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A theory of the density-density correlation functions of classical binary mixtures is developed to treat the
problem of phase separation. Particles in the mixture are assumed to interact through pairwise potentials, and
the theory is thus appropriate both to insulating fluids and to metallic systems to the extent that these may be
described, for structural purposes, by efFective ion-ion pair interactions. Pair potentials are separated in the
form p&

——g,.; + t),', , where &,, is appropriate to a reference fluid and is so chosen that a,-', may be regarded as a
perturbation on this reference fluid. The resulting perturbation theory can be framed in terms of functions f...
closely related to the Grnstein-Zernike direct correlation functions. Exact equations for the f;,. are obtained by
treating the densities of the mixture as basic variables in a linear-response problem. Approximate solutions to
these equations (and hence to the structural problem) are given. To first order in v,&, these solutions are exact
in the long-wavelength limit, the region of interest in the phase-separation problem. By way of application, we

show the effect of these first-order corrections to the simple mean-field calculations previously applied to
simple metallic mixtures.

I, INTRODUCTION

We consider the theory of structure in a classi-
cal fluid mixture near a point of phase separation.
In particular, we consider the partial structure
factors (defined in Sec. ll) which represent two-
particle (or density-density) correlations. We
adopt a model in which the particles interact only
in pairs, with no many-body forces present. This
model is, to some extent, artificial; it is certainly
inappropriate for consideration of real systems
because, as we shall see, many-body forces enter
in a fundamental way into the long-range phenome-
na associated with phase separation. Neverthe-
less, a fluid described by pair interactions repre-
sents perhaps the simplest case in which the major
physical effects associated with phase separation
can be incorporated and has the further virtue that
it is readily adaptable for simulation in computer
studies.

A mean-field treatment of this problem has al-
ready been presented by Stroud, ' who compared
his results to experimental data on the Li-Na al-
loy."Despite the encouraging nature of his re-
sults, it is well known that, for real liquids,
mean-field theory of structure is woefully inade-
quate in its treatment of the strong short-range
correlations' which arise from the dense packing
of the particles. These short- range correlations
in real fluids are exceedingly well represented by
a hard-sphere model, ' ' but it is apparently the
case that the hard-sphere mixture does not tend to
undergo phase separation. ' "

Considerations of this kind suggest that, within
the pair approximation, a better treatment of real
fluids requires, at the least, a model in which the
interparticle potential consists of a hard sphere

augmented by longer- range, generally attractive,
"tail." The simplest theory then treats the under-
lying hard-sphere system exactly, and introduces
phase separation by correcting for the tail in a
mean-field way. " This is essentially the limited
objective of the present work. As we shall see,
even within the spirit of a mean-field theory, the
correlations in the underlying hard-sphere system
have important consequences in the way the addi-
tional potential is treated. We shall elucidate these
effects, develop a mean-field treatment which
properly accounts for them, and conclude with a
numerical example.

The plan of the paper is this: We will consider
a fluid described by two-body interactions of the
general form (for either pure liquids or mixtures)

(~) — ss(y) p ~1{~)

where g"8 is the potential of the impenetrable cores
and v' is the long-range "tail." In Secs. II and III
we develop, via an approach founded on the theory
of inhomogeneous classical fluids, a set of exact
relations from which we can extract the mean-field
treatment of systems described by (1). The effects
of reference (i.e. , hard-sphere) correlations are
discussed in Sec. IV; it is here that a proper or
complete mean-field treatment of the "tail" is pro-
posed. A solution that is valid at long wavelengths
is obtained in Sec. V: it is derived in an approxi-
mation referred to as the mean-density approxima-
tion (MDA), in which density-dependent expres-
sions in the inhomogeneous fluid are evaluated
through the use of the properties of a locally homo-
geneous fluid.

Long wavelengths comprise the region of interest
in the phase separation problem. Our first-order
solution is examined with the aid of 3n illustrative
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calculation for an alloy. The phase diagram is
computed and compaxed to that obtained from more
elementary and less complete mean-field treat-
ments of (1), demonstrating thereby the importance
of a more complete treatment of reference system
correlations, even at long wavelengths. The con-
sequence on structure (and in turn on the electrical
resistivity of alloys near phase separation) is
brieQy considered in Sec. VI.

The pax'tial structure factors of a multicomponent
system are defined by

S (k)=(N. N.)-'" ge'"'i"' -(N N )'".f-. ,

fluid. To generalize the treatment to the case of a
nonideal reference system (a hard-sphere system,
for example) it is important to assess properly
the consequences of the correlations in the refer-
ence system. The analysis that follows attempts
to come to grips with this problem; it is based on
an adaptation to classical fluid mixtures of the
exact results first derived in studies of the inho-
mogeneous electron gas by Hohenberg and Kohn"
and Kohn and Sham. "

To begin with, consider an m-component mixture
containing N„particles of type n (n= 1, . . . , &H) a,nd

placed in a set of external. fields (Ie);. Configura-
tional free energies of such mixtures can be writ-
ten"

F(C, U)=-P 'ln(N, !N,!"N„!) '

where ( ) denotes a thermal average and r' is
the position of the mth (of N, )partic. le of type i.

We wish to evaluate these functions near phase
separa. tion. %'e shall often find it convenient to
establish points by discussion of pure systems,
the structure factors of which are given by

(8)y dp -gv(z)e-84(R)

where R is a collective for the totality of particle
coordinates, U(R) is the potential energy of the
assembly, and C(R) is the sum over single-parti-
cle potential energies,

(9

In classical liquids, the structure factors are sim-
ply related to the static density-response functions.
Let the mean density of particles of type i in a ho-
mogeneous mixture be p, =N, /V. Application of a
set of external fields g, (r) (P, co. upling only to
particles of type i) induces nonuniformities in the
local average densities p,.(r). The deviations from
the mean densities,

are related to the fields i (at the level of linear re-
sponse) by the density-response functions }(„.In
terms of the appropriate Fourier transforms, the
relationships are

&P;(k) =g x;;(k)4,(k)+ o(@)',

and in the classical limit, the y&,. are x'elated to the
partial structure factors by

X;,(k) =- p(p'p';)'"S;, (k), p '=&,&, (8)

a result which follows directly from definition (2).
Mean-field (or molecular-field) approaches to

the response functions are well known' and lead to
expressions of the form

X(k) = X.(k)&[I —X.(k)~~(k)], (7)

where c(k) is the interparticle potential energy and

X, the response function of an ideal-gas reference

Next, we consider functionals of U a.nd the (de
rived) densities p,.(r). It is shown in Appendix A

(by an application of the Gibbs-Bogojiubov inequal
ity") that the potential 4 ' required to determine a

pen set 'of densities is itself determined" (up to
a constant) by the specified p;. Accordingly, ex-
pressions independent of constants in 4 ' are,
necessarily, unique functionals of the p, Such ex-
pressions include all thermodynamic averages of
the type

J dR X(ft) exp(- p[U(~)+ C '(ft)]}
f dft exp{-p[U(ft) + C '(ft)]}

in which category we find the yg-body distribution
functions. " Another is the quantity

G(p, U) =+(@',U) -g «p„(r)4.'(r)

which, from (8) (and the definition of the single-
pax'tlcle density ' ) ls easily seen to be indepen-
dent of constants in 4. In terms of the uniform
densities p', , it follows directly from (8), (ll),
and the fa.ct that 4 'o = constant, that

C(p', U) =r(O, U).

Further, for two sets of densities p and p', the
Qibbs- Bogoliubov inequality implies

+(C', U)- +(@',U)+g «[0„'(r)—0„'( r]P)l( r)

If we set O'=0, then
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G(p', U) ~ G(p', U),

which follows from (11) and (12). Therefore if
we expand G(p, U) about G(p', U), we must have

G(p, U) = G(p' U)

expansion (13) to the X,i of (5}by pla. cing (13) in

(11), and inserting Fourier transforms throughout.
Making use of (12) we then find that,

y(C' U)=y(0 U)+gy((0)po+g gyr( k)5p (k)

+ O(5p)' . (13}

We can relate the functions" f„defined by the

+ g—g 5p (k) 5p (-k)f (k) + ~ ~ ~ (14)
k

where Qf(0) = J (f r (t&', (r}. Now using (5) and ex-
panding' (l4) in powers of (t&, :

&((),» =&(0, »+ Z (,(o)),' QvQ 0,(&)0 (-k)(», (l) '-Zi, .(»x„(&&x.,(-») +o(()'.

But an expansion of this kind (i.e. , in the (t), ) can be
generated directly from (8): using (5), we find"

Z(C, U) =Z(O, U) + g p,.(0}p',

fine, accordingly, O' =G(p, U} —G(p, U); l.e. ,
"

O' =F(C', U) —E(e', U)

-Q J a ~, ( )((l(&- 0l( && (19)

It follows that if we define a matrix F (elements

f,l) and a matrix X (elements X,l), then compari-
son" of (15) and (16) re(luires

1f (1
= fu - f li )

it follows from (13) that G' has the expansion

O'=G'(o)+'*Z f & f & '(&n;( )()v;( ')il;( — ')

(17) + O(5p)'. (20)
Reduced for one- and bvo-component systems,
(17) states that

E(Iuations (19) and (20) then define the problem to
be solved, for given the solution for the f', &, the
X„are [from (18)]

(2la)

x =-f./(f f -f')
X12

= —foal/(f» f2. —f1.}

Xl. = f12/(f» f.2
—f12»

(18c)

(18d)

respectively. We note that the f&& are related""
to the Orstein-Zernike direct correlation functions

e],. by

&pof(I ) =I - p.c+}

Xll Xll(1 + f22/f 22)/D

X„=X„(1+f,',/f „)/D,

x =x„(1+f',,/f, )/D,

(21b)

(21c)

(2ld)

t Pl fll ~1~11 & ~P2 f22 ~ @~22 s Pf].2

Up to this point the development has been mostly
a matter of definition. In particular, me have a
deflnltlon fol' G [Ell. (11)], and 1'ts expallsloll [E(I.
(13)], and the relation between the expansion coef-
ficients and response functions, (17) and (18); it
has been tacitly assumed that U is given. Suppose
noir that the procedure is repeated for a fluid de-
scribed by potential function V (U= U + U') and de-

(22)

Singular behavior in the response functions (and
associated divergence of the partial structure fac-
tors) can then be traced to the vanishing of D; we
shall consider its roots" in the application de-
scribed in Secs. V and VI. We therefore direct at-
tention to calculation of the f &&.
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U(R) = —,
' Q Q v, (r I

—r' ) . (23)

III. PAIR POTENTIALS AND PERTURBATION THEORY

We return to the model defined by Eq. (1) and
consider the U(R) in (8) to be a sum over pairwise
interactions p„. only:

As noted after (10), the pair function" p,'(r, r') for
the inhomogeneous fluid is uniquely determined by
p(F). From (11) it then follows that

G(»»&=l J &' »&»' ~ ( — '&&»(, '&'"

while for the reference fluid

It is instructive to examine first the form of the
internal rather than the free (configurational) en-
ergy. In a pure fluid,

»]e', »&=l(»» '
( — '&»ll(', '&

+ droop r pr
+ (terms vanishing as T-0) .

G(», »&--. J& J &" (»- '&»»(, '&'",
the reference-fluid pair function differing, of
course, from that of the real fluid. Let p20(F, F')
and p~(F, F) be, respectively, the pair distribution
functions for the homogeneous (real and reference)
fluids. Constructing the difference functions 6',
we find

G
& & G (»& f »,-J»,-,(-, -,'&]»(;,, &-»'(, , '&]-] f »& f » '

( — '&I&»l(, '& —&&(', '&]»'''

(25)

which, by (20), gives

dri gp r gp ri fl r r +Q Qp
— dr dr p r r p2 r)r p2 rp

d '
( ')[ '( ') '(~r ~r ~

~
~

~r ~ ~r p~
~

~r
~

~
~ ~ p

~
~

«r t
~
~ I I ~

~ (26)

Thus, to within quantities" that vanish at T 0, the
required procedure is to expand the terms contain-
ing the v's and p, 's in (26) to second order in 6p;
the coefficient of the second-order terms is then
identified as f .

Equation (26) is complicated considerably by the
presence of the distribution functions of the real
fluid; a very much simpler equation results if we
seek only those contributions to f' of leading or-
der" in p —p. Defining

yP»] —y&&(F) pP(F)

we find" from (8) that

exp(-P[Z(e», U) —Z(e ~, U)]}

= «»I.-»»'(»&]»»(-«EE»;(&»&&!'(-&»&
P

(27)

where the fields and one-body density operators p,.
are expanded in their Fourier transforms. In the
same notation, (19) reads

+(@',U) -+(C", U) = G'(p)+ —QQ p (k) 4&"'(-k)

(28)

and therefore'9

exp -]3 G'(p)+ —g p,.(k)&f &'(-k)
tyler

= »»] »»&(&»&]»»»&»( E-&&;(&»&»l'(--»—
&

P
kgb

U'(R) = -,'Q, Q v'„(FI —r'„),. (30)

we find to the lowest order

G'(p) = (U'(R))

d r d r' ]&'„(F—r') p'„.(r, r') + 0(f&')'.

It therefore follows that

Expanding both sides of (29) in the perturbation
U (R), where
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o'(a) —o'(a')=lEfd fd"' l(' — ')(a((, ') —a, (, ')(+
s ~ j

Now if a(& is that part of f',
&

entirely first order in v', &, we may write (20) as

(31}

o (p) —o (p)= Q f d f d Pp ( )Pa "( )( „'( ')—+O( ') ) ~ O(ap)'.
&~i

(32)

A comparison of these two expansions finally gives

d Jd '„('— )(pr('r ',.) p, „'(r-, ')]=/ f dr f d 'lip, . ( )lip, ( ')ar( , ')+—O(lip)
fei

(33)

which is similar in form to (26) but contains pair
functions only of the reference fluid. The first-or-
der correction to f&&

is now expressed in terms of
the pair distribution function in the inhomogeneous
reference fluid. This contrasts with the more con-
ventional approach, "which expresses the correc-
tions in terms of three- and four-body distributions
in the uniform fluid. Equation (33) is particularly
convenient for the study and generalization of
mean- field theory.

IV. MEAN-FIELD THEORY IN A NONIDEAL REFERENCE

FLUID

Given these exact results we can now examine
the mean-field treatment of this problem, confining
the discussion for the present to the case of a pure
fluid, for which (33) reduces to

d r d r' 6p(r) 6p(r') a(r —r') . (34)

Take the reference system to be an ideal gas;
then

f '(r) = v'(r), (37)

p2P(r, r') = [p(r)/p, ]p,'(r, r'), (38)

which states that any change in the local density
(with periodicity of the lattice) does not change the
probability p2P(r, r')/p(r) that a particle is at r'
given one at r. Evidently p,' contains no second-
order term in 6p, and the exact solution of (34)
yields a(k) =0, as required. On the other hand,
solution of (34) with the approximate form"

a simple result also obtained by generalizing the
usual effective-field argument. " To extract a
complete solution in first order is, however, a
more difficult task. We shall see shortly that this
can be achieved for long-wavelength disturbances
in the system. To understand the reason for doing
so, it is instructive to examine first the form of
these approximations in the extreme density limit.
The reference system is taken to be a close-packed
lattice of hard spheres (of diameter o) for which
no relative motion of particles is possible. Con-
sequently, y=y"s and accordingly, f'(K) =0, where
K is any member of the set of reciprocal-lattice
vectors. In this system,

P2(r, r') = p(r)p(r'),

and the left-hand side of (34) becomes"

dr dr' 5p r 5p r' v r —r'

(35) p, (r, r')=0, ~r- r' &a

= p(r)p(r'), ~r —r' ~&o,

gives

f'(r) =0, r&o

(39)

and since the 6p are arbitrary we must have"

f'(r) = v(r)+0(v)' (36)

[or, for a multicomponent system f ',.&(r) = v, &(r)
+O(v)']. Truncated at first order, this result is
equivalent [by (21a}] to the mean-field expression
(7). The known results for an ideal-gas reference
fluid is therefore reproduced; we turn now to a
reference system exhibiting correlations.

Note that if we persist in using (35}for a non-
ideal reference system [i.e. , we use an uncorre-
lated form for pp(r, r'}], then substitution in (34)
yields

= v'(r), r&o, (40)

and for arbitrary v', a(k) is no longer zero e.t all
reciprocal-lattice vectors.

In this limit, then, replacement of the exact
first-order result with the approximate first-order
form derived from (39) leads to a serious error
whose origin is the introduction of possible relative
motion (and consequent change in structure) at
wavelengths where only collective motion is per-
mitted. At liquid densities some distinction be-
tween collective and relative motion still per-
sists, "and the error we are discussing need not
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have negligible consequences. For instance, in
reflection of the close-packing result, the uncorre-
lated form (40) gives rise to very poor results"
a,round the peaks of l((k).

These are effects which we wish to include in an

appropriate generalization of mean-field theory.
The objective therefore is to solve the first-order
equation (34) exactly, a difficult problem in gen-
eral but within reach for the long-wavelength limit
(the region of interest for phase separation). Note
that if the solution were available for all wave-
lengths, it must encounter the usual difficulties in

the critical region. Observe that for an ideal ref-
erence system the general result (26) reads

which gives

f ~ '
i»( ')I.» »(» ') » ( ')i

V
6P»6pp„(k, )(6„-;+6-„-„)+~ ~ ~, («)

gt

so that, to evaluate a,.»(k) correctly at some speci
fied k we need only consider, of course, density
variations given by (43) at the same k. With the
phase-separation problem in mind we turn to the
limit of long wavelengths (where 6P- constant). In
this limit of slight inhomogeneity, we may assume
that p,'(r, r') can be evaluated at the mean local
density. Thus, for pure fluids,

dr dr' 5p x' Qp r' fr r —r' +Q &p
3

(41)

The mean-field expression (36} results, at all tem-
peratures, "from using an uncorrelated form (35)
for p,'(r, r') (the re»»/ fluid distribution). If »)(F) is
long ranged we might well imagine a bounded re-
gion of demonstrable validity for this approxima-
tion. But near the critical point the range of cor-
relation certainly diverges and (35) is inappropri-
ate. I et us apply (26) to a hard-sphere reference
system. The only terms not vanishing identically
are

+ 6P(r) 6P(r ) s P2(r, r )+' ' ' .
9po

Beyond the range of correlations [where p~~-(po)'],
(45) reduces to the expected pf(r, r') = p(r)p(r').
We shall refer to (45) as the "mean-density ap-
proximation" (MDA) to pf(r, r'). Results calculated
in the approximation [by solving (33) and setting
f' =a] will be distinguished from those calculated
similarly from (39) and (40) by referring to the
former as MDA and the latter as "mean field. " If
we substitute (45) in (34), we find

dr dr'v' r —r' p,' r, r' —p, r, r' 9 pa(r) = 2v'(r) s, p,'(r),
9po

dr dr' 5p r 5p r' f' r —r' +0 6p '.

(42)

A solution to first order in v' clearly neglects all
correlations in the real fluid beyond those of the
underlying reference system. The hard- sphere
system appears not to exhibit a critical point.
Further, one does not expect the critical point of
the reference system to coincide with that of the
real fluid. It follows that the breakdown of the
first-order approximation in the critical region is
assured. Although the present approach goes be-
yond simple mean field, we anticipate the critical
exponents to be similar to those of mean field.

or

93
»»(k) =-,'

(
„»)'(k ),'p,'(k- k') .

This solution for a(k) is exact in the long-wave-
length limit (see Appendix B) and approximately
valid for small but finite k.

To generalize the MDA for multicomponent sys-
tems, we adopt a similar procedure, but in order
to obtain the correct symmetry' in i and j we in-
troduce the symmetric functions

Then, since»)»» =»),.„ the left-hand side of (33) be-
comes

V. NUMERICAL RESULTS AT LONG WAVELENGTH

(43}

We now consider the solution of (34), and conse-
quences for a model system. Let the densities
6P»(r) be given by

6p, (r}=6P,. cos(k, r},

») f&" l;(' —"')(»l;(, ') —»l, (, ')i.
fj

Making the long-wavelength approximation again,
we find

dk 2

»»»»(k) &Q (2 )3»)» (k } 0 op» (k k }
(4 )

if f m
9p]9p .
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[It is worth noting that in the limit k-0 we have

92

which also follows from a short argument in the
grand canonical ensemble (Appendix 8).] The
existence of the hard-sphere prevents the exten-
sion of this loca1-density method to wavelengths
corresponding to the peaks of the reference-fluid
structure factors, S(k) or S,&(fa). On the other
hand, as we shall now show, those correlation ef-
fects that have been included are quite significant
at long (but by no means infinite} wavelength.

In terms of reference-system structure factors,"
(46) becomes

n'(k) =&'(k)+p, ' aa'(k') p, S(k-k')

2

+-'ol .a(k-&'))
epo

The corresponding result for a binary fluid, al-
though of similar form, is inevitably more com-
plex and is recorded in Appendix D.

%e now apply these results to a model binary sys-
tem. %e shall follow Stroud' and consider the sys-
tem Na-Li, but we emphasize again that many-
body forces are of considerable importance in me-
tallic systems and that their neglect permits only
a rough check on the method when comparing with
experimental data. " The purpose at this stage is
to exhibit the difference between mean-field and
mean-density approximations and to assess the
importance of the correlation effects contained in
(48}. This can be achieved of course, by the se-
lection of any reasonable set of parameters used
consistently in both approximations. In the pres-
ent example we need, to begin with, the densities
p, or, alternatively, the total density and concen-
tration

P=px+Pa ~ x=Paf(pa+Pa) ~ (51)

For each value of x we select a p(x) appropriate
to the Li-Na system at that concentration, and for
convenience we assume' a relation

1 1 —x x
p(x)

(52)

(pa, being the density of the ith pure species at
melting). Finally, the three pair potentials must
have the form

where"

HS+ 1
~~& +~&»

=0, r&o]q, (53)

where 0, and cd are the hard-sphere diameters ap-
propriate to each species and the hard-sphere po-
tentials are augmented by the "tails'* v&&. For the
numerical work, we choose o, and oa (for Li and
Na, respectively} to give the best fit to the ob-
served structure at melting. ' The p',

&
are those

parts of the effective ion-ion interaction actually
lying outside the range of the cr, &. These we take
from the pseudopotential mode142 of effective pair-
wise interactions in metallic systems. Their spec-
ification requires only a knowledge of the mean
electron density and the two electron-ion pseudo-
potentials. "*'4

Consider first the steps required to locate the
phase-separation boundary (and the critical point
for immiscibility in particular). At each concen-
tration we must determine the temperature T at
which the structure factors S,~(k) diverge in the
long-wavelength limit. The locus of such points in
the temperature-concentration (T-x) plane lies in
general below the actual phase boundary, but meets
it in a point of osculation at the critical point. '

From Eqs. (21) and (22), the divergence in the
structure factors is assured by the condition 8= 0,
where

D = 1+PP01 —x)Ssa f', ,+xS,",a fa, + 2[x(l —x)]' ~'Saa f Ia}+P'P'x(1 —x) [(S,",a)' —S,",aS,", ][(faa)' —f', , fa, ], (54)

with the understanding that all functions are evalu-
ated at k=0. Since there is no temperature depen-
dence in the structure functions of the reference
hard-sphere system it follows that the functions
f', ~

(whether calculated in the mean-field or mean-
density approximation, as in Appendix D) are also
temperature independent. In this case, (54) is a
quadratic in temperature whose desired root" is
straightforward to extract.

The mean-field approximation to f',
&

is, by a
simple generalization of (40),

1f ])=0, r&o]~,

1= V]~, t & ET)~,

and for the model specified above these functions
are readily calculated by numerical convolution in
Fourier space. Figure j. shows the resulting line
of singularities. Appendix D gives the form of f', ~

in the mean-density approximation [from (48)].
Evaluation requires density derivatives of the
hard-sphere structure factors, and these are ob-
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600—

TABLE I. Values of f;~ for mean field (MF) and mean
density approximation (MDA) from the calculation of
Pig. 1, and expressed in units of 23E~jp~, where p~ is
the conduction electron density and &~ the resulting
Fermi energy of the metallic alloy.

500 MDA

400 " /
o-

/

0 o

/
/0

0.400

0.500 11
22
12

-0.182
-0.162
-0.175

-0.193
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I

0.2
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!.0
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FEG. 1. Lines of singularity calculated in the mean
field and mean density approximations with identical,
parameters. Al, so plotted is the experimental phase
boundary for lithium-sodium (from Ref. 3).

tained by exploiting the analytic form available
within the Percus- Yevick approximation. " The
f ',

&
may then be calculated by numerical convolu-

tion, and the resulting line of singularities is also
displayed in Fig. 1. The mean-density and mean-
field curves are determined by identical sets of
parameters. Both curves give a qualitative repre-
sentation of the experimental data for Li-Na: in
the mean-density approximation the critical point
is at&=0.4 and 7= 514 K, which compares rea-
sonably with the measured point' x = 0.35, T = 576
'K. On the other hand, there are no exact results
with which to compare and at this stage it is not
possible to determine which calculation gives the
better representation of the mode/ fluid. It is ap-
parent, however, that the physical effect causing
the two calculations to differ in the extreme limit
of close packing persists noticeably at real liquid
densities (and long wavelengths}. This conclusion
is reinforced when we consider the individual func-
tions f', ~

in more detail. Table I gives values for
the functions (in both mean-field and mean-density
approximations} at concentrations x =0.4 and 0.5.
As expected from (55) and the fact that the p',

&
are

predominantly negative, the mean-field values of
f ',

&
are also negative. On the other hand, the eor-

x'esponding mean-density values ean vary in sign,

and indeed when we examine the pure fluid limit
of the mean-density approximation [see Egs. (2la}
and (50}], we find that the isothermal compressi-
bility can be either increased or decreased (over
the hard-sphere value) by the addition of the poten-
tial v'. Furthermore, i;he sign of the change cor-
responds to whether the average nearest-neighbor
position falls within the attractive or x'epulsive re-
gion" of p'. This result is anticipated and is
clearly a manifestation of correlations (the con-
cept of nearest-neighbor positions being without
content in uneorrelated fluids).

%e consider next the results in the MDA for the
structure factors themselves. These are calcu-
lated from expressions given in Appendix D and
from Eqs. (21) and (22). For the curves presented
in Fig. 2 (compared there with the corresponding
curves for the hard-sphere reference fluid), we
have selected a point at which the MDA structure
factors diverge as k-0, and evaluated the poten-
tial as outlined above. " Two points must be noted:
first, the range of validity of the MDA is expected
to be roughtly 0 «k/2k+ ~ 0.2, since the approxi-
mation is restricted to wavelengths significantly
longer than the range of correlations in the refer-
ence fluid, and this range is gauged by the inverse
of the width of the hard-core peaks in S",,s(k).
Around these peaks we expect little change in the
structure upon introduction of the additional po-
tential g' even as we approach phase separation. 4'

It can be seen from Fig. 2 that the MDA structure
factors merge with the hard-sphere functions at
points roughly midway between the origin and the
first peaks, and permit the construction of model
functions which incorporate both sets of features.
(It must be emphasized that the region of the first
peak is already outside the ranges of validity of
the MDA and a direct extension of the ayproxima-
tlon 'to such k values ls inappropriate. )

Secondly, we find that the singularity in S(k) is
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ij (y)

4.0—
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approached asymptotically as k ' Th'is, as antic-
ipated, is the usual mean-field form
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FIG. 2. Structure factors of the refere ha d-nce r -core
ix re a the predictions of the mean dean ense approxi-

mation at small y. The units a k/2kare &, where kz is
the concentration-dependent F
monovalent a o

erma wave vector for the
all.oy. The parameters are x= 0.4, o2/ao

= 6.17, cr1!0'2=0.825, and po'& = 1.11.

VI. DISCUSSION AND CONCLUSIONS

The theor we hay ve presented combines man of
the virtues of the mof the mean-field approach with the

many o

successful treatment of highly correlated systems
afforded by the hard-sphere model. To

n is i herefore possible to develo, the r
dures in such a

op, e proce-
suc a way as to include terms in f' be-

yond the first order? Evidentl d'i en y, irect extension
o e expansion in Sec. III will lead to three- and
our-body distribution functions f th
ui . n the other hand, f ' is a well defined (if

currently inaccessible) sum in the conventional
perturbation-series approach to this roblem
this su ests thgges s at further progress msy be 'blBy e possible

ing portions of the present approach with
the series-expansion method. T tako e a specific
if elementary exam lep, we know from the diagram-
matic methodod that whenever a single term Pv'(r}
emerges, a summation of a class of higher terms
is possi le which leads to the repla trep acement of

v r y —exp[-Pv'(r)]. In turn, this suggests
that a further approximation t
examining [see (34)]

o can be found b

] d r d r' exp[- Pv'(r —r')][pf(r, r'} —~'r r'p, r, r —p, (r, r')] = d r d r' 6p(r) 5p(r') f'(r —r' +0 5p '
)

which will lead to a different temperature de en-re epen-

Quantitative evaluation of our results (from a
necessarily oversimplified model) is difficult and
would be greatly aided by the availability of com-

throu h
puter simulation of a binary system

' t t'm in eracting
rough genuinely pairwise forces. Real systems

(both insulatini g and metallic) are considerabl
complicated as
r

, as we have remarked alread b th

p esence of many-body terms in the interaction
energy. It is well known that these terms
oftten be incorporated within an effective pair-po-

erms can

tential representation ~ "b t thu e resulting pair
potentials will certainly depend on th
t of th

en on e mean densi-

l
y o e system and thus cannot be t t de rea e proper-
y at long wavelengths. " The MDA h
lied a

e as been ap-
p ie at such wavelengths and we have th
omitted a cl

ave e ref ore
e a c ass of contributions arisin from

sible densit densi y ependence of pair potentials. For
the case of m
tion e

metals m particular (where th dm e con uc-
electrons introduce a substa t l dn ia ensity de-

pendence into the effective p
' ' tive pair interactions), it

ma b ' is i ficulty bymay be possible to circumvent th' d'f '

ing an approach which explicitly treats the mo-
tion of the electrons. "

The numerical results do h owever, support
some qualitative conclusions Th

'
n . ey illustrate that

e property of phase separation can be introduced
into a hard-sphere system b add'y a ing a longer-

the core. The
ranged part to the potential and with t " fti ou sof tening"

e core. They lend additional support to the con-
tention that packing effects ( fo overriding impor-
tance at limiting densities) are of substantial im-

ortan ' ' ' s. ey suggest thatportance at real liquid densities. The su

tallic s
resis ance anomalies near phase se a t'ra ion in me-

ic systems are connected with a deli
cellat' b

i a e icate can-
ion between terms associated with two posi-

tive and one lar elg y negative structure factors"
and that a thorough treatment of these effects will

at ion
ani es a ion,

ong wavelengths, of many-body effects.
We conclude by enquiring h 't '

ow i is possible to
reconcile (within the present approach) the obser-
vation that some binary alloys exhibit miscibility

reso u ion seems togaps and others do not. The res l t
e that phase separation (an instability at ion

wavelen ths isng s& is always in competition with fusion
iiya ong

lation bas
an instability at shorter wavelen th
a ion based on the variational approach'" to the

free ener ofergy o the solid and liquid phases of Li-Na
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(H, —H2)~ ~ (H~ —H2)2, (Al)

when ( ),. denotes averaging with the canonical dis-
tribution function of H, . The equality holds in (Al)
only if H, -H, is a constant. Consider then two
Hamiltonians, H = U+ 4 and H' = U+ 4', where 4
and C' are in the form (9). Then H H' = C-—C',
and (Al) reads

should therefore reveal that the freezing transi-
tion occurs at temperatures below the separation
transition, whereas in Na-K, the reverse is true.

APPENDIX A: UNIQUENESS OF 4~

Consider two systems defined by Hamiltonians
H, and H, . Under identical conditions of tempera-
ture, volume, and particle number, the Gibbs-Bo-
goliubov inequality in a canonical ensemble im-
plies"

&r p'(r)[4 (r) 0—', (r)], (A2)

averages jn (Al) are evaluated in terms

of the single-particle densities p, (r} and p', (r) ap-
propriate, respectively, to 4 and 4'. %e now

simply observe that equality holds in (A2} if p&(r)
= p',.(r) for all i. As noted above, this implies that

4 —4' is a constant. Thus the required external
field is determined within a constant by the p, (r).

APPENDIX 8: ALTERNATIVE DERIVATION OF EQ. (49)

For a pure fluid we have, in the grand ensemble,

Z)( —8'"" &))0""' F.—e'"' a)(e-"")=()(()(*) x ())a&, , „N! ¹~

so that

(82)

as we saw in the argument leading to (33). grrjting
{U'(R))S) in terms of p', ~

and substituting the re-
sult, into (B4) leads immediately to Eq. (49).

where p= {V)/V. This is generalized for a multi-
component system to

(B3)

where the prime means all the p's are held fixed
save the one appearing in the derivative. It follows
that

APPENDIX C: RELATION TO THERMODYNAMIC

PERTURBATION THEORY

Consider the expansion of the free energy in the
ahsence of external fields." Again we write U
= U+ U', but introduce an expansion parameter X

by replacing U' by )).U' (or v' by ))v'). Then for a
pure fluid we have, from (8),

"={U'(R)) = -'V d r v'(r) p'"(r)

But

where ( )„and p, ~ are evaluated with distribution
functions determined by U+ XU'. Further,

or"

X= —&

where the elements of & are (s p, /ap~)r (, , Since
the inver'se of g ls also -I, we have

where E is now the free energy for the system.
Finally, if we expand f,~

and E (see Appendix C)
in terms of the perturbation v', &, we have

y;, = 7„(o)+a„(o)",
F=F+(U'(ft)), + ~ ",

but if we write p,'"(r) in terms of S"(k) and note
that to first order S'(0) =S(k)[l —pp, S(k)&a(k)], we
find (after setting X= l)

+-E++p ~ 0+—, , v k Sk -&p' (2n)'

+ — .v'(k)[S(~)]'[-Pp'a(~)]+ 0(v')'.
4 (2v)'

(C3)
It is clear that the second term in this expansion
requires a(k) at all values of k. The second-order
term in (C3) has been studied by Barker and Hen-
derson" with the aid of approximations similar
(but not identical) to the mean-density approxima-
tion.
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APPENDIX D: THE MEAN-DENSITY APPROXIMATION IN A BINARY FLUID

&et x, = p, /p and x, = p, /p, where p, and p, are the densities of species 1 and 2, respectively, and p
= p, +p, . Then, if 8",&s is taken to depend on k, 0'„0'„p„and p„ the mean-density approximation for the
f 1 is38

fl, (k) =~„(k)
BPl

,p .. . (k') Pls .~,",'(k-k') ——,'C'(k-k')+P, S,",'(k-k')

{2 ),~„{k')— —,Cs(k- k'),
7 Pl

f',,(k) =t1„(k)+
X2P

1
(x,x,)'" p

gk'

x,p (2s)'

92
(si i"~ ' s"(i7-&)+a ' s"'(t-t j)(2s)' "

82

{2s)& 12 1 Sp Sp 12 & 12 2 Sp ls 2 S+ 12v (k') p p, 8" (k k') + -'8" (k —k') + —' 8" (k —k') +— 8" {k k'

(ic') "' ' s"'(i-&)+—' ' s-(t-i1'i)222gpQ@2228p22
The form of f'„ is obtained from that of f'„by interchange of the subscripts 1 and 2. As discussed in the
text, the v, (r) may be taken to be the entire pairwise interaction.
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