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A theory of the density-density correlation functions of classical binary mixtures is developed to treat the
problem of phase separation. Particles in the mixture are assumed to interact through pairwise potentials, and
the theory is thus appropriate both to insulating fluids and to metallic systems to the extent that these may be
described, for structural purposes, by effective ion-ion pair interactions. Pair potentials are separated in the
form v; = 7; + v}j, where 7 is appropriate to a reference fluid and is so chosen that vi‘j may be regarded as a
perturbation on this reference fluid. The resulting perturbation theory can be framed in terms of functions f;,
closely related to the Ornstein-Zernike direct correlation functions. Exact equations for the f;; are obtained by
treating the densities of the mixture as basic variables in a linear-response problem. Approximate solutions to
these equations (and hence to the structural problem) are given. To first order in v ,-‘j, these solutions are exact
in the long-wavelength limit, the region of interest in the phase-separation problem. By way of application, we
show the effect of these first-order corrections to the simple mean-field calculations previously applied to

simple metallic mixtures.

I. INTRODUCTION

We consider the theory of structure in a classi-
cal fluid mixture near a point of phase separation.
In particular, we consider the partial structure
factors (defined in Sec. II) which represent two-
particle (or density-density) correlations. We
adopt a model in which the particles interact only
in pairs, with no many-body forces present. This
model is, to some extent, artificial; it is certainly
inappropriate for consideration of real systems
because, as we shall see, many-body forces enter
in a fundamental way into the long-range phenome-
na associated with phase separation. Neverthe-
less, a fluid described by pair interactions repre-
sents perhaps the simplest case in which the major
physical effects associated with phase separation
can be incorporated and has the further virtue that
it is readily adaptable for simulation in computer
studies.

A mean-field treatment of this problem has al-
ready been presented by Stroud,! who compared
his results to experimental data on the Li-Na al-
loy.?® Despite the encouraging nature of his re-
sults, it is well known that, for real liquids,
mean-field theory of structure is woefully inade-
quate in its treatment of the strong short-range
correlations® which arise from the dense packing
of the particles. These short-range correlations
in real fluids are exceedingly well represented by
a hard-sphere model,* 7 but it is apparently the
case that the hard-sphere mixture does not tend to
undergo phase separation.®-1°

Considerations of this kind suggest that, within
the pair approximation, a better treatment of real
fluids requires, at the least, a model in which the
interparticle potential consists of a hard sphere
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augmented by longer-range, generally attractive,
“tail.” The simplest theory then treats the under-
lying hard-sphere system exactly, and introduces
phase separation by correcting for the tail in a
mean-field way.!* This is essentially the limited
objective of the present work. As we shall see,
even within the spirit of a mean-field theory, the
correlations in the underlying hard-sphere system
have important consequences in the way the addi-
tional potential is treated. We shall elucidate these
effects, develop a mean-field treatment which
properly accounts for them, and conclude with a
numerical example.

The plan of the paper is this: We will consider
a fluid described by two-body interactions of the
general form (for either pure liquids or mixtures)

v(r)=015(¥) +0* (v) 1)

where »"S is the potential of the impenetrable cores
and ' is the long-range “tail.” In Secs. II and III
we develop, via an approach founded on the theory
of inhomogeneous classical fluids, a set of exact
relations from which we can extract the mean-field
treatment of systems described by (1). The effects
of reference (i.e., hard-sphere) correlations are
discussed in Sec. IV; it is here that a proper or
complete mean-field treatment of the “tail” is pro-
posed. A solution that is valid at long wavelengths
is obtained in Sec. V: it is derived in an approxi-
mation referred to as the mean-density approxima-
tion (MDA), in which density-dependent expres-
sions in the inhomogeneous fluid are evaluated
through the use of the properties of a locally homo-
geneous fluid.

Long wavelengths comprise the region of interest
in the phase separation problem. Our first-order
solution is examined with the aid of an illustrative
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calculation for an alloy. The phase diagram is
computed and compared to that obtained from more
elementary and less complete mean-field treat-
ments of (1), demonstrating thereby the importance
of a more complete treatment of reference system
correlations, even at long wavelengths. The con-
sequence on structure (and in turn on the electrical
resistivity of alloys near phase separation) is
briefly considered in Sec. VI.

II. NONUNIFORM MULTICOMPONENT SYSTEMS

The partial structure factors of a multicomponent
system are defined by®

S, (k) =(NiN,)'”2<}: e‘i";f';fn’> - (N;N,)%6z,,
im

)

where (* ) denotes a thermal average, and T is
the position of the mth (of N;) particle of type i.
We wish to evaluate these functions near phase
separation. We shall often find it convenient to
establish points by discussion of pure systems,
the structure factors of which are given by

Sk) =N 1<Zeii";t‘;m’> - Nb&g,o- (3)
im

In classical liquids, the structure factors are sim-
ply related to the static density-response functions.
Let the mean density of particles of type 7 in a ho-
mogeneous mixture be p$=N,/V. Application of a
set of external fields ¢,(¥) (¢, coupling only to
particles of type i) induces nonuniformities in the
local average densities p,(¥). The deviations from
the mean densities,

8p¢ (F) = p? (¥) - o5, 4)
are related to the fields ¢ (at the level of linear re-
sponse) by the density-response functions x,;. In

terms of the appropriate Fourier transforms, the
relationships are

5p;(K) Z xi; (&

and in the classical limit the x;; are related to the
partial structure factors by

xi;K) == B(p%0912S,,(K), B r=kyT, (6)

a result which follows directly from definition (2).
Mean-field (or molecular-field) approaches to
the response functions are well known® and lead to

expressions of the form

X&) = x,&)/[1 - x,®v®)], (7

where v(E) is the interparticle potential energy and
Xo the response function of an ideal-gas reference

;@) +0(¢)?, (5)

fluid. To generalize the treatment to the case of a
nonideal reference system (a hard-sphere system,
for example) it is important to assess properly
the consequences of the correlations in the refer-
ence system. The analysis that follows attempts
to come to grips with this problem; it is based on
an adaptation to classical fluid mixtures of the
exact results first derived in studies of the inho-
mogeneous electron gas by Hohenberg and Kohn'?
and Kohn and Sham.*?

To begin with, consider an m-component mixture
containing N, particles of type n (n=1,...,m) and
placed in a set of external fields ¢;. Configura-
tional free energies of such mixtures can be writ-
ten'*

F(&,U)== B In(N,IN, 1=+ *N, 1)

X dee'BU(R)e-BQ(R), (8)

where R is a collective for the totality of particle
coordinates, U(R) is the potential energy of the
assembly, and ®(R) is the sum over single-parti-
cle potential energies,

Ni
B(R)=p_ 2 0,0r)). (9)
i 1=1

Next, we consider functionals of U and the (de-
rived) densities p,(¥). It is shown in Appendix A
(by an application of the Gibbs-Bogoliubov inequal-
ity'®) that the potential &° required to determine a
given set of densities is itself determined'® (up to
a constant) by the specified p;. Accordingly, ex-
pressions independent of constants in $#° are,
necessarily, unique functionals of the p;. Such ex-
pressions include all thermodynamic averages of
the type

(ay=[ARAR) exp{-BlU(R) + °(R)]}
[ dR expl{-glUR) +&*(R)]} ~

(10)

in which category we find the n-body distribution
functions.!” Another is the quantity

Glo, 1) =F(@*,0) -3 [arp o (1)

which, from (8) (and the definition of the single-
particle density'”!®) is easily seen to be indepen-
dent of constants in ¢. In terms of the uniform
densities pS, it follows directly from (8), (11),
and the fact that $ =constant, that

G(p°, U)=F(0,0). (12)
Further, for two sets of densities p and p’, the

Gibbs-Bogoliubov inequality implies

F(&°, U)< F(&*, U)+Z fdr - 02 (B)]p}(@) .

If we set $°=0, then
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G(°, U)sG(p’, V),

which follows from (11) and (12). Therefore if
we expand G(p, U) about G(p°, U), we must have

G(p, U)=G(p°, U)
+3 dT | dF 5p,(F)0p,(F')f,(F - F)
z;f rf Py 0 ij

+0(6p)°. (13)

We can relate the functions'® f,, defined by the
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expansion (13) to the y,, of (5) by placing (13) in
(11), and inserting Fourier transforms throughout.
Making use of (12) we then find that
1 - -
F(&°,U)=F(0,U)+ 3 ¢20)p}+ 37 2 ¢5(-K) op, (K)
i i E
1 - - -
+ 255 20 o) 0p, BV F () -+, (14)
i i

where ¢%(0)= [ dT ¢%(F). Now using (5) and ex-
panding®® (14) in powers of ¢,:

F@,0)=FO,0)+ Y 6,0+ % 3 ¢,<E)¢,(-E)(x,,(1’<) + %Zf,m&)x,,(ﬁ)xm,(—ﬁ)) +0(9)°. (15)
i iyd b4 im

But an expansion of this kind (i.e., in the ¢,) can be

generated divectly from (8): using (5), we find*

F(&,0)=F(0,U)+ Y ¢,(0)0}

i
+ 27 2 0@ (R )+ 0().
ij ¥

(16)

It follows that if we define a matrix F (elements
fi,) and a matrix X (elements y,,), then compari-
son?2 of (15) and (16) requires

F=-X"'. (17

Reduced for one- and two-component systems,
(17) states that

x=-f" (18a)
and

Xu == fao/ (fis faa = f12) (18b)

Xz == fu/(fus fa = f32) (18c)

Xz = fro/ (fur foo= f12) 5 (18d)

respectively. We note that the f,, are related>®?
to the Orstein-Zernike direct correlation functions
cyy; by

Bpof(k) =1- poc(k)

and

Bps fiu=1=picy, BPSfaz=1=pYcsy, Bfiz=cyz-

Up to this point the development has been mostly
a matter of definition. In particular, we have a
definition for G [Eq. (11)], and its expansion [Eq.
(13)], and the relation between the expansion coef-
ficients and response functions, (17) and (18); it
has been tacitly assumed that U is given. Suppose
now that the procedure is repeated for a fluid de-
scribed by potential function U (U=U + U') and de-

—

fine, accordingly, G*=G(p, U)-G(p, U); i.e.,**
G'=F(9*,U)-F(3*,7)
-3 [ aFo o5 - 201 (19)
i
In terms of
fluzfu‘f—“,
it follows from (13) that G! has the expansion
G=G o)+ 1Y [ aF [ awop, Do, £1,F - )
ij
+0(6p)3. (20)

Equations (19) and (20) then define the problem to
be solved, for given the solution for the 7}, the
X;; are [from (18)]

x=x/(1=%xf" (21a)
and

Xu = Xu(l+ f3:/F22)/D, (21b)

Xa2 = Xe2(1+ F 11/ F 1)/ D, (21c)

Xa2 = Xi2(1+ F 12/ F12)/D, (21d)
where

D=1—_)211f11" Yzz.féz‘ 2?12](:2
+[§u—)222 - (.)212)2]'[fi1 fa- (f12°]. (22)

Singular behavior in the response functions (and
associated divergence of the partial structure fac-
tors) can then be traced to the vanishing of D; we
shall consider its roots®® in the application de-
scribed in Secs. V and VI. We therefore direct at-
tention to calculation of the f},.
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III. PAIR POTENTIALS AND PERTURBATION THEORY

We return to the model defined by Eq. (1) and
consider the U(R) in (8) to be a sum over pairwise
interactions v, only:

=133 0, Fi-T). (23)
isd 1#m

It is instructive to examine first the form of the
internal rather than the free (configurational) en-
ergy. In a pure fluid,

F(3*, U)=%fdffd?’v(F_F')pg(f, )
+ [atermpm

As noted after (10), the pair function'” p&(F, ¥’) for
the inhomogeneous fluid is uniquely determined by
o(f). From (11) it then follows that

G(p,U)=%dede’v(i’— FYpE(E, F) 4o
while for the reference fluid

G(p,ﬁ)=%dede’ﬁ(?—F’)ﬁ;(F,F')+--- ,
the reference-fluid pair function differing, of
course, from that of the real fluid. Let p3(%, )
and p;(¥, ') be, respectively, the pair distribution

functions for the homogeneous (real and reference)
fluids. Constructing the difference functions G,

+ (terms vanishing as T 0) . (24) we find
G'(p) - G*(p°) = fdrfdr o(F =) [p8(F, 7") - p3(F, )]~ 2 fdrfdr o(F = F)[pa(F, ¥') = p(F, F")] + - *
(25)
which, by (20), gives
[ at [ aw oo 00 £~ )+ 000 = [ aF [ aF ulF - F)og(F, F) - p3(F, 7))
- [aF [ o -elpsE, T - 5UE T+ (26)

Thus, to within quantities®® that vanish at 7-0, the
required procedure is to expand the terms contain-
ing the »’s and p,’s in (26) to second order in dp;
the coefficient of the second-order terms is then
identified as f*.

Equation (26) is complicated considerably by the
presence of the distribution functions of the real
fluid; a very much simpler equation results if we
seek only those contributions to f! of leading or-
der®” in v — 7. Defining

P2t = p2(F) - BT ,
we find®® from (8) that

exp{"B[F((I’py U) - F(Ep’ v)]}

= <exp[—BUl(R)] exp(—é Z; 5,~(E)¢?"(—§)>>5
(27)

where the fields and one-body density operators p;
are expanded in their Fourier transforms. In the
same notation, (19) reads

F(#°,U) - F(&,0)=G o) + 5 }:p,(k)w'( -k,

(28)

and therefore?®

exp[ (G‘ p)+—2pi )95 (= k)ﬂ

=<exp[ BU'(R)] eXp< ZP“‘) i )>>
(29)

Expanding both sides of (29) in the perturbation
U'(R), where

UNR) =5 D o, (Fi - ), (30)

iyj 1#m

we find to the lowest order’>*

G'(p) =(U*(R)),

33 [ar [aw o G- Fom, @, P+ 00

iyJ

It therefore follows that
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G‘(p)—G’(p°)=§Zdede’ Vo (F = T8, (F, ) = B0, (F, F)]++ - . (31)
iy

Now if a,, is that part of £}, entirely first order in

v}, we may write (20) as

G0 - G )=+ Y [ aF [ ¥ op,(®) op,(F )l (F - )+ O] O(6p)". (32)
iyJ

A comparison of these two expansions finally gives

Zfdrfdr vy (F = )P (F,F

iy

which is similar in form to (26) but contains pair
functions only of the reference fluid. The first-or-
der correction to f,, is now expressed in terms of
the pair distribution function in the inhomogeneous
reference fluid. This contrasts with the more con-
ventional approach,’* which expresses the correc-
tions in terms of three- and four-body distributions
in the wniform fluid. Equation (33) is particularly
convenient for the study and generalization of
mean-field theory.

IV. MEAN-FIELD THEORY IN A NONIDEAL REFERENCE
FLUID

Given these exact results we can now examine
the mean-field treatment of this problem, confining
the discussion for the present to the case of a pure
fluid, for which (33) reduces to

[ at [ar v E- o)) - 86 )
=fd?fd?®6MMPMG—PL (34)

Take the reference system to be an ideal gas;
then

B(T, ) = p(P)p(¥') , (35)
and the left-hand side of (34) becomes!®

fdrfd 8p(T) 5p(T") v(T-T'),

and since the 6p are arbitrary we must have®
FHD) =v(@)+ 0} (36)

[or, for a multicomponent system 1} (F) =v,,(F)
+0(v)?]. Truncated at first order, this result is
equivalent [by (21a)] to the mean-field expression
(7). The known results for an ideal-gas reference
fluid is therefore reproduced; we turn now to a
reference system exhibiting correlations.

Note that if we persist in using (35) for a non-
ideal reference system [i.e., we use an uncorre-
lated form for pf(¥,¥’)], then substitution in (34)
yields

(F,79] Zfdrfd 6p,(F) 8p (') a, (T - ') + O(8p)°, (33)

fr@=0'(), (37

a simple result also obtained by generalizing the
usual effective-field argument.’ To extract a
complete solution in first order is, however, a
more difficult task. We shall see shortly that this
can be achieved for long-wavelength disturbances
in the system. To understand the reason for doing
so, it is instructive to examine first the form of
these approximations in the extreme density limit.
The reference system is taken to be a close-packed
lattice of hard spheres (of diameter o) for which
no relative motion of particles is possible. Con-
sequently, x=¥ %' and accordingly, f1(K)=0, where
Kis any member of the set of reciprocal-lattice
vectors. In this system,

pe(¥, ') = [p(¥)/ po JP3(F, F') (38)

which states that any change in the local density
(with periodicity of the lattice) does not cha.nge the
probability pg(’ T')/p(F) that a particle is at ¥
given one at T. Evidently p? contains no second-
order term in 5p, and the exact solution of (34)
yields a(k)=0, as required. On the other hand,
solution of (34) with the approximate form33

pa(F, ) =0, |F-%]|<o
=p(®)p), |F-F|>0, (39)
gives
=0, r<o
=0'(F), r>o, (40)

and for arbitrary »', a(k) is no longer zero at all
reciprocal-lattice vectors.

In this limit, then, replacement of the exact
first-order result with the approximate first-order
form derived from (39) leads to a serious error
whose origin is the introduction of possible relative
motion (and consequent change in structure) at
wavelengths where only collective motion is per-
mitted. At liquid densities some distinction be-
tween collective and relative motion still per-
sists,?* and the error we are discussing need not
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have negligible consequences. For instance, in
reflection of the close-packing result, the uncorre-
lated form (40) gives rise to very poor results®
around the peaks of X(E).

These are effects which we wish to include in an
appropriate generalization of mean-field theory.
The objective therefore is to solve the first-order
equation (34) exactly, a difficult problem in gen-
eral but within reach for the long-wavelength limit
(the region of interest for phase separation). Note
that if the solution were available for all wave-
lengths, it must encounter the usual difficulties in
the critical region. Observe that for an ideal ref-
erence system the general result (26) reads

[ a% [ aw o -mlpsE, ) - 6, )

= [ ax [ a® 6o sp() 71 - )+ 0(5p).

(41)

The mean-field expression (36) results, at all tem-
peratures,*® from using an uncorrelated form (35)
for p&(F,T’) (the veal fluid distribution). If v(¥) is
long ranged we might well imagine a bounded re-
gion of demonstrable validity for this approxima-
tion. But near the critical point the range of cor-
relation certainly diverges and (35) is inappropri-
ate. Let us apply (26) to a hard-sphere reference
system. The only terms not vanishing identically
are

f aF f AT o F - F)[p2(F, ) - p(F, )]

= fdffd?’ 8p(F) 8p(F’) f1(F - T') + O(5p)*.

(42)

A solution to first order in »* clearly neglects all
correlations in the real fluid beyond those of the
underlying reference system. The hard-sphere
system appears not to exhibit a critical point.
Further, one does not expect the critical point of
the reference system to coincide with that of the
real fluid. It follows that the breakdown of the
first-order approximation in the critical region is
assured. Although the present approach goes be-
yond simple mean field, we anticipate the critical
exponents to be similar to those of mean field.

V. NUMERICAL RESULTS AT LONG WAVELENGTH

We now consider the solution of (34), and conse-
quences for a model system. Let the densities
6p,(T) be given by

6p,(F) = op, cos(k,* F) (43)

which gives

Zfdrfdr

= EZ 0p; 59;‘“{;&:‘)(5?,.31
i

-f" I‘/)[P”(r r ) 5?](;)?’)]
o), (44)

so that, to evaluate a; (k) correctly at some speci-
fied kK we need only cons1der of course, density
variations given by (43) at the same k. With the
phase-separation problem in mind we turn to the
limit of long wavelengths (where 8p— constant). In
this limit of slight inhomogeneity, we may assume
that p2(T,T’) can be evaluated at the mean local
density. Thus, for pure fluids,

PA(F, T') = B3 (F, F') = 3[6p(F) + 6p(F ")]—— (F, 1)
1 -, 32 - -
+306p(T) 6p(T") — PO(F, F/)+ -+
905

(45)

Beyond the range of correlations [where P9 - (0°)],
(45) reduces to the expected p&(F, ¥') = p(¥)p(¥’)
We shall refer to (45) as the “mean-density ap-
proximation” (MDA) to p4(¥,T’). Results calculated
in the approximation [by solving (33) and setting
=a] will be distinguished from those calculated
similarly from (39) and (40) by referring to the
former as MDA and the latter as “mean field.” If
we substitute (45) in (34), we find

a(r)=3v (V) 5 pz pa(D)

or

)= [ ) - ) (46)

This solution for a(K) is exact in the long-wave-
length limit (see Appendix B) and approximately
valid for small but finite k.

To generalize the MDA for multicomponent sys-
tems, we adopt a similar procedure, but in order
to obtain the correct symmetry®® in i and j we in-
troduce the symmetric functions

p8,(F, ) =3(p8,+ %) - (47

Then, since v,;=v,,;, the left-hand side of (33) be-
comes

> [ ar [ am o, G- FlpnE ) - B, ).
ij

Making the long-wavelength approximation again,
we find*’

a“(k)’ Zf )3”111" ,) °8 opxm(k k) (48)
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[1t is worth noting that in the limit k-0 we have
dEI - 32 -
0 =L§ : f 1 (ery—2 =0 49
a”( ) 2 ~ (21{)5 U'm(k )ap(:ap(j)plm(k) ’ ( )

which also follows from a short argument in the
grand canonical ensemble (Appendix B).] The
existence of the hard-sphere prevents the exten-
sion of this local-density method to wavelengths
corresponding to the peaks of the reference-fluid
structure factors, S(k) or 5;,(). On the other
hand, as we shall now show, those correlation ef-
fects that have been included are quite significant
at long (but by no means infinite) wavelength.

In terms of reference-system structure factors®
(46) becomes

- - k' . - 9 - -
10y =, 1 -1 105 _i
a' (k) =" (k) + pg f (2,”)31) (k )<po 3p08(k k’)

L, 8 = -
+§£§;S&—W».

0
(50)

The corresponding result for a binary fluid, al-
though of similar form, is inevitably more com-
plex and is recorded in Appendix D.

We now apply these results to a model binary sys-
tem. We shallfollow Stroud® and consider the sys-
tem Na-Li, but we emphasize again that many-
body forces are of considerable importance in me-
tallic systems and that their neglect permits only
a rough check on the method when comparing with
experimental data.®® The purpose at this stage is
to exhibit the difference between mean-field and
mean-density approximations and to assess the
importance of the correlation effects contained in
(48). This can be achieved of course, by the se-
lection of any reasonable set of parameters used
consistently in both approximations. In the pres-
ent example we need, to begin with, the densities
p, or, alternatively, the total density and concen-
tration

D=1+pp{(1 — x)SFF 1ot S5 f oo+ 2 (1 = ) 2SI F b+ 0P (1 = x) (SE) - SIESEFN(f 1) = fh fae) s

with the understanding that all functions are evalu-
ated at k=0. Since there is no temperature depen-
dence in the structure functions of the reference
hard-sphere system it follows that the functions
f}; (whether calculated in the mean-field or mean-
density approximation, as in Appendix D) are also
temperature independent. In this case, (54) is a
quadratic in temperature whose desired root*® is
straightforward to extract.

The mean-field approximation to f‘” is, by a
simple generalization of (40),

P=py Py, X=py/(py+p,) - (51)

For each value of x we select a p(x) appropriate
to the Li-Na system at that concentration, and for
convenience we assume®® a relation

1 l-x «
=t L 52
o) ot o (62)

(o} being the density of the ith pure species at
melting). Finally, the three pair potentials must
have the form

— , HS 1
ViS5 F Uy
where*

HS — =1
viP=°, r<o;;=z(0;+0,)

=0, r>oy, (53)

where o, and o, are the hard-sphere diameters ap-
propriate to each species and the hard-sphere po-
tentials are augmented by the “tails” v},. For the
numerical work, we choose o, and o, (for Li and
Na, respectively) to give the best fit to the ob-
served structure at melting.® The v}, are those
parts of the effective ion-ion interaction actually
lying outside the range of the o,,. These we take
from the pseudopotential model*? of effective pair-
wise interactions in metallic systems. Their spec-
ification requires only a knowledge of the mean
electron density and the two electron-ion pseudo-
potentials *3:4

Consider first the steps required to locate the
phase-separation boundary (and the critical point
for immiscibility in particular). At each concen-
tration we must determine the temperature T at
which the structure factors S, ,(E) diverge in the
long-wavelength limit. The locus of such points in
the temperature-concentration (7T-x) plane lies in
general below the actual phase boundary, but meets
it in a point of osculation at the critical point.*

From Egs. (21) and (22), the divergence in the
structure factors is assured by the condition D=0,
where

(54)

1
f1;=0, 7r<oy;,
=v‘” , ¥>0y, (55)

and for the model specified above these functions
are readily calculated by numerical convolution in
Fourier space. Figure 1 shows the resulting line
of singularities. Appendix D gives the form of f},
in the mean-density approximation [from (48)].
Evaluation requires density derivatives of the
hard-sphere structure factors, and these are ob-
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FIG. 1. Lines of singularity calculated in the mean
field and mean density approximations with identical
parameters. Also plotted is the experimental phase
boundary for lithium-sodium (from Ref. 3).

tained by exploiting the analytic form available
within the Percus-Yevick approximation.*® The

1{ ; may then be calculated by numerical convolu-
tion, and the resulting line of singularities is also
displayed in Fig. 1. The mean-density and mean-
field curves are determined by identical sets of
parameters. Both curves give a qualitative repre-
sentation of the experimental data for Li-Na: in
the mean-density approximation the critical point
is at x=0.4 and T= 514 °K, which compares rea-
sonably with the measured point® x=0.35, T =576
°K. On the other hand, there are no exact results
with which to compare and at this stage it is not
possible to determine which calculation gives the
better representation of the model fluid. It is ap-
parent, however, that the physical effect causing
the two calculations to differ in the extreme limit
of close packing persists noticeably at real liquid
densities (and long wavelengths). This conclusion
is reinforced when we consider the individual func-
tions £} ; in more detail. Table I gives values for
the functions (in both mean-field and mean-density
approximations) at concentrations x =0.4 and 0.5.
As expected from (55) and the fact that the v}, are
predominantly negative, the mean-field values of
f}, are also negative. On the other hand, the cor-
responding mean-density values can vary in sign,

TABLE L. Values of f}; for mean field (MF) and mean
density approximation (MDA) from the calculation of
Fig. 1, and expressed in units of %Ep/pe, where p, is
the conduction electron density and E the resulting
Fermi energy of the metallic alloy.

fii

x ij MF MDA
0.400 11 —0.182 —-0.213
22 —-0.162 0.033

12 —0.175 —-0.145

0.500 11 —-0.193 —0.218
22 —0.170 0.055

12 —-0.185 —0.141

and indeed when we examine the pure fluid limit

of the mean-density approximation [see Egs. (21a)
and (50)], we find that the isothermal compressi-
bility can be either increased or decreased (over
the hard-sphere value) by the addition of the poten-
tial »*. Furthermore, the sign of the change cor-
responds to whether the average nearest-neighbor
position falls within the attractive or repulsive re-
gion?” of »'. This result is anticipated and is
clearly a manifestation of correlations (the con-
cept of nearest-neighbor positions being without
content in uncorrelated fluids).

We consider next the results in the MDA for the
structure factors themselves. These are calcu-
lated from expressions given in Appendix D and
from Egs. (21) and (22). For the curves presented
in Fig. 2 (compared there with the corresponding
curves for the hard-sphere reference fluid), we
have selected a point at which the MDA structure
factors diverge as k- 0, and evaluated the poten-
tial as outlined above.*® Two points must be noted:
first, the range of validity of the MDA is expected
to be roughtly 0 =%/2k, <0.2, since the approxi-
mation is restricted to wavelengths significantly
longer than the range of correlations in the refer-
ence fluid, and this range is gauged by the inverse
of the width of the hard-core peaks in SHS(K).
Around these peaks we expect little change in the
structure upon introduction of the additional po-
tential v' even as we approach phase separation.®
It can be seen from Fig. 2 that the MDA structure
factors merge with the hard-sphere functions at
points roughly midway between the origin and the
first peaks, and permit the construction of model
functions which incorporate both sets of features.
(It must be emphasized that the region of the first
peak is already outside the ranges of validity of
the MDA and a direct extension of the approxima-
tion to such k values is inappropriate.)

Secondly, we find that the singularity in S(K) is
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FIG. 2. Structure factors of the reference hard-core
mixture and the predictions of the mean density approxi-
mation at small y. The units are k/2kp, wherekp is
the concentration-dependent Fermi wave vector for the
monovalent alloy. The parameters are x=0.4, 0,/a,
=6.17, 0,/0,=0.825, and pof=1.11.

J

approached asymptotically as £~ 2. This, as antic-
ipated, is the usual mean-field form.

VI. DISCUSSION AND CONCLUSIONS

The theory we have presented combines many of
the virtues of the mean-field approach with the
successful treatment of highly correlated systems
afforded by the hard-sphere model. To what ex-
tent is it therefore possible to develop the proce-
dures in such a way as to include terms in f* be-
yond the first order? Evidently, direct extension
of the expansion in Sec. III will lead to three- and
four-body distribution functions for the nonuniform
fluid. On the other hand, f! is a well defined (if
currently inaccessible) sum in the conventional
perturbation-series approach to this problem, and
this suggests that further progress may be possible
by melding portions of the present approach with
the series-expansion method. To take a specific
if elementary example, we know from the diagram-
matic method that whenever a single term Bv*(¥)
emerges, a summation of a class of higher terms
is possible which leads to the replacement of
Bv'(F) by 1 - exp[-Bv*(#)]. In turn, this suggests
that a further approximation to f! can be found by
examining [see (34)]

—t [ aF [ a¥ expl- potF- P)BEE, F) - BE, )] = [ 4F [ aF op() 00(F) SHE-F)+O00F,  (56)

which will lead to a different temperature depen-
dence of the f*.

Quantitative evaluation of our results (from a
necessarily oversimplified model) is difficult and
would be greatly aided by the availability of com-
puter simulation of a binary system interacting
through genuinely pairwise forces. Real systems
(both insulating and metallic) are considerably
complicated, as we have remarked already, by the
presence of many-body terms in the interaction
energy. It is well known that these terms can
often be incorporated within an effective pair-po-
tential representation,*?:% but the resulting pair
potentials will certainly depend on the mean densi-
ty of the system and thus cannot be treated proper-
ly at long wavelengths.® The MDA has been ap-
plied at such wavelengths and we have therefore
omitted a class of contributions arising from pos-
sible density dependence of pair potentials. For
the case of metals in particular (where the conduc-
tion electrons introduce a substantial density de-
pendence into the effective pair interactions), it
may be possible to circumvent this difficulty by
taking an approach which explicitly treats the mo-
tion of the electrons.?

The numerical results do, however, support
some qualitative conclusions. They illustrate that
the property of phase separation can be introduced
into a hard-sphere system by adding a longer-
ranged part to the potential and without “softening”
the core. They lend additional support to the con-
tention that packing effects (of overriding impor-
tance at limiting densities) are of substantial im-
portance at real liquid densities. They suggest that
resistance anomalies near phase separation in me-
tallic systems are connected with a delicate can-
cellation between terms associated with two posi-
tive and one largely negative structure factors®
and that a thorough treatment of these effects will
require a better discussion of the manifestation,
at long wavelengths, of many-body effects.

We conclude by enquiring how it is possible to
reconcile (within the present approach) the obser-
vation that some binary alloys exhibit miscibility
gaps and others do not. The resolution seems to
be that phase separation (an instability at long
wavelengths) is always in competition with fusion
(an instability at shorter wavelengths) and a calcu-
lation based on the variational approach!®* to the
free energy of the solid and liquid phases of Li-Na
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should therefore reveal that the freezing transi-
tion occurs at temperatures below the separation
transition, whereas in Na-K, the reverse is true.

APPENDIX A: UNIQUENESS OF ¢*

Consider two systems defined by Hamiltonians
H, and H,. Under identical conditions of tempera-
ture, volume, and particle number, the Gibbs-Bo-
goliubov inequality in a canonical ensemble im-
plies'®

<Hl_Hz>1S <H1_H2>2 ’ (Al)

when ( ), denotes averaging with the canonical dis-
tribution function of H,. The equality holds in (A1)
only if H, - H, is a constant. Consider then two
Hamiltonians, H=U+® and H' =U+ &', where &
and &’ are in the form (9). Then H-H' =& - &/,
and (Al) reads

J
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> [ ato o - 6]

<3 [atoi@lo- o], (2

where the averages in (Al) are evaluated in terms

of the single-particle densities p,(r) and pj(7) ap-
propriate, respectively, to & and &’. We now
simply observe that equality holds in (A2) if p,(7)
=p)(¥) for all i. As noted above, this implies that
& - &’ is a constant. Thus the required external
field is determined within a constant by the p,(r).

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (49)

For a pure fluid we have, in the grand ensemble,

(2), (2] (S fanemay/ ko fanems) s, o

so that
b, o B8,

where p=(N)/V. This is generalized for a multi-
component system to

S(0)=

1 9p,
S, =-———<——‘> )
ij() B(Pipj)l/z a“j — (B3)

where the prime means all the u’s are held fixed
save the one appearing in the derivative. It follows
that

9p
X (0)=—(——‘-> .
H 8[.1]. TyVyu'

But
Z(@L) <%> -5
3 E b
i Kilr,w,u NP/, v, 0
or
x=-B",

where the elements of B are (8u,/9p,)r,y,, - Since
the inverse of y is also —F, we have

I, 1/ &°F
T
7l ) 30; Ir,v,00 V\OP;OD; /1, v,

where F is now the free energy for the system.
Finally, if we expand f,, and F (see Appendix C)
in terms of the perturbation v};, we have

flijz 7{j(0)+a'j(0). )
F=F+({U'R)p+""",

r

as we saw in the argument leading to (33). Writing
(U'(R))» in terms of p¢, and substituting the re-
sult into (B4) leads immediately to Eq. (49).

APPENDIX C: RELATION TO THERMODYNAMIC
PERTURBATION THEORY
Consider the expansion of the free energy in the
absence of external fields.?” Again we write U
=T+ U*, but introduce an expansion parameter A
by replacing U! by AU* (or »* by Av'). Then for a
pure fluid we have, from (8),

SRR, =4V [T @D, (€1

where (-*+), and pJ** are evaluated with distribution
functions determined by I +\U'. Further,

o°F > 1m0 -
=V [ AT R @5, (c2)

but if we write pd**(¥) in terms of S*%) and note
that to first order S*%)=S(k)[1 - Bp,S(E)ra(k)], we
find (after setting A=1)

FeFring (204 [ @ - 1)

+5 | s RSO peae)] + 0.
(C3)
It is clear that the second term in this expansion
requires a(k) at all values of k. The second-order
term in (C3) has been studied by Barker and Hen-
derson® with the aid of approximations similar

(but not identical) to the mean-density approxima-
tion.
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APPENDIX D: THE MEAN-DENSITY APPROXIMATION IN A BINARY FLUID

Let x,=p,/p and x2 p./p, where p, and p, are the densities of species 1 and 2, respectively, and p

=p,+p,. Then, 1fS
i is®

is taken to depend on K, 0,, 05, p;, and p,, the mean-density approximation for the

Tor a ’ )
fll(k) vn k)+ f(z )3L11 )<2 ap Sﬁs(k k )+p1_FSHS(k—k)>

<x )1/21 f(zﬂ)svlz(k <pla — SHS(K - k) - LSHS(R - k')+p1—3*‘s(k k")

lefdk’ ’ 2 al HS(Tr _ o/
xl o) (@n) 573 Vaa(k pfszz (k-k'),

f12 (k) U1z(k

1
(x_\xz)l 72 f(Z ) sz(k )<Pxpz 9p,0p

Kk’ P1 P2 a HS ’
xlpf(z )3122( )< 2 apdp, Toan Sk~ k)+

9
S{‘zs(k K)+isisk-k)+ & psﬂs(k k+E2

(D1)

f(z )3011( /)(plng apaa Si-lls(k k’)+—5-—S“s(k k’)>

SHS(k k’))

2 gns E_E')> .
p1 22(

The form of f}, is obtained from that of f1, by interchange of the subscripts 1 and 2. As discussed in the
text, the v,,(r) may be taken to be the entire pairwise interaction.
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