
—0.0433

0.0357
0.0001
0.0325
0;0342

-3.93 E- 3
2.56 E —5
4.07 E —2

—1.03 E- 1

2p- M
-4d

3p-M
-4d

4p 4d
3s-2p
3d-2p

-3p
4s-2p

3p
4d-2p

-3p
4p

3.66
3.38
5.47
4.08
6.43
3.29
3.06
4.50
3.02
4.23
2.94
3.92
5.12

—0.0747
-0.0626
—0.0572
—0.0443
—0.0318
—0.1004
—0.0864
—0.0513
-0.0832
-0.0480
—0.0761
—0.0425
—0.0292

0.0612
0.0852
0.0048
0.0378
0.0005
0.0882
0.1168
0.0203
0.1259
0.0292
0.1372
0.0439
0,0088

3.38 E- 1
1.61 E- 1
2.07 E- 3
1.84 E- 1

—1.87 E —3
-1.08 E —1

1.92 E- 1
2.77 E- 3
4.81 E- 2

1.08 E —1
9.33 E- 2
1.08 E- 1

—1.38 E —5

All quantities in atomic units.
"Relative to Be++ Be separated-atom energy.

as strong for higher states, and the angular cou~
pling for those adiabatic states does not exceed
that for the corresponding diabatic states by nearly
so much. In general, both types of coupling tend
to become weaker as n increases. Hence it is not
unexpected that for n ~ 3 the radial coupling be-
comes the main source of inelasticity and the
angular coupling ceases to be important; this be-
havior is illustrated in the last paragraph of this
section.

The crossing parameters for some of the angu-
larly coupled diabatic states are given in Table IV.
The matrix element of I, was calculated in the
body-fixed, geometrical-center-of-the-nuclei
(GCN) system, which is the same as the body-
fixed, center-of-mass-of-the nuclei (CMN) system
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g; =(1/v 2 )(y, P;, +y, P;,), i =1 or 2, (8)

where g is the He ground-state wave function and

Q, and (t), are the initial and final excited atomic
wave functions, the matrix element is

for the homonuclear molecule. At small to inter-
mediate internuclear separations, the angular cou-
pling calculated in this system can sometimes be
used in a two-state approximation to obtain in-
elastic cross sections. At large and very small
distances, however, the interaction of the particles
is not strong enough to make the eigenfunctions
follow the rotation of the internuclear line during
the collision. " Coupling between states with 4A
= +1 then reflects the fact that the initial state with
quantum number A in body-fixed coordinates be-
comes, in general, a linear combination of 2J + 1
possible values of A as a result of an elastic col-
lision. The large-distance behavior of the I, ma-
trix element in body-fixed GCN coordinates is
easy to determine. Writing the wave functions in
the valence-bond form (the actual wave functions
employed are somewhat generalized),

stant in the asymptotic limit, which is nonzero
provided the states Q, and P, differ merely by

I AMI =1 where M is the magnetic quantum num-
ber. This coupling is a characteristic of body-
fixed coordinates. The A-proportional coupling
does not appear in the separated-atom (SA) co-
ordinate system, but the SA system has other in-
convenient coupling terms at short to intermediate
distances. " Hence either a transformation from
CMN to SA coordinates or an arbitrary cutoff of
the A-proportional coupling (with sensitivity
checks) in the course of the outward integration
will often be expedient.

Most of the angularly coupled crossings in He,
occur at sufficiently small A' that a two-state treat-
ment may still be possible with the matrix element
calculated in the CMN system. The coupling will
be assumed for the present discussion to be local-
ized, although this is a fairly difficult condition
to fulfill in the ca.se of angula, r coupling, partic-
ularly for long-range crossings. Applying the LZ
approximation, Eq. (5) is replaced by

(12)

where 1., is a sum over the operators I, for each
electron j. The operator I, can conveniently be
written

where

(13)

for electrons associated with atom a or &, re-
spectively, where

1
Xg Xy JQ gy ZQ 8

and

(10) To demonstrate, as previously claimed, that the
angular coupling is negligible in slow collisions
with the excited atom in a state n ~ 3, consider, as
an example, the inelastic collision

He(2'S) +He-He(3'P) +He .
The ratio of the angular-coupling to radial-cou-
pling parameters is

Neglecting the exponentially decreasing contri-
bution owing to the identical nuclei, the asymp-
totic form is 0,2(A, )

pA'„V„(A„)

= 5.8& 10 '(l + —,')', (14)
(11)

where I., has been written in terms of the raising
and lowering operators, and the fact that none of
the operators have nonzero matrix elements with
X has been used. The matrix element in the second
term is just the integral which appears in the
velocity form of the electric dipole transition mo-
ment; thus the coupling given in the second term
is proportional to A in the asymptotic limit if the
transition between Q, and Q, is dipole allowed.
Since the atomic states are orthogonal, the con-
tribution due to the first term approaches a con-

implying that l = 13 000, or E & 72 keV, is required
for the two to be comparable. Since y, and y„are
in or close to the weak-coupling region, defined by
exp(-2vy) &0.5, this means that the angular cou-
pling in Table IV is largely ineffective in slow col-
lisions.

V. DISCUSSION

A quantitative diabatic-states picture of the Ryd-
berg states of He, has been presented with empha-
sis on the potential-curve crossings. The calcu-
lations have been carried out for the triplet states
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only, but similar results for the singlets may be
expected. In the following paper" cross sections
for associative ionization and inelastic excitation
transfer are obtained using this representation.
Remarks here will be limited to a few qualitative
observations on associative ionization and its
inverse process, dissociative recombination.

It has been experimentally observed that the re-
combination rate in helium-afterglow plasmas is
unusually low and seems not to proceed by dis-
sociative mechanisms. "" To reconcile this fact
with the observation of large cross sections for
associative ionization it has been postulated that
He, ' must be vibrationally excited for dissociative
recombination to occur. ' Some 2'P atoms ap-
parently resulting from dissociative recombination
have been observed spectroscopically, "consistent
with the small fraction of ions in excited vibra-
tional states, and 2'S metastables have not been
ruled out.

It may be seen from Table I that 2'P atoms can
be expected to result from 'II„dissociation if He, '
is vibrationally excited to v & 4 and from 'Z'„dis-
sociation for v ~ 6. The level v =4 at 0.89 eV, cor-
responding to (E, —E,)/k= 9000 'K, is only very
slightly populated in the usual helium-afterglow
experiment. It may also be seen from Table I that
2'S or 2'P atoms may result from 'Z~ dissociation
for v- 3. On the other hand, dissociation into
higher (triplet) atomic states would require a quite
high vibrational excitation of the molecular ion
(v&8 or higher). As is clear from the potential
curves of Figs. 2-6, as well as required by the
principle of detailed balance, any He, ' molecular

ion resulting from associative ionization will be
vibrationally excited.

A well-documented experimental observation
about associative ionization in helium is that the
process has a quite small cross section at thermal
energies for the 3 "S states, "even though their
excitation energies are greater than Zq(He)
—E„(He,'), where E~(He) is the ionization potential
of the He atom and &~(He, ) is the dissociation
energy of He, '. This observation has been inter-
preted as implying that there are no accessible
crossings into the continuum in these collisions.
This conclusion appears to be confirmed by the
present calculations —the repulsive 'Z„' 2P and
'0„2p curves, which are radially and angularly
coupled, respectively, to the attractive 'Z'„3s
curve, do cross the He, 'curve at energies some-
what higher than the 3'S excitation energy. How-
ever, even if one or both of these crossings into
the continuum were energetically accessible, the
theory still predicts that the cross sections would
be very small at thermal energies. Basically this
is because resistance to the crossing of the 'Z„' 2P
state through the Rydberg ser ies of attractive
states is unusually large, and the fact that angular
coupling of the 'Z„' Ss to the 'II„2P state is very
weak as discussed in Sec. IV; quantitative dis-
cussion will be deferred to the following paper.
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