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The multimode strong-signal theory of the preceding paper is applied to a number of two- and three-mode
cases. A two-mode stability analysis yields strong-signal counterparts to the third-order coupling parameter.
Two-mode homogeneous-broadened operation leads to the discussion of population inversion gratings and
associated Bragg scattering. Symmetry properties of the equations for the bidirectional ring are examined.
Results for Doppler-broadened two-mode special cases and the three-mode locked unidirectional-ring
operation are presented. The strong-signal results are compared to those of the third-order and rate-equa-
tion —approximation theories. For the bidirectional ring the historical third-order domain of relative exci-
tation from 1.0 to 1.2 is divided into a valid third-order region and a less accurate region. The condition
of bistable operation vs monostable operation is seen to be dependent on the relative excitation and the
amount of homogeneous broadening. Two types of bistable operation are seen to exist, one where one
mode is completely suppressed and another where both modes may have nonzero intensities.

I ~ INTRODUCTION

In the preceding paper, paper I,' we give a Lamb
semiclassical theory for multimode, mode-locked
laser operation for arbitrarily large intensities.
The mode locking condition, i.e., equality of fre-
quency spacings between adjacent modes, causes
population pulsations generated in the nonlinear
atomi. c response to be integer multiples of the
adjacent mode spacings. This allows the atomic
response to be written in terms of a Fourier ser-
ies, which reduces coupled differential equations
of motion to algebraic equations which are ex-
pressible in terms of a continued fraction. Nu-
merical analysis of the equations is discussed. A
unidirectional ring configuration is assumed for
the general multimode case so that the more com-
plicated spatial dependence of standing waves is
avoided.

The present paper considers several simple
examples of the general multimode case. Numer-
ical results are presented and physical interpreta-
tions of equations are motivated.

As discussed in paper I, the unidirectional ring,
two-mode results contain the single-mode stand-
ing-wave and the bidix'ectional ring configura-
tions as special cases when appropriate trans-
formations are made. We have devoted a substan-
tial portion of the present work to discussion of
the nature and interrelationship of these cases.
The bidirectional ring laser has been of particular
interest. Historically this was motivated by a de-
sire to duplicate the classic experiment of Sagnac
(1911)to detect absolute rotation. ' Inspired by the
extremely-well-defined frequency and stability of
the laser, the experiment was duplicated with the
laser media in one arm of the classical light path. '
Theoretical considerations aside, the practical

significance of applications of this fledgling rate
gyro were immediately apparent; however, enthu-
siasm was quickly dampened when two phenomena
that were experimentally observed seemed to
drastically limit the bidirectional ring laser's use
as a rate gyro. These were mode locking and mode
inhibition (single-traveling-wave operation). In
both cases the beat note vanishes, thus precluding
use as a rate gyro. These two effects were re-
solved with the application of semiclassical per-
turbation theory to the bidirectional ring laser
problem. ' The mode-locked operation experimen-
tally observed was explained by the assumption
of backscattex"ing of one traveling wave into the
other by laser mirrors, particles in the laser
media, etc. Theories were developed which con-
tained provisions for this form of backscattering. '
More recently, e bist'able unidirectional operation
was explained in terms of backscattering by in-
duced population-inversion gratings, an effect
shown to be included in the third-order theory.
This effect is also important in various types of
satux'ation spectx'oscopy.

In Sec. II, a summary of the pertinent equations
from the preceding paper' is given. In Sec. III,
two-mode strong-signal stability and competition
analysis is presented. We summarize third-order
theory and discuss the deviation of a mode's in-
tensity from the average mode intensities in terms
of a concept called fractional intensity splitting.
A small-vibration analysis for strong signals
yields two strong-signal counterparts to the cou-
pling parameter. In Sec. IV, two-mode homo-
geneous-broadened operation leads to the discus-
sion of population-inversion gx'atings and associ-
ated Bragg scattering. This may result in bi-
stable unidirectional operation. The transition
to the Doppler-limited case is introduced. In
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Sec. V, two-mode Doppler-broadened results are
presented and compared to the rate-equation ap-
proximation (REA) and third-order results. A
discussion of the observed differ ences is motivated
by an examination of several important symmetry
pl opex'ties of the equRtlons descrlblng the bidirec-
tional ring laser. For that laser, the historical
third-order domain of relative excitation from
1.0 to 1.2 is divided into a valid third-order re-
gion Rnd R less Rccux'Rte 1 eglon referred to Rs the
pseudo-third-order domain. The condition of
bistable operation versus monostable operation
is seen to be dependent on the x'elative excitation
and the amount of homogeneous broadening. Two
types of bistable operation axe seen to exist, one
discussed in the past, ' where one mode is com-
pletely suppressed, and another, neer here, where
both modes may have nonzex'o intensities. In 8ec.
VI, three-mode locked operation is presented,
and the results are compared vrith those of 8alomaa
and Salomaa, ' vrho frere not able to obtain strong-
slgnRl mode-locked solutions. In Rdd ltlon, solu-
tions for other laser parameters are discussed.
An appxoximation is made similar to a rate equa-
tion approximation in vrhich the population pulsa-
tion (dc bias) contribution to the dc (average)popu-
lation invex sion is kept. This indicates the rela. -
tive importance of the bias terms vexsus the othex'
modulator parameters.

II, ELECTROMAGNETIC FIELD EQUATIONS AND

POLARIZATION OF THE MEDIUM

In this section me summax'ize pertinent equations
from the preceding paper, so as to define notation

Active Medium

Rnd give R self-contRlned presentation fol the
reader not intexested in the derivation.

We have from Ref. 1 [Eqs. {5)and (6) of paper I,
hereafter denoted (I 5), (I 6), etc. ] the self-consis-
tency equations for the field'

E„=—,'(v/—Q„)E„——,'(v/8, ) Imd'„,

v„+ P„=II„——,'(v/8, )(1/E„)Red'„,

(la)

(lb)

where the electric field mode amplitudes are de-
termined from the electric field E{s,t ) by

E(s, t) = ~ Q E„e 'X"~" e~& U„(e)+c.c.,

and the complex polariza. tion coefficient 6'„ is de-
fined by

P(e, t ) = —,
'
Q 6'„{I)e 't "~ ' ' @~' U„(e) +c.c., (3)

where P(e, t) is the polarization of the medium and
N is the number of modes.

The mode functions U„(e) are determined by the
IRsex' collf igux'Rtloll (see Flg. 1) Rnd type of opel'R-
tion. For the ring laser

U„(e)= e'e~', K„=2xxe/I, ,

where L is the xound trip cavity length and n is the
mode Qunlbex' %Rich cRQ be either + ol" —fox' the
bidirectional ring, but only + for the unidirec-
tional ring. For the standing-vrave laser

U„(e)= sinK„e, K„=ne/l. .
For the bidirectional ring it has been shown by

Menegozzi and I a&b, ' for example, that the ef-
fects of small rotation rates on the self-consis-
tency equRtions is to introduce a shift in the empty-
cavity resonance frequencies II„=~Kn~c by an a-
mount 2480„/Le, wllel'8 A ls the Rx'8R ellclosed by
the laser path and 8 is the laser rotation rate.
Traveling-wave modes are up (v ) or down (v, )
shifted depending on whether they are going in the
opposite or same direction as the cavity rotation.
Hence in the self-consistency equations

FIG ~ l. (a) Diagram of CvM-mirror standing-vive
laser shouting reflectors in plane pexpendicular to the
laser (s) axis and active medium bebveen the reflectors.
Brewster vrindows are sketched on the ends of the active
medium to help enforce the condition that only one polar-
ization coxnpo'Dent of the electric field exists, as as-
sumed in this paper. @) Corresponding xing lasex con-
figuration. The optical path may consist of a single-
turn or multiturn optical fiber as favell as the usual poly-
gon. The active medium may be integral to the fiber or
more localized as in (a).

@&here T is the numbex' of turns if a, multitux'n
loop ls used.

%e assume the medium consists of independent
two-level atoms. Spontaneous lifetimes y, and

y~ describe decay for the upper and lower levels,
respectively. The decay of the dipole moment
term is described by the constant y. %e describe
the medium by a population matrix p(s, Kv, t ) and,
a.s in paper I, Four ier-analyze the population dif-
ference D and polarization element p, ~ in terms
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of the fundamental population-pulsation frequency
b, and its harmonics. This yields algebraic equa-
tions relating the population-pulsation Fourier
coefficients dk and the polarization Fourier com-
ponents p . These equations give a recursion
relation for the dk and lead to a continued-fraction
solution for the population-difference Fourier co-
efficients in terms of the ratios r, ,

Unidirectional Standing, wave Bidirectional

V2 —Vg

vg —kv
V2 -kv

2k@
v -kV
v+ ku

V —V++2k V

v+ kv
v +kv

TABLE I. Summary of the parameters 6 and v for
the bvo-mode cases.

For two-mode operation we have the recursion
relation

1 k k+1 ~O k k ~-1 k k-1

with the coefficients defined by

c-l, a =y.a (f 1 12)"[&{vl,a- ~)+&(~ —v2-a)]

(9a)

cl. 2 =yaa {IlI2} l&(va+2 ill) +&(ill —"l-a )] ~

tions, given by

Sp Cl of 1 +COCa

The ratios r are calculated in terms of the con-
tinued fraction

/i'
C0, 1 ~l, i+1+1 CO 1

—Cl 1 1 2/K~O + 1 2F )

CO„„,= 1- kO FkS
0

+'4~ In & &n+k- +& ~ —"n-k
n=1

(9b)

(9c)

etc.
Similarly, the general polarization coefficient

[(50) of 1] is given by

g„=—e,X[q&wZ, (y)] '

x Q E exp[i (y„—y ) ]

The population coefficients dl = d-1 =do~ly and

F(kb) = 2[m {2t2K2l)+&a(2kKu)]y, ya/y, a, (10)

where

$, (b, ul) =(y, +ib, ld) '

(12)

where 6 is the fundamental population-pulsation
frequency and where the dimensionless intensity
is given by

I.= .'(Vh/g)'(1/—y. y, ),

where p is the electric dipole matrix element be-
tween the upper and lower levels.

From the recursion relation for the dk, the dc
population-difference coefficient do is given by

da = 1/(1 + S„+Sa },
where S„ is the saturation due to hole burning,
given by

S„=2(y., /y)[I, Z((u —v, ) +f,Z, ((u —v, )],
where

&«v) = /y[
' y(&+~)'],

and S~ is the saturation due to population pulsa-

—((o —(u,)'
d&u exp

{ }, S(u —v„)d„

(~8)

The polarization coefficients 6'„ for two modes
are given by

x ((d —ido)
'l62 ~+ ( )

d4l exp
{ }2

x K)(ul —v, )(E,d, +E,d, ),

(19a)

X —{(ll —Ql )
'Q~~ ( ) ( )'

x a)(ul —v, ) (E,d, +E,d, ),
(19b)

where v =km, and where it may be noted that keep-
ing only the first term in the continued fraction
corresponds to the REA as r, =0; hence d, and

Sp -—0.
Appropriate transformations of the fundamental

population-pulsation frequency (b.} and the Dop-
pler-shifted mode frequencies allow these two-
mode equations to be used for the two-mirror
single-mode standing-wave laser and the bidirec-
tional ring laser. These transformations are
summarized in Table I. For the standing-wave
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laser we have the additional requirements

III. TWO-MODE STABILITY AND COMPETITION
ANALYSIS

In this section we summarize two-mode opera-
tion as given by third-order perturbation theory.
This treatment provides simple analytic descrip-
tions of various phenomena and hence provides
useful points of reference for our strong-signal
discussions. We also introduce here the notion
of the fractional intensity splitting, that is, the
ratio of the difference in the mode's intensities
to their average value. This concept is partic-
ularly useful in describing the strong competition
that occurs, for example, in the bidirectional
ring laser operating at low relative excitation
near symmetric tuning. This section closes with
a generalization of two-mode stability analysis to
strong-signal operation. Two extensions of the
third-order coupling parameter are introduced,
one determining stability and the other giving a
measure of cross saturation to self-saturation.

A. Two-mode operation in third-order theory

In the third-order limit, both characteristics
are described by the single parameter C. The
third-order intensity equations of motion are (for
the unidirectional and bidirectional ring cases)
[from Ref. 10, Eqs. (11-13}and (11-14)]

I ~
—2I, (&, —p,I, —8,2 I2),

I~
—2I(&~ —p, I2 —8~, I,),

(20a)

(20b)

C= 8~82J&P 2 ~ (21)

For weak coupling (C& 1), these equations yield
the solutions given by

(22a)

(22b)

Let us consider in particular the case for which

where the coefficients are defined in Table 11-1
of Ref. 10 for Doppler-broadened media, and in
general by O'Bryan and Sargent. " The a„are the
linear net gains of the modes (gain minus loss), the P„
are the self-saturation coefficients, and the 8„
are cross-saturation coefficients. The stationary-
state solutions (I„=I =0) are characterized by
the coupling parameter (C) given by

the saturation terms are approximately equal,
i.e., P, =P, =P and 8„=8„=8, and for which a
fractional gain difference between the modes ex-
ists, i.e., a, = e and a, = o. + ~. This occurs, for
example, near symmetric tuning in the Doppler
limit for the bidirectional ring laser. With these
assumptions the mode intensities of (22) become

1 e(9 1
1 p+ 6) ~p2

I, -I, e /+6} e 6.'(I, +I,)—c(1 C) o (P- 8)' (23)

that is, it is proportional to the fractional gain
difference e/o. and inversely proportional to the
quantity 1 —C.

B. Mode stability and the coupling parameter in the
strong-signal laser theory

In the third-order theory the equations of mo-
tion for the mode intensities contain terms that
lend themselves readily to simple physical in-
terpretation, namely, the linear net gain of an
individual mode n„, self-saturation P„(the satura-
tion of a mode intensity on its own gain), and
cross saturation 8„(the saturation of one mode
m on the gain of mode n). These third-order pa-
rameters are a three-fold degenerate case of the
corresponding strong-signal parameters. Specif i-
cally, we can define three classes of parameters'.
(i) near threshold (where third-order theory is
valid}, (ii) linearized small signal parameters
taken about a (generally) strong-signal operating
point, and (iii) large signal parameters at such a
point.

The general problem of multimode operation
deals with the question of which modes may actu-
ally oscillate in the laser, i.e., represent stable
solutions to the intensity equations of motion. To
resolve this question, a small-vibration analysis
is usually performed. The influence of one mode
on another is expressed in terms of a coupling
parameter C which, for the two-mode case, is
the ratio of the product of the cross-saturation
terms to the product of the self-saturation terms.
The third-order intensity equations of motion and

1&6}1
P+ 6} nP' 1 —C

These yield an average steady-state intensity
o. /(P + 8), which in the case of equal self-satura-
tion and cross saturation is just one-half the in-
tensity o./P predicted for a mode oscillating by
itself. Thus for equal gain we obtain equal inten-
sities (excluding any hysteresis effects and as-
sociated bistable operation). The fractional
intensity splitting is given by
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the coupling parameter are given by (20) and (21).
In the case of the third-order theory the equations
represent an expansion about threshold intensity,
and, consequently, are not valid for strong-signal
results. For the case of stability parameters a
similar formalism may be developed for strong-
signal theories by expanding about the steady-
state intensities. We now do this for two-mode
operation.

The amplitude self-consistency equation [(15)]
may be written in terms of the susceptibility Xn,
where

ip. (t) = e.X.E. (t) =e.(X.'+ fX!')&.(~), (24)

I„=—v„ I„X„"—(v„/Q„)I„, (25)

&„(&) = ——,'(v/Q„}E„(&) ——,'v„x,"&„(t).
From this equation for mode amplitudes we obtain
an equation of motion for the mode intensities,

the (small signal) self-saturation P„and cross-
saturation 8„at the strong-signal point (I~,I ~),

V 8 es
p psm ~V Xn

In IS IS'n' m

res

+m ~v W4
nnt nln 2 gI s gn ~

(28)

Csnt
I jP~ +I~P~ y I I &snt &sm (30}

Equation (27) may be written as

e„=—2I „(P~e„+ e~ ~ ).

These equations form a set of coupled first-order
differential equations for the small signal pertur-
bation e„. These will have solutions with expo-
nentially decaying envelopes if the roots of the
characteristic equation have real negative parts.
We find two conditions, '

where for steady-state intensities we have the
identity

: I —0 v I sX os (v/Q }Is (26)
=

p„'- ps: aI. aI„
gX re@ gXrrs

where the stability coupling parameter

This expression for X„" and the perturbed equations
of motion yield the following expression for the
perturbed mode intensities:

rr s 8xnrs ~X"'

n BI Q„

For nonzero In, keeping the first-order terms in
e and using the identity in (26), we have the lin-
earized equation of motion for the small signal
perturbation,

eX rrs ~X rrs
S n + n

n n n n
n rn

(27)

Let us now consider a small-vibration analysis
about the steady-state mode intensities, i.e., let
the mode intensities be perturbed by e„. Inserting
these values of intensities into the equations of
motion, we have

I„=-Is+ i„
= (I„+e„}x„"(I„+e„,I~+a~) —(v/Q„)(I„+ a„}.

Expanding X„"in a first-order Taylor series about
its steady-state value, we obtain

rrs rrs

(31)

n„= ——,'v[x„"(0,0) +1/Q„] (32)

which is the same for third-order and the strong-
signal theories. If one mode is zero, then for the
other we have the threshold cross-saturated linear
net gain

Usually the first condition is fulfilled and
I yI2py p2 + 0 so we are left with the "weak-coup-
ling" condition

Cm (1
which corresponds to that used in the past. '

For the third-order regime, the stability co-
efficients are the P's and 8's. They give as well
the degree of self-saturation and cross saturation.
For larger intensities we use the Sx„"/BI for
stability purposes, but these partial derivatives
do not give accurate indications of self-saturation
or cross saturation except near threshold. To get
an idea of the strong-signal self-saturation and
cross saturation, we consider the susceptibilities
x„"(I„I,) directly in the remainder of this section.

For the case of zero intensities we have the
threshold net gain coefficient

If Is is zero, we have o".= —-'v[x."(0,I )+1/Q. ], (33)

e„=-v„&,[X," (O, I )+1/Q„]. (28)

We may generalize the third-order terms and ob-
tain the stability coefficients corresponding to

which is the threshold gain mode n sees in the
presence of the (in general) strong-signal mode
intensity I . This reduces to the third-order ef-
fective linear net gain in the limit of small I
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other. For stationary atoms this grating is pre-
cisely out of phase with the standing-wave pattern,
and the net reflected wave subtracts from the
similarly directed running wave. Thus in addition
to the usual population-depletion part the cross
saturation contains a Bragg-scattering term. In
the equal-tuning case, the two saturation terms
are identical and add, giving a total cross satura-
tion twice as big as the self-saturation. Hence
strong coupling occurs. The coupling parameter
in third order is depicted in Fig. 3, with a value of
4 for Ku= 0 Rnd any average detuning. The result is
bistable, single-traveling-wave (STW) operation.
Either mode may suppress the other, and which
one wins depends on the linear gains and the ini-
tial intensities. For nonzero rotation rate (v,
—(() = &o —v c 0), the electric field remains a stand-
ing wave in the nonrotating, i.e., not laser, frame.
Hence the induced grating moves with respect to
the medium and Doppler shifts the scattered waves
from v„ to v (or vice versa) in a fashion analogous
to Brillouin scattering.

The unidirectional ring does not have a slowly
moving grating, but rather has population pulsa-
tions at the intermode frequency. In the third-
order theory these pulsations increase or decrease
the cross saturation according to the sign of the
expx'ess ion

which follows from the coefficients in Table VII of
Ref. 11 (for symmetric tuning). A negative sign

gives weak coupling and two modes may oscillate.
A positive sign gives strong coupling and only one
mode oscillates.

As the medium is Doppler broadened, for sym-
metric tuning (i.e., zero average detuning), each
velocity ensemble sees a different gr ating. Figure
4 (from Ref. 12) illustrates the spatial gratings for
various velocity ensemble. The curve for KU =0
is just that for the homogeneous case. The series
of curves illustrate two effects that change the
Bragg-scattering contribution to the cross satura-
tion. Apart from the Maxwellian distribution fac-
tor, the amplitude of the individual gratings de-
creases as a function of Kv+ —,'b„ for it is the en-
semble with U = —6, /2K that is stationary with
respect to the standing-wave pattern. Other en-
sembles move through the standing-wave field and
the amplitude of their population-diffexence grat-
ings is restricted by the bandwidth of the medium,
i.e., y, and y~. This is a more detailed statement than
"the atoms tend to see an average field. " Secondly, the
gratings are shifted with respect to the u = —4„/2K
grating, thereby yielding variously phased scat-
tered waves that tend to destructively interfere.
The combination of this destructive interference
and the reduction in grating amplitudes produces
an overall smaller Bragg contribution to the cross
saturation for l.arge Doppler widths. Hence the
coupling pRrRmeter C decreases fox' incr eRslQg
Ku, although for some large, finite values of Ku
the reflected wave may add slightly, allowing the
coupling parameter to be barely less than unity.
In the extreme Doppler limit the Bragg contribu-

V)-Q=V2-to=0

20 MHz

0
0 100

I

200 300

60 MHz

100 MHz

h

400 500

rl2

FIG. 3. Coupling parameter C of Kq. (21) plotted vs
Dopplex'-width parameter Eu (in MHz) for indicated aver-
age detuning. Upper- and lower-level decay rates are
15.5 and 41 MHz x'espectively, and the dipole decay rate
(1/&2} is 100 MHz. The dashed 1ine gives C=1, the
dividing line between strong (C & 1) and weak coupling.

I IG. 4. Graph of normalized population difference vs
spatial phase Es along axis. Spatial holes bux'ned by
field intensity fox nonmoving atoms are seen to wash out
for rapidly moving atoms. (Eu&& p and p =&gb
wave laser. ) From Stenholm and Lamb (Ref. 12, repro-
duced with permission).
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0.1533

C)

M

0.000

f
M

0, 0767

0.0153

0.000

120

FIG. 5, Gx'aph of the deviation of coupling parameters
from the third-order Doppler-limit x'esult vs average
cavity detuning fox' the bidirectional ring laser. The
dashed curve is the deviation of the third-order generally
broadened coupling parameter. The solid curve is the
deviation of the strong-signal paraxnetex' C . T'he laser
parametex's are 6„=15 MHz, y~ = 20 MHz, y ~

= 40 MHz,
y= 1QQ MHz, Ku = 1010 MHz, and relative excitation
= 1.05.

0.120

FIG. 7. Graph of the RKA theory bidirectional ring
laser intensities vs average cavity detuning for a rela-
tive excitation of 1.05. Laser parameters axe the same
as in Fig. 6.

tion is zero and the coupling parameter is unity.
The sensitivity of the coupling parameter to the
Bragg contribution is seen in Pig. 5, rvhich com-
pares the strong-signal continued fraction C to
the third-order Doppler broadened C for a rela-
tive excitation of 1.05. Both of these curves devi-
ate from the third-order Doppler-limit result of
the square of a simple Lorentzian of average de-
tuning [Eqs. (11-17)of Ref. 10]. The third-order
broadened result predicts strong coupling at sym-
metric tuning vrhile the strong-signal result pre-
dicts weak coupling.

B1sfable Region

0.060

0.0718 "
i

0.000
I I

120 240

FIG. 6. Graph of the strong-signal. theory bidirec-
tional ring lasex' intensities vs average cavity detuning
for a relative excitation of 1.05. Note that compl. ete
mode inhibition does not occur in the strong-interaction
region about the origin as in third-order theory. Rota-
tional frequency splitting 6„=15 MHz. The laser pa-
rameters are y = 20 MHz, yq = 40 MHz, y = 100 MHz, E+
=1010 MHz. For convenience @re quote these in MHz
when actually they are 2~ MHz.

0.014

0.000

120

FIG. 8. Graph of the third-order generally broadened
theory bidirectional. ring laser intensities vs average
cavity detuning for a relative excitation of 1.05. Note
the bistabl. e region near the origin. The laser param-
eters are the same as in Fig. 6.
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For nonzero average detuning in Doppler-broad-
ened media, the running waves no longer share a
common set of atoms, thereby decreasing the
population-depletion contribution to the cross sat-
uration and therefore the coupling parameter C
as well. This is illustrated in Fig. 3, where for a
given value of Eu @0 the curves for increasing de-
tuning are seen to yield decreasing values for C.

V. TWO-MODE DOPPLER-BROADENED OPERATION

+ E'Z(~ —v, ——,'6, Kv) j . - (42)

0.1424

An example of the results for Doppler-broadened
media is given in Figs. 6-9, where the relative
excitation is 1.05 and the figures correspond to the
strong-signal, REA, and third-order theories,
respectively. There is considerable difference
between these figures primarily in the fractional
intensity splitting near symmetric tuning. For
example, the third-order theory predicts bistable
operation plus associated mode inhibition at sym-
metric tuning, but the strong-signal theory pre-
dicts equal intensities. An explanation of these
differences and useful physical insight into the
bidirectional ring laser may be obtained by exam-
ining symmetry properties inherent in some of
the equations describing the solution to the laser
problem. We choose first to illustrate this by the
hole-burning terms (S„) in the population differ-
ence of (15),

The first term is resonant with atoms which have

Kv = —((d —vo) —2 4„
= (detuning) —(rotational shift),

Kv = ((u —v, ) ——,a„
= —(detuning) —(rotational shift).

For zero average detuning, both terms interact
with the same group of atoms, namely, those
with Kv approximately equal to one-half the rota-
tional beat frequency (~ A„}. Thus a single travel-
ing hole is burned in the population difference and
is shifted from the origin of the velocity distribu-
tion by an amount equal to —,'d„/K. This hole is
traveling in the laser frame of reference, i.e.,
the media. However, depending upon the approxi-
mations used and the extent that the laser configu-
ration is circular, it may be stationary in an in-
ertial rotational frame of reference. Secondary
resonances and resulting holes (such as contrib-
ute to the population-pulsation term S~ }, in gen-
eral, travel in either frame of reference. The
single rotationally shifted traveling hole for S~
should be compared with the single standing hole
burned at the origin for zero detuning in the case
of the familiar two-mirror, standing-wave laser.

For the case of nonzero average detuning, (42)
and (43) for the bidirectional ring laser reveal
that two holes exist symmetrically located with
respect to the rotationally shifted zero-average-
detuning hole and are shifted from it by an amount
equal to the magnitude of the average detuning.
Thus these tw'o holes are asymmetrically posi-

0.071

0.014

0.000
I

25 50

FIG. 9. Graph of the third-order Doppler-limit theory
bidirectional ring laser intensities vs average cavity
detuning for relative excitation of 1.05. The region near
the origin is similar to that in Fig. 8 but is not bistable.
Laser parameters are the same as in Fig. 6, except&a

40000

Kv
FIG. 10. Graph of normalized population difference vs

Av for a rotating bidirectional. ring laser. The figure is
for exaggerated parameters, as may result from a multi-
turn ring laser rate gyro. L„=6y, average detuning
= 2y, y~=yq =y = 100 MHz, Ku =25', relative excitation
=2.0. Note that the holes are symmetrically spaced by
2y from zero average detuned position of —2 6„=—3y.
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tioned with respect to the Gaussian velocity dis-
tribution, and cause a corresponding amplitude
asymmetry in the population difference (see Fig.
10). Such asymmetry contrasts with the nonrotat-
ing case and with the two-mirror, standing-wave
lasers, which have holes symmetrically located

about the center of the velocity distribution.
It is helpful to note that a simple change of vari-

ables shifts the origin by an amount equal to the
rotational shift, symmetrically locating the holes
and displacing the Gaussian velocity distribution.
The integral for the polarization (18) is then given by

where &'=~+ ~D„. It is interesting to observe
that the sum of the two equations for tP, a,nd 6', is
identical with the equation for the ordinary two-

mirror, standing-mave laser except that the Gaus-
sian is shifted (we also have a factor of 4 appear-
ing in the interpretation of the intensities). For
this equal-mode-intensity case and symmetric
tuning, we can write the population-difference and

polarization Fourier coefficients d~ and p in
terms of Bessel functions as has been done for
the two-mirror, standing-wave laser. "

Unequal mode intensities break the symmetry.
The amount of asymmetry is determined by the
fractional intensity splitting and arises from the
C, «(and 8«) terms in Eq. (f67). The Co „ term
may be mritten

Co, =[5(0&)] ''+ «(I, +I,)[&(v„«—~)+u(~ —v, ,)+ S)(v2„-~)+u(~ —v, «)]

+ —,'[(f, —I,)/I „]I„[u(v„«—(o) —$((g —v, , )-g)(v„« —&u) +X)((u —v, ,) ],

where symmetric displacement about the rota-
tionally shifted position interchanges the roles of
the terms in a pairwise fashion„yielding the com-
plex conjugate for equal intensities. However, the
terms proportional to the fractional intensity
splitting behave differently, producing asymmetry
about the rotationally shifted position. Another
important symmetry property follows from the
fact that for a given value of average detuning the
hole burning term S„remains the same if me

change the sign of the average detuning and simul-
taneously interchange the roles of the two inten-
sities I, and I,. Similar observations may be
made for the remaining terms contributing to the
population-difference coefficients d~ . Consequent-
ly, we would expect that a curve of mode inten-
sities versus cavity detuning should be symmetri-
cal about the origin if we interchange the roles
of the intensities mhen passing through the origin.
This result is highly useful since we need only
compute and plot one-half of the curve. Symmetry
properties predict equal mode intensities at zero
average detuning. This result is somewhat mod-
ified when we have regions of hysteresis about
the origin as in bistable operation, in which case
we must remain on the same leg of the hysteresis
loop when interchanging intensities while passing
through the origin. In this case a stable solution
may not exist for equal mode intensities at zero
average detuning.

Recalling discussion in Sec. III of fractional in-
tensity splitting for the general two-mode case,
let us examine in this framework the role played

I

by the asymmetry induced by the rotational shift.
Again looking at the population-difference hole-
burning term 9„, we see that for zero average
detuning we have one hole burned in the population
difference at the rotationally shifted position. In

thenear Doppler limit for this case me have equal
linear net gains and nearly equal self- and cross-
saturation terms. For the asymmetrically tuned
case, because of the rotationally induced asym-
metry of the holes, we have unequal linear net
gains for the two modes; thus we should expect
some fractional intensity splitting. For small-
average-detuned operation, the mode having higher
intensity would be predicted to be the one with
higher linear net gain. This would be expected to
be the case for the hole nearest the origin. Inter-
changing the holes, such as would occur if the
sense of rotation were reversed, mould cause the
roles of the intensities to be interchanged. Thus
for bistable operation, if for a given sense of
rotation and scan direction mode 1 dominated,
then with a change in the direction of rotation mode
2 should dominate rather than mode 1. This de-
pendence of the dominant-mode selection on the
sense of rotation has been observed experimen-
tally.

The magnitude of the fractional intensity splitting
is determined both by the fractional gain differ-
ence and by the magnitude of the coupling para. m-
eter C. In this respect let us consider the region
of relative excitation values from 1 to 1.2, which
historically has been considered to be the domain
of the third-order theory. In this region of low
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intensities we would expect the fractional gain
differences to be ra, ther large and lead to large
fractional intensity splitting phenomena. However,
the effect of population pulsations enter into the
coupling parameter C and profoundly affect the
problem. As the theories being compared (REA,
third order, and strong signal) differ in the pres-
ence and importance of population pulsations, the
theories vary in their predicted fractional inten-
sity splittings. The coupling parameter C is given
in the Doppler-limit third-order theory by a sim-
ple Lorentzian (of average detuning) squared [Ref.
10, Eq. (11-17)]. It becomes increasingly impor-
tant as its value approa. ches unity, namely, for
symmetric tuning. Thus in the wings of the tuning
curve we expect moderate fractional intensity
splitting, while near symmetric tuning we expect
it to increase dramatically.

In the Doppler-limit third-order ease, complete
mode inhibition is predicted. Figure 9 illustrates
this for a relative excitation value of 1.05, which
is well within the historical third-order domain.
Figure 8 illustrates the near Doppler limit which
predicts true self-induced bistable operation with
a resulting single-traveling-wave (STW) region near
symmetric tuning, caused by an overestimation
of the Bragg scattering. This is in agreement
with the results predicted earlier in Ref. 6 and
would tend to agree with experimental results of
Moss et al." However, for the particular laser
parameters chosen, the stability coupling param-
eter C~ is very near unity (C~ =0.995) at sym-
metric tuning. This implies only a slight tendency
for strong coupling. For very low values of rela-
tive excitation (1.01), the strong-signal results
also predict true self-induced bistable operation
in agreement with the third-order results. This
is to be expected, since the third-order theory
is an expansion about threshold values of intensity
0+a and here e is quite small. Thus in this region
of extremely low intensities, we have made firm
connection with the third-order theory. This
region will be referred to as the true third-order
domain.

We find that such exact agreement does not ex-
tend throughout the entire region of relative ex-
citation of 1.0 to 1.2. We refer to the region of
nonagreement as the pseudo-third-order domain.
The lower limit of the pseudo-third-order domain
may vary widely with such factors as laser de-
tuning and is especially sensitive to the laser
parameters (level decay, etc.). Such sensitivity
is in agreement with the third-order results pre-
dicted earlier; however, the intensity dependence
of the coupling parameter was not included. The
strong-signal results predict that the stability
coupling parameter C~ is a decreasing function

of intensity (hence relative excitation) in the
third-order domain. Consequently, for a given
set of laser parameters at some point, as the
relative excitation is increased, C becomes less
than unity and true self-induced bistable operation
is replaced by stable bidirectional operation with
equal mode intensities at symmetric tuning. The
sensitivity to the laser parameters is illustrated
by the fact that for a relative excitation value of
1.05 the dividing line between these two regions
is given by Ku =6.5y. At Ku =10.10y, a value also
commonly used for He-Ne laser operation, the
solutions are not bistable. It is to this pseudo-
third-order region that we now turn.

In the psuedo- third- order domain the strong- sig-
nal coupling parameter is less than that of the
third-order theory. Consequently, the ratio I/
(1 —C) entering into the fractional intensity split-
ting may be substantially smaller near symmetric
tuning for the strong-signal theory than for the
third-order theory. Thus the extremely large
fractional intensity splitting predicted by the third-
order theory is not in general predicted by the
strong- signal theory. It must be recalled that the
splitting is dependent upon the relative excitation.
For a, low relative excitation value of 1.05 (see
Fig. 6), appreciable fractional intensity splitting
is predicted by the strong-signal theory, while at
a higher value of 1.2 a considerably smaller
amount is predicted. This contrasts with the com-
plete mode inhibition predicted by the Doppler-lim-
it third-order theory and bistable STW operation
predicted by the generally broadened third-order
theory. In addition, the third-order theory does
not correctly predict the average intensity in a
manner similar to that encountered in prior work
done on the two-mirror, standing-wave laser. "

Reference 12 also shows that for these low in-
tensities, the standing-wave, REA, and strong-
signal theories agree quite well as to the predicted
intensities. At first glance this would seem to in-
dicate that the fractional intensity splitting pre-
dicted by both would be approximately the same.
This is the case for detuned operation as in the
wings of the tuning curve, but not near symmetric
tuning where population pulsations become increas-
ingly more important. In this region the REA
coupling parameter is larger than that of the
strong- signal theory and in fact has a value equal
to or nearly equal to unity in a small region on
either side of symmetric tuning. This causes
large fractional intensity splitting near these re-
gions and complete mode inhibition within them.
Figure 7 illustrates this. While most pronounced
at these low values, this mode inhibition is pre-
sent at higher values of relative excitation.

As previously mentioned, in the pseudo-third-
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FIG. 11. Graph of the strong-signal theory bidirec-
tional, ring laser intensities vs average cavity detuning
for a relative excitation of 2.0. Note the small fractional
intensity splitting near the origin and the overall simi-
larity to a Lamb dip. Laser parameters are the same
as in Fig. 6.

FIG. 13. Graph of the strong-signal theory bidirec-
tional ring laser intensities vs average cavity detuning
for a relative excitation of 6.0. Only one leg of the hy-
steresis path is shown, The laser parameters are the
same as in Fig. 6.

order region the fractional intensity splitting was a
decreasing function of relative excitation. This be-
havior continues until the two modes give the ap-
pearance of being completely uncoupled even though
the cross-saturation terms (8 }are not zero and

may be nearly equal to the self-saturation terms
(P ). Figures 11 and 12 illustrate this effect at
a relative excitation value of 2.0. It might be not-
ed that the REA theory still gives complete mode
inhibition about the origin.

At high values of intensities (and corresponding
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FIG. 12. Graph of the RKA theory bidirectional ring
laser intensities vs average cavity detuning for a rela-
tive excitation of 2.0. Note the mode inhibition near the
origin. The laser parameters are the same as in Fig. 6.

FIG. 14. Graph of the bistable region of bidirectional
ring laser operation at a relative excitation of 6. The
curves are intensity vs average cavity detuning. The
dashed line corresponds to the BRA solution. The dash-
ed-dot line is the unstable strong-signal curve. The
solid line is the hysteresis path for the strong-signal
stable solution. The arrows originate from a point of
neutral coupling and indicate a jump to the other leg of
the path when passing through that point. The laser pa-
rameters are the same as in Fig. 6.
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high relative excitations), because of the extreme
nonlinearity of the problem, multiple-valued solu-
tions may be obtained. The several solutions may
connect through regions of neutral coupling and
give rise to hysteresis paths in the intensity-vs-
detuning curves. This yields bistable operation
where both modes may have nonzero intensities
as opposed to the single-traveling-wave form of
bistable operation noted for lower intensities.
Figures 13 and 14 illustrate this for a value of
relative excitation of 6.0. It is interesting to note
that an unstable solution exists which passes
through the tuning origin with equal mode intensi-
ties. The REA solution is single valued and still
exhibits mode inhibition about the origin with equal
intensities at the origin. Again citing work done on
the two-mirror, standing-wave laser, the average
intensity predicted near symmetrical tuning for the
REA is also less than the strong-signal results for
the bidirectional ring. "

The two-mode unidirectional ring laser has two
holes burned in the population-vs-velocity curve,
one for each mode. Since they do not share a com-
mon set of atoms, there is relatively little inter-
action between the modes (if 4) y). The curves of
intensity versus detuning for the strong-signal case
are similar to the third-order results of Ref. 11.
For the strong-signal case, the two modes oscil-
lated above threshold over a larger range of detun-
ing than in the REA case. In addition, at symmet-
ric tuning the strong-signal intensity was about 2/p

greater than the REA intensity. This point deviated
slightly from the otherwise smooth curve. The
REA had a slight bump while the strong-signal the-
ory gave a slight dip (less than 1% in both cases}.

The relatively weak interactions in the unidirec-
tional case allowed the integration step size to be

or &y in the evaluation of the polarization inte-
gral (18). This contrasts with the small step size
of ~ y or ~y required for the bidirectional ring.

VI. UNIDIRECTIONAL MULTIMODE LOCKED OPERATION

its phase, amplitude, and frequency very much
like the injected signal in Van der Pol's triode
oscillator. " There the oscillator "locked" onto
the injected signal when the frequency difference
was sufficiently small. The sideband near v, (v,')
behaves similarly owing to v, and v, . The result
can be frequency locking, i.e., equal beat notes
between adjacent modes.

Salomaa and Salomaa' treated three-mode mode-
locked operation in the third-order theory, but
were not able to obtain mode-locked solutions in
the Fourier theory. Our strong-signal results for
their laser parameters exhibit mode locking and

are presented in Fig. 15. The relative phase rang-
es from about -60' to +60 . The numerical pro-
cedure for zeroing the self- consistency equations
(15) and (1 6) failed to converge for large detun-
ing. This may be due to one of three possible
problems: (i} the method is incapable of treating
the configuration, (ii) no solution exists, or (iii)
more than one solution exists, the stability of
which is uncertain. The numerical procedure "be-
haved" as if two solutions existed.

Salomaa and Salomaa' found oscillating solutions
for this range in their strong-signal treatment.
The intensities we obtained are equal to within
5-10% (graph interpretation error) of the temporal
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0.2

In unidirectional multimode operation the sig-
nals mix in the nonlinear medium and produce pop-
ulation pulsations at integral multiples of the mode
spacing 4. These pulsations interact with the orig-
inal signals to produce sideband signals spaced
multiples of 4 from the original frequencies. We
have already discussed the effect of some of these
sidebands on the cross saturation in two-mode op-
eration. For three- and higher-mode operation the
remaining sidebands produce a different kind of
coupling in acting like injected signals. For exam-
ple, in three-mode operation, v, beats with
LaL vp vy producing a term at v„say, v,'. This
sideband interacts with the v, signal influencing

i s I s i t i I

50 50

FIG. 15. Graph of the relative phase and intensities
vs cavity detuning for the three-mode unidirectional
ring laser at a relative excitation of 1.5. The detuning
indicated is that of the central mode (2). The mode
spacing = 400 MHz, y =yq = y = 100 MHz, and Ku = 1000
MHz.
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FEG. 16. Graph of the relative phase and intensities
vs cavity detuning for the three-mode unidirectional
ring laser at a relative excitation of 1.1. The detuning
indicated is that of the central mode (2). The mode
spacing =150 MHz, y, =20 MHz, yq=40 MHz, y=100
MHz, Ku =1010 MHz.

average of these solutions (cf. their Fig. 21). For
zero average detuning (v, + v, + v, = 3(()), the eigen-
values of the stability matrix F of Eq. (I 99}are
negative and real. As this detuning is increased,
the eigenvalues acquire imaginary parts of in-
creasing magnitude. The presence of these non-

zero imaginary parts leads to oscillations in the
mode intensities and phases as they approach
steady state in time. This may well explain Salo-
maa and Salomaa's oscillations and indicate they
did not integrate the self-consistency equations
long enough to find the steady-state solutions.
Their third-order mode-locked results exhibited
a dip or "hole" in all three intensities in the cen-
ter of the mode-locked region. This dip as de-
fined by I, was about 50 MHz wide. We find mode-
locked strong-signal operation over a wider region
(100 MHz), which is comparable to their Fourier
non-mode-locked results for the central mode I„.
however, they did not find such a dip in the two
side intensities. Our mode-locked results tend to
exhibit a slight dip as shown by the extremities of
the curves of I, (54 MHz) and I,(-54 MHz). This
tends to support the connection of a dip with mode
locking.

In addition to comparison with the Salornaa and
Salornaa results, we explored solutions with laser
parameters which contained level decays more

representative of He-Ne operation. We chose
y, =20, ye=40, and y=100 MHz, with the mode
separation equal to 150 MHz. The results obtained
for a value of relative excitation of 1.1 are pre-
sented in Fig. 16. The mode-locked region ex-
plored was smaller in width (20 MHz) for the same
range of relative phase as in the Salomaa and
Salomaa data.

The rate-equation results for symmetric tuning
are I,=I,=0.0892, I,=0.1947, compared to I,=I,
= 0.1333, I, = 0.1404 for the strong-signal case.
The central mode is larger than that of the strong-
signal results, whereas the side modes are lower.
For higher relative excitation and symmetric op-
eration, the side modes may be larger than the
central mode in the strong signal theory. Salomaa
and Salornaa noted this only for detuned operation.
For a relative excitation of 2.0, complete sup-
pression of the central mode may occur. These
mode interactions may be interpreted as due to
two effects: (i) The central mode competes direct-
ly for atoms with the two side modes owing to
standard two-mode cross saturation. In the
strong- signal theory population pulsations contrib-
ute to this cross saturation through the population-
depletion term S~ in (14). (ii) Pump power can be
transferred from the atomic velocity ensemble
nearly resonant with the center mode to those of
the side modes by mixing processes associated
with "injected signals" or combination tones. This
is analogous to the mixing in a passive radio fre-
quency device such as a silicon diode. With two
input signals (v, and v, ) of constant power, the
mixer output consists of combination tones and
harmonics. One of these sidebands has frequency
v3 derived in part through the relationships

v, = v, + (v, —v, ) and v, = v, +2(v, —v, ).

This signal at v, derives its power from the two
input signals at v, and v„hence we have a transfer
of power from v, and v, to v, . In the laser the
"input" signals v, and v, derive their power from
the pump power via those atoms which are nearly
resonant with the signals, i.e. , Kv = v, + y, v, + y.
This pump power may be transferred from vy and

v, to v, . Such transference may be appreciable
(10%). If the target mode v, is already oscillating,
the transference may help or hinder that mode. An
oscillating v, can, in turn, transfer power from it-
self and v, back to v, . Thus, the side modes may
gain power at the expense of v, (for b, & y, y, ,y, ,
the opposite may be true}. In particular we find
from third-order theory that the power is trans-
ferred from v, to vy and v, provided

—Z, (E)(1— ) Z (6)(1— ) 0.
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This follows from evaluation of the ~,232 92//3

+ 3232 ] and 3»~ exp re ssions of Ref. 1 1 for uni-
directional operation. In the strong-signal theory,
an example of this transference would be the con-
tribution to the polarization (18) from d, and g.
We may make a modified rate-equation approxima-
tion in which we suppress the final-step sidebands
generated by the modulator, i.e. , keep only the
dc population-difference term d, in Eq. (18). Side-
bands occurring in higher-order beating processes
that contribute to d, are kept via S~ in contrast to
the ordinary REA. This gives a feel for the dc
saturation effect (through d, ) compared to the final-
step power transfer processes. The results of
this approximation are Iy I3 0.090, I, = 0.190,
which are close to the REA results in this case.
Hence the substantial difference between the REA
and strong-signal predictions is primarily due to
the final-step power transfer processes.

A possible explanation of the null locking results
of Salomaa and Salomaa may be found in the nu-
merical method used for their solutions. While we
solved for steady-state solutions directly, they
chose to solve the self-consistency equations (5)
and (6) of I by a Runge-Kutte-type Merson algo-
rithm. They started with small values of intensi-
ties (0.001) and zero for the relative phase, and
allowed the integration to proceed until stable
steady-state solutions were found (which did not
occur). The accuracy in the transient region was
5% for the Fourier theory as compared to 10 '%%up

for the third-order case which was successful.
This inaccuracy combined with a large step size
of y for the evaluation of the polarization integrals
probably caused enough error in the procedure
such that the oscillating transient solutions never
decayed. Another possible source of error could
be limited computational accuracy. For the mode-
locking conditions to be accurately satisfied 10-12
digits are needed. In this respect our REA solu-
tions for the Salomaa and Salomaa data gave "mode-
locked" errors of 1000 Hz at a detuning of 50 MHz.
This may be taken as an indication of the minimum
error to assume for mode-locking. We chose 1 Hz
and typically obtained 0.1 Hz or better.
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APPENDIX: BIDIRECTIONAL GAIN COEFFICIENT

where the hole-burning term is

S = 2(r, /r)&( —v)(f, -I ) (A2)

and the population-pulsation term (note that here
there are no pulsations since v+ ——v ) is

S,= 4(y.,/y)~(~ —v)(f,f )". (A2)

The polarization matrix element p, ~ of Eq. (I 2 I)
is given by

p,~= —z(p/A)K)(&u —v)D(z)(E e'z'+E e '«*),

yielding the polarization component of Eq. (19) as

. P' 1 exp(wiKz)N(z)
L, 1+S„+S~ cos(2Kz)

)& (E e&zs~ E e-&Kc )

= —i(p'/k)S(u) —v)NJ, .

Here the integrals J, are given by

1 " E, +E, exp(six)
2v, 1+S„+S~ cos(x)

(A4)

1 -" E, + E, cos(x)
2w, 1+S„+S& cos(x) (A5)

These may be evaluated by straightforward means
and are seen to be

E~ 1+S~ —E~S~/E~
(A6)

In this appendix we derive Eq. (39) for the strong-
signal gain of a homogeneously broadened medium
subject to a two-mode bidirectional ring laser
field. We suppose that the mode frequencies and
wave numbers are equal (v+ ——v = v, K+ ——K =K),
but allow the intensities to vary. This is obviously
a special case, but it does provide some insight
into the nature of the saturation mechanics. In the
REA the equations of motion (I 28) and (I 29) for
the populations have the steady-state solution

D(z) = p„- p~~ = N(z)/( I + S„+Sq cos(2Kz)], (Al)
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This with Eq. (A4) for (P, and Eq. (I 86) yields Eq.
(39) of the text.
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