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A Lamb semiclassical theory is developed for multimode, mode-locked laser operation. The equality of
frequency spacings between adjacent modes causes population pulsations generated in the nonlinear atomic
response to be integer multiples of the adjacent-mode spacing. This allows the atomic response to be written

in terms of Fourier series, thereby reducing coupled differential equations of motion to algebraic equations
ultimately expressible in terms of a continued fraction. A unidirectional ring configuration is assumed so that
the more complicated spatial dependence of standing waves is avoided. Reductions are made to the rate-

equation limit and to the special two-mode cases of bidirectional ring operation and single-mode, standing-

wave, gas-laser operation. Numerical analysis of the equations is motivated. Specific results are given in the
following (companion) paper.

I. INTRODUCTION

A rigorous laser theory particularly suited to
Brewster-window gas lasers has been given by
Lamb, ' who described the laser by a classical
electromagnetic field and assumed the active
medium was made up of thermally moving atoms
whose response to the field was governed by the
laws of quantum mechanics. The field was taken
to have the very general form

E(z, t) =
2 Q E„(t)exp[-i[v t+ p„(t)]]U„(z)+c.c.,

n=l

—p (2)

(v„„+y„„,) —(v„+P„)=(v„+P„)—(v„,+P„,)

where the N amplitudes E„(t) and phases Q„(f) are
slowly varying functions of time, v„ is the optical
frequency of the nth longitudinal cavity mode, the
wave number K„=(n+n, )z/L, and L is the length
of the cavity. The self-consistency requirement
that a quasistationary field should be sustained by
the induced polarization led to equations which de-
termine the 8„, P„, and v„ in terms of the laser
parameters. Partly because of the generality, it
was not obvious how to integrate the atomic equa-
tions of motion (Schrodinger's equation) exactly.
Lamb used third-order perturbation theory and
considered up to three-mode operation explicitly.
His approach was subsequently written in a com-
puter-oriented version by Sargent, Lamb, and
Fork' which allows the analysis of many-mode
operation. '

An important special case of the multimode
field (1) is that for the mode-locked operation
which we define by the conditions

that is, all beat frequencies between adjacent
modes equal the same constant, n. —= ', c/L -[Con.-
dition (2) could be relaxed, allowing a pulse train
to build up and decay away, but condition (2) is es-
sential for mode-locking. ] This condition repre-
sents a considerable simplification of (1), for all
combination tones produced by frequency beating
in the nonlinear medium coincide with the mode
frequencies or are placed some integral multiple
of & away. This allows one to expand the atomic
polarization and the population difference of the
medium in Fourier series. These series reduce
the atomic equations of motion to sets of differ-
ence equations which can, in turn, be written as
infinite continued fractions. Because the medium
has finite bandwidth, the fractions can be trunca-
ted numerically on a computer for the two-mode
case. For higher-mode operation we have found
it more convenient to work directly with the popu-
lation-pulsation recursion relations. We follow
this procedure considering first the unidirectional
ring laser, for which the mode functions are given
by

U„(z) =e"" . (4)

The success of the Fourier-analysis continued-
fraction strong-signal theory as applied to the
two-mirror standing-wave laser by Stenholm and
Lamb' and Feldman and Feld' prompted the appli-
cation of that approach to the bidirectional ring
laser. This was done by Menegozzi and Lamb, '
although they did not obtain strong-signal numer-
ical results.

In Sec. II, we give self-consistency equations
for the field amplitudes and phases for the general
unidirectional multimode case. The stable, sta-
tionary solutions of these equations yield the mode-
locked fields predicted by the theory. In Sec. III,
we calculate the polarization of the (possibly) in-
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homogeneously broadened medium in terms of the
Fourier coefficients for the density matrix of the
medium. In Sec. IV, these coefficients are deter-
mined from the atomic equations of motion. In
Sec. V, the rate-equation approximation (REA) so-
lution is given. This contains no population pulsa-
tions and hence cannot predict mode-locking (phase
information is lost). ' Nevertheless, it provides
starting values for numerical analysis and casts
some light on free-running operation. In Sec. VI,
one- and two-mode operations are considered.
The transformations allowing the standing-wave
and bidirectional ring-laser configurations to be
included as special cases are presented. In Sec.
VII, we motivate the numerical analysis required
to obtain solutions of the field self-consistency
equations. This includes discussion of truncation
of the continued fraction for the polarization of
the medium, an iterative solution of the recursion
relation for the Fourier coefficients for the gen-
eral multimode case, a many-variable Newton-
Raphson zeroing procedure (for calculating E =0,
etc. ), and an iterative solution of the mode-locking
conditions Eq. (3). Specific results for two- and
higher-mode ring lasers are given in the following
(companion) paper. '

We note that Risken and Nummedal' have studied
the mode-locked unidirectional ring laser in the
time rather than the frequency domain, and ob-
tained pulsed-field solutions. Our specific numer-
ical studies have dealt with only a few modes in the
frequency domain, while well-defined pulsed solu-
tions would require many modes. In principle,
such a numerical analysis based on the present
paper should agree with their results, but it would
require large computational facilities. Aspects of
the amplifications of spontaneous emission in
laser amplifiers (e.g. , noise amplifiers) can also
be understood on the basis of our equations. "
Previous motivation for the present work has been
given by Sargent. "

E„= ,'(—v—/Q„)E„——,'( v/~, ) Im((P„),

v„+ P„=0„——z'(v/z, ) Re(6„)/E„,

(5)

(6)

and the passive cavity frequency Q„=K„c. We are
concerned with the unidirectional ring laser with
mode functions (4) for which the electric field (1)
is

1 N

E(z, t) =2 g E„exp[-i(v„t+ p„-K„z)]+c.c.

We are interested in solutions satisfying the
mode-locking condition (3). This can be written
conveniently in terms of the relative phase angles

g„=2(v„t+ P„) —(v„„t+p„„)—(v„,t+ p„,) (9)

as

g„=0, for n = 2 through n =X —1.
From (6), we see that

(10)

~ 1 v 26' 6'n+ y (Pn n+1 n-y
2 ~0 &n &n+i &n &

Our problem thus reduces to finding the zeros of
Eqs. (5) and (11).

Without loss of generality, we choose the vn to
contain the complete frequency dependence of mode
n and set $„=0. Then (3) reduces to

v„= v, +(n —q)4,
and the relative phase angles (9) become

(12)

where the complex polarization coefficient 6'„ is
defined in terms of the polarization of the medium
P(z, t) by

P(z, t) = —g 6'„(t) exp[-i(v„t+ P„)]U„(z)+c.c.1

n

4n 24 n 4n+g 4n-1 ' (13)
II. FIELD SELF-CONSISTENCY EQUATIONS

From Maxwell's equations, the self-consistency
equations for the general field (1) are found to

e1,12

There are many possible phase relationships.
We give two here by way of illustration. For this,
it is convenient to write the electric field (8) as a
complex envelope multiplied by a carrier wave,

E(z, t) =-,'[exp[-i(v, t+ p, —K,z)]) g E„exp[ i(p„—p,-)]exp[-i(n —q)(nt —zz/L)) +c.c. ,
n

(14)

where the first term in braces represents the car-
rier wave, and the second the complex envelope.
Consider first the relationship

or equivalently

y„= y, +(n -q)5, (16)

y„=0, (15)
for some phase factor 5. The field (14) reduces
to
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E(z, t) = —,
' exp[-i(v, t+P, K-,z}]

x QE„exp[-i(n —q)(tzt+5 —zzz/L)]+c. c.

(17)

Here we can choose our time origin such that the
5 cancels. Thus without loss of generality (15) is
equivalent to equal phases,

quency v, +BI'cos(&t —zzz/L). This field is some-
times called FM and phases given by (21) are
termed FM." In self-locking problems full FM
operation has not been observed, although FM
phases do occur without the amplitude restriction
(20). This results in a field with amplitude varia-
tions which are less pronounced than those of the
AM case.

for all n and q. (18) III. POLARIZATION OF THE MEDIUM

In particular, at the position z =0, the field is

E(0, t)= , exp[--i(v, t+Q, )] QE„e ""' '+c.c.

(19)

At times equal to integral multiples of 2zz/6, the
exponentials exp[-i(n —q)4t] are all unity, yield-
ing a large value for the field envelope. At other
times, the phasors E„exp[-i(n —q)nt] tend to can-
cel and the magnitude of the envelope is small.
This gives a sequence of pulses in time. For gen-
eral z, the exponentials are all unity at points
spaced by L which propagate along z as a train of
pulses. Because of the large amplitude variations,
this phase relationship (15}or (18) is sometimes
called AM.

In contrast, consider a field given by p„(z, a&, t) = -(i&e+y)p»+ zh 'Q„(p« —p»}, (27)

We consider a medium of two-level atoms with
line center cu as depicted in Fig. 1. We describe
the medium by a population matrix

t

p(z, &o, t) = Q dtox (z, &u, to)p(a, z, zv, t, to),
a=a b

(26)

where p(a, z, ~, t, t, ) is the single-atom density
matrix for an atom excited at time t, in state a = a
or b at the place z. X„(t„&u,z) is the pumping rate
to the zth state and varies slowly enough to be
factored outside the t, integration. Using the
Schrodinger equation for the single-atom density
matrix, one can show" by differentiating (26)
with respect to t that the corresponding equations
for the components of p(z, &u, t) are

E„=E,(Z„,(r) (,
0, n&q

4.=%a=
[1 —(-)' "]zz, n&q

(20)

(21)

p» (z, M, t) = pa~(z& (dy t) . (30)

p„(z, (u, t) =x, —y, p„—ih '(Z„p„—c.c.), (28)

P»(z, ru, t}= Aa —y~P»+ zh '( V„p„—'c.c.), (29)

0, n&q

n

(-1)"2zz, n & q

Eq. (8) becomes

E(z, t) = ,'exp[-i—(v,t+ P, K,z))-
(22}

where J„,(1) is a Bessel function. In terms of
the y„,

'0„= ——,p p E„exp[-i(v„t+qz„K„z)], -(31)

where p is the electric-dipole matrix element be-
tween the upper and lower levels.

We define a population difference

Here the 'U„ is the electric-dipole perturbation en-
ergy for the multimode field (8) written in the ro-
tating-wave approximation,

Using the Bessel function identity

(23)

x P J,(I') exp[-itz(&t —zzz/L)]+ c.c.
D(z, &o, t) —= p«(z, ar, t) —p»(z, &u, t)

and sum

M (z, u, t) —= p„(z, ru, t) +p»(z, &v, t)

(32)

(33)

exp(- i F sine) = g Z, (r) e -'"',
k= -oo

we find, for (23),

(24)

E(z, t) =E, cos[v, t+ P, K,z+ I' sin(At —z-zz/L}],

(25)

which has constant amplitude E, and variable fre-
FIG. 1. Level diagram of atomic medium having a

line center ~.
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with the equations of motion [from (28) and (29}]
1D = X, —&b —y, b D —a(y, —ya)M

Here the average decay rate y„ is defined by
1

Yab 2(ya+ Yb} (36}

—2ig (Uea Pab —c.c.),

1M = ~, + ~a —y.a M —a(y. - y }aD .

(34)

(35)

and is smaller than y, which includes effects of
collisions.

We eliminate the population-sum variable M in
(34) by substituting the formal integral of (35),

t

ee(*, , yl = =, (y, —y, I ) dyD(*, , t leep['y(y-—,y, I]+ (e, +e, I/y,

into (34). One finds

S

D = -y,aD+ —'(y, -ya)' dt'D(z, &u, t') exp[-y, a(t —t')]+ ' N(z, &o, t) —2ik '(V,apb, —c.c.),
OO Yah

(38)

where the population inversion

N(z, ~, t) = A.,/y, —a. /y =N(z, t)W(~), (39)

and where W(~) gives the inhomogeneity distribu-
tion. The inversion N(z, t) is assumed to vary
little during the lifetimes of the atoms and of the
field (Q/v).

Taking a clue from the interaction process used
in perturbation theory, one can see that in the
presence of a field satisfying (2), the polarization
element p„can be written as the Fourier series

Substituting (40) for p,a, we find

P(z, t) = P exp[-i(v t-K z)]

(44)

Identifying coefficients of exp[-i(v„t+ P„-K„z)]in
(44) and (7), we find

p„(z, ~, t) =N(z, &u, t) P P„(~)exp[-i(v t -K z)] .
6'„=2pN d+8' ~)p„u e'~"

where the average excitation is

(45)

D(z, &u, t)=N(z, &o, t) P da(u)exp[ik(&t —az/L)].

(41)

The equation of motion for D is real, indicating
that D itself is real. Hence in (41) we have the
reality condition

d «(~) =da*(~). (42)

The polarization (7) of the medium is given by
adding the contributions of all atoms at z at time
t regardless of their times or frequencies of ex-
citation. This is given by

P(z, t) = du tr(per) = du p„(z, u, t) + c.c.
(43)

(40)

Similarly one sees that the population difference
has a dc term and population pulsations oscillating
at integral multiples of the intermode beat fre-
quency:

L
N =L ' dzN(z, t) .

0
(46)

Our problem thus reduces to finding the p„(&u).
This is accomplished in Sec. IV. Here we have
neglected terms in 6'„which vary in time at inter-
mode beat frequencies, for the nth mode is con-
strained to oscillate essentially within the fre-
quency range 0„+v/Q„- 0„—v/Q„and hence can-
not respond to intermode frequency variations.

IV. SOLUTION OF THE EQUATIONS OF MOTION

In this section, we substitute (40} for p„(z, &u, t}
and (41) for D(z, &u, t) into their equations of mo-
tion (9) and (20) and combine the results to obtain
Eq. (48), the polarization Fourier coefficients
P„(u) in terms of the population-pulsation coeffi-
cients d, (u). We then obtain a difference equation
(53) for the da's alone, which is conveniently writ-
ten in terms of a continued fraction (66).

We have from (27), (40), and (41)

N(z, v, t) g p ( iv )exp[--i(v t Kz)] =-(i&u+y)N p-p exp[-i(v t-K z)]
m m

, i(2y, y, )' 'N p g g—„daexp[-i(v„—k&)t]exp[i(K„—kz/L)z],
n k
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where, for convenience, we have introduced the
dimensionless, complex amplitude B,(~(u) =(y„+ i~(u) ' (49)

pZ e-'~"
(2Y.»)"' (47)

(-i v-)pm= -(i(o+y)pm ——,i(2y, y, )' ' Q gb, d, ,

which yields

Equating the coefficients of exp[-i(v i-K z)], we
find (n —0=m in last sum)

is a convenient abbreviation for a frequently oc-
curring complex denominator. Combining (48)
and (45), we have the polarization coefficients
(we have set 0=m-n):

(P„=—i „gE„exp[i(P„—p )]

d(u W((u)u(&u —v„)d „((u). (50)

P. = 'b(2-Y-Yb)"&(~ —v.) g &b.-db Similarly substituting (40) and (41) into (39), we
find

N g dbik'expik ~t —— =-y„N+d, exp ik 'i —— + ' N
7TZ ~ ~~ Ya»

ab k

+ —,'(y, —y)N+8 e p ik('t —-") Kt„(bk)

+ ~ 2&»~'g'N gpexp i v —v t —i K -K~ +c c.

Equating coefficients of exp[i'(~i —nz/Q] (in the last two sums k =m nand n--m, respectively), we find

d, =5..,+ W&y.,(y.y,') "S(~')g-(8.P„;,—S„*P„-,), (51)

where the complex factor

p(pg) (Yaybhab)(yah+ ) L[g) (y~) ~ (yg)]yayb
(y,b+ik~)' —4(y. —yb)'

' ' '
Yb

Further substituting (48) into (51), we find the relation for the db»one,

y„y(ka) Q g [b„u(v„,„-(u)b„*„„d-;+a((a—v„b)h„*g„-b,(d;], (53)

in which we have used the reality condition (42).
It is convenient to label the N modes of operation as g„.. . , S„. We can then write the dk in simpler form:

db ='b, o- Yob&(») Q
n=Z

N

=5b, o
—Y.P(&') Q

n =].

=5b.o
—Y.P(») g

n=l

i i

N-n-k N-n+k
b.n(...—~ ) P & b.;„;+8.'u(~-. ,) P db„-„;)

i =1-n-k i=]. n+k

Q [h„SfS)(v„„—(o)d„, ;+8„*g(5)((u—v„,)d; „„]

g &8'd+b [&(v-b —~)+&(~ —v; b)].

In this last line, we have interchanged the dummy indices n and i in the second summation. We now define
the subscript j =n —i which runs from —(N-1) to N-l. In terms ofj, Eq. (54) now reads

N 8+ j~S
5k.o ybbF(k') g d&+b g gj,g„-g[B(vo+b (0)+B(&d vn z b)].

n=y+j N

This can be written in the succinct form

(55)

Cgbdy+b =0~
j =-(&-j)

where the dimensionless, complex coefficients 4jk are give»y
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N+ ~g
S„b„*,[B.(v„„—(o) + u(ru —v„, ,)], je 0,

n=1+j ~l

[$(k&)] '+y„g I„[B(v„,k —ru)+&(~ —v„,)], j =0,
0 n=l

k

where the dimensionless intensity

I.= '(P&-.)'/(&'V. rk) (58)

Here we have divided (55) by P(kA) to avoid many
multiplications in the evaluation of (57).

The dc population-difference coefficient d0 is
given by (55) as

(59)

where the dimensionless Lorentzian

&(~ —v. ) = r'/[r'+ (~ —v. ) ] .

We can solve this for d, and find a formula (63)
which shows effects of saturation explicitly. For
present and later convenience we introduce the
ratio ~j of population difference coefficients,

r, =d, /d, ,
ln terms of this, the ratio d, /d, appearing in (59)
is given by the product

(62)

Combining this with (59), we have

We now show that the ratios rj can be calculated
in terms of a continued fraction and its remain-
ders. Then d0 can be calculated from (63)-(65)
and d„,0 is given by (62) together with the reality
condition (42), d, =d,*.

We divide Eq. (56) by d &„»„,write the re-
sulting ratio d, ,k/d &„»,k in terms of the r&, and
find

S j
j

-(8-1),k
cjk II rm+k+ (If-0) k+ 0 ~

j =-(&-3) -(N -2)+ k

Solving this for the ratio x, with the smallest sub-
script,

(66)

we have

-(N -1).k~ -1 ~j+kC (N-2) k+~j ~~ 3~Cj k j.m=1+1&m

This yields the ratio x, in terms of higher z and
thus generates an infinite continued fraction.

For example, consider two-mode operation
(I1I =2, 0 = f); the ratio (67) becomes a simple con-
tinued fraction,

d, = 1/(1+S„+Sk),

where the saturation due to hole burning, S„, is
given by

S„=2—' g I„Z(v —v„),
n=l

and that due to population pulsations, S~, is given
by

c 1 1/(co-1+.c1,1r,1+1) .
For example,

l, l

0, 1 1,1+2

-C l, l etc.
-0, 1 1,1 1,2/(c0, 2 + cl,kr3)

(68)

For l1I =3 (0=+1), the ratio is more complicated:

-2, 1+1

-1,1+1 O, l+1 k+1 1, /+1 /+ 1+1+2 2, l+1+/+1 1+2+i+3

Summarizing our results, we have the amplitude
(E„) and relative phase (g„) determining Eqs. (6)
and (11), the zeros of which are mode-locked so-
lutions. These equations contain the complex

polarization components 6'„, given by Eq. (50).
This equation, in turn, contains the population
difference coefficients d, given by (62) with the
ratios (67). 6'„has been programmed for digital
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computer. Discussion is given in See. VII on nu-
merical. analysis.

W (u) )u((v —v„)

V. RATE-EQUATION APPROXIMATION (REA) SOLUTION

where the hole-burning saturation is given by (64)

S1 = 2 —Q I l $((d —V) ) .
l=j.

(71)

Here the dimensionless Lorentzian Z((() —v, ) and
intensity I, are given by Eqs. (60) and (58), re-
spectively. The steady-state solutions of (5) in
the REA are given by (E„=O)

(72)

which comprises a coupled set of transcendental
equations ln the dimenslonless lQtensltles I„. Nu-
lllerlcRl R11Rlysls ls 1'eqllll'8(i fol' (72) Rs well Rs
for (68) with (11), but the calculation is consider-
ably quicker and provides starting values for the
more elaborate version. Similarly the starting
values for the beat frequency & can be obtained
by calculating the average value of the frequency
dlffel'slices (v„+ (t)n) —(vn ) + If) () llnl 'tile REA,
namely,

1 c 1 vp'N=--—+- (N -1)-'
21 2 Se~y

In the numerical analysis and in the non-mode-
locked case for which the intermode spacing
»& y, and y„ the REA solution for the complex
polarization 6'„ is valuable. In this approximation,
population pulsations are neglected, that is, d&„,
= 0, and the phase equations (ll) decouple from
the amplitude equations (5). Mode-locking cannot
be predicted in this approximation. %'e find the
OQly noQvanishlng coefficients

d &o W((())Z((d - &o,) .Ip 3pf oc)

Q„S&Oy
(79)

%e choose the Gaussian inhomogeneity distribution

W((d) = ()t v 6(d) ' exp[-((d —(d,)'/(A(d)'] (80)

for the remainder of this work. The threshold
condition (78) with (80) can be written in terms of
the plasma dispersion function,

n(y+'(, — ))='K "* d .
)

. ),exp[-(viu)']
y+ l (do —V) + 1KV

(81)

through the coordinate transformation {d—(do =K'U

Rlld 'tile 1'elation 6(()=K((. Tile fullc'tloll (81) ls tllell
written

Combining this with the amplitude equation (5),
we find

&.=g.E.—k(v/Q. )E. ,

where the (saturated) gain of the medium is given
by

1 vp~N
"

W((() )g((d —v„}
2 he, y „1+2(y.,/y)I„Z((v —v„)

'

In particular for homogeneous broadening, the
integral over W(())) is trivial and the gain ('l6) is
given by

1 (vp'N/he, y)R((u —v„)
2 1+2(y„/y}I„Z((v —v„)

'

These results are well known. See, for example,
the book by Yariv' in which a slightly different
notation is used.

%e obtain a threshold condition by setting the
unsaturated (I„=O), central tuned [v= (vn, the line
center of W((v)] gain equal to the loss:

g„(I„=0, v= (d,) =-,'v/Q„.

With (76), this becomes

d~ W(~)
()) vn &((() —vn)

y 1+8„

&(y+I((d. v))—
mn)-( — .)'i(~ )'])

y+i ((d —v)

(82)
VI. ONE- AND TYCHO-MODE OPERATION

For single-mode operation, there are no popula-
tion pulsations (d,„,=0), and the appropriate com-
plex polarization 6'„ is a special ease of the REA
term (70) in which the saturation (64) derives
from mode n alone:

Combining (79), (80), and (82), we have the
threshold condition

1/()) =IP NrZ, (y)/h enr((d.

Furthermore, the polarization (74) can be inte-
grated by partial fractions to yield
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(P„(f)= —(tP'/h «o)NE„[Z„(y'+ i ~ —iv„)

+f(y/y')Z;(y'+I ~ —Iv„)l,

(84)

where the paver-broadened decay constant is

and where Z„and Z, are the real and imaginary
parts of Z.

It is inconvenient to express the gain (76) and
especially the general coefficient 6'„ in terms of
this threshold condition. Specifically, we define
the relative excitation

X =Ã/Ãr =NP'QZ, (y)/. Ee,h~ .

The gain (76) with distribution (80) is then

g„= '» [Q-Z;(y)] '(y/y')Z;(y'+f ~-iv„) . (87)

Similarly, the general coefficient (50) is given by

The frequency-determining equation (6) yields, with

(84) and (86),

v„+b„=f1„+~a»[QZ, (y)1 'Z„(y'+I~- Iv„) . (89)

and the population-pulsation contribution

S~ =c, ,r, +c.c.
Here the ratio r, is given by (68) as

(93)

The two-mode case has considerable formal
similarity with the Doppler-broadened standing-
wave and ring lasers. The theories for these are
given in the Appendix. Neither problem there con-
tains the phase Q„. Qur two-mode case does not
either, for the phases invariably cancel out. In
fact, the coefficients (57) c, ,~S~S„c,„~S,S,*,
and co, have no phase dependence. The bvo-mode
ratio r~ [Eq. (68)] is, in turn, proportional to
c, , and within (68) is always multiplied by c, , ,
so that the phase difference factor exp[i(P, —P,)]
cancels out. Furthermore, the only other place
r~ appears is as y, in the d, and d, of (86), where
the phase factors again cancel. Hence we set the
products 8*,8, and h, S,* both equal to (I,I,)' ~' with
no loss of generality. This simplification does
not occur, of course, in higher-mode operation,
for nonzero relative phase angles (13) exist.

The two-mode polarizations 6', and 6', from (88)
have the explicit values

6', =-ie,3f[Q&mZ, (y)]
'

—((d —(do)
d(o exp, ' S((u —v, )(E,d, +E,d, ),(&~)'

(P, =-iz,X[@V wZ, (y)] '

dcuexp 2' K)(&u- v2)(E,d, +E2do),
-(~- ~.)'

b.u 2

where the dc population coefficient is given by
(63),

C-g, q
1

COL Cllra

, etc. ,
cod cllc-1 2/(c02 cl2+3)

where the coefficients (57) have the simple form

c-i a y,n(V2) [&(vx, y
—~)+&(~—v2 p)] i

c, ,= y„(II,)'"[$(v„,—(u) +n((o- v, ,)], (95b)
2

c, „,=[%(k&)] ' y+„+I„[a)(„„v-(u)+S)((o- v„,)].
(95c)

The population coefficients d, =0*,=dy;.
Appropriate transformations of the fundamental

population-pulsation frequency (6) and the Doppler-
shifted mode frequencies allow these two-mode
equations to be used for the two-mirror single-
mode standing-wave laser and the bidirectional
ring laser. These transformations are summa-
rized in Table I. For the standing-wave laser we
have the additional requirements

E = E, +E2, (I~ = I2 = ,' I), —

6'= 6'q +6'2,
1 I

8~ —8~+ 2g „82 82 —2g .

TABLE I. Summary of the parameters 4 and v for
the two-mode cases.

Unidirectional Standing wave Bidirectional

d, =1/(1+8„+S,),
with the hole-burning contribution

S,=3(y,&/y)[I, &(~- v, )+I,&(~- v, )l (92)

v2 vg

Vg +V
v& -Xv

v —v +2+v
V+ —X&
v +~v
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For the bidirectional ring it has been shown, for
example, by Menegozzi and Lamb' that the effect
of small rotation rates on the self-consistency
equations is to introduce a shift in the empty-cavi-
ty resonance frequencies 0„= ~Kn ~c by an amount
2A80„/I. c, where A is the area enclosed by the
laser path and 8 is the laser rotation rate. Trav-
eling-wave modes are up (v ) or down (v, ) shifted
depending on whether they are going in the opposite
or same direction as the cavity rotation. Hence
in the self-consistency equations,

ft„-0„(2-TA8 0„/I,c)sgnK„= 0„—-', &„sgnK„,

where T is the number of turns if a multiturn loop
ls used.

ization calculations (50), is satisfied to the de-
sired accuracy, typically one part in 10' for the
three- mode ease.

We desire the solution to the coupled set of
equations given by steady-state solutions of (5)
and (ll) (E„=$„=0). We use a multimode New-
ton-Raphson procedure which is based on a first-
order Taylor- series approximation. Specifically,
we seek to establish values a, for each of the
variables x, (these are the E„and P„) which yield
a desired set of values for M functions f,. (these
are the derivatives E„and g„). The desired values
for the functions are zero (steady state). Assuming
the f, can be expanded in a Taylor series about
the g,. one has

VII. NUMERICAL ANALYSIS

Inasmuch as the medium has finite bandwidth,
the population-pulsation coefficients d~ must con-
verge to zero as 0 approaches infinity, allowing
the recursion relation (56) to be truncated for suf-
ficiently large k. Alternatively, especially for
two-mode operation, the ratios r, =d, /d, , must
converge to a value less than unity in this limit.
We can truncate the continued fraction for some
appropriately large index which we call n*. For
analytic approximations and phenomena such as
various types of saturation spectroscopy" n~ may
be as small as 1, e.g. , the case of a "nonsaturat-
ing" probe in the presence of a saturating beam.

While we use the continued fraction for the two-
mode eases, we have found it inconvenient for the
multimode case. Instead the recursion relation
(56) may be solved by an iterative method using
the d's rather than the z's. We have in addition
the exact expression for d, in terms of S„and S~
given by Eq. (63), written here in terms of the d's,

d = 1+8 + ~ "'+c.c.
/=1

(96)

Initially a guess value of 1.0 is assumed for do
and zero for the remaining d~. do i.s calculated
from the exact equation (96) and used in the evalu-
ation of the recursion relation with k =1. This
yields, in turn, a value for dy which is used with
the previous value of do to obtain the remaining
d's appearing in Eq. (96). These new values for
the d's and the old value of d, are used to compute
a new value for d, [Eq. (96)]. Then the recursion
relation is evaluated for d„etc. Using new values
of the d's, the process is iterated, each time al-
lowing the value of k to increase by one, thus
evaluating one higher-order d~. The iteration is
terminated when a check of the recursion relation
(56), normalized to d, for the d's used in the polar-

+ E],. x~ —a) +' '',

where

Truncating the series with the first-order terms,
one inverts (96) to find approximate values for the

Q~y

~N & +1 +N

(98)

When possible, it is desirable to calculate the
derivatives exactly. In our case, we must find
them numerically. A simple set of guess values
for the a, consists of the E's determined from a
REA and 0 for the relative phase angles. Taking
these values for the x&, we use (97) to find better
values for the a, We iterate this procedure until
the f's are sufficiently close to the desired values
(for us, 0).

In addition to the Newton-Raphson zeroing pro-
cedure for the intensity and relative phase equa-
tions, the condition of mode locking must be met,
that is, the modes oscillating in the laser must be
equally spaced in frequency. To this end we cal-
culate the pulled oscillation frequency from the
self-consistency equations for the frequency (6)
for each mode. In the unlocked case these would
be used as the next trial values for the oscillating
frequencies; however, in our case we must cal-
culate a new mode separation and average pulling.
The mode separation is computed as the average
separation between pairs of pulled mode frequen-
cies. The average of the frequency pulling for the
individual modes is used for the frequency shift
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for the new set of equally spaced frequencies. In
effect, a straight line is fitted to the pulled fre-
quencies, with the condition that the resulting
points have equal mode spacing. These new mode-
locked frequencies are used in the next iteration
during which the intensity and relative phase equa-
tions are zeroed. This process is repeated until
the errors in periodic mode spacing from E(l. (6}
are 1 Hz or less, or until convergence appears un-
likely, that is, mode locking does not take place.

Failure of the zeroing procedure or the mode-
locking iteration to converge means that either no
mode-locked solution exists for the parameters
chosen or that the numerical procedure cannot
handle the configuration. Convergence does not
imply stability, but the latter is determined im-
mediately from the matrix of partial derivatives,
In fact, using the first-order Taylor series about
the points a„

f((ox+ &it . t odd+ &dd)
= Q E(yet .

Since the f's are the derivatives in (luestion for a
small-vibrations analysis, we see that the small
deviations e, return to 0 (and hence that the solu-
tion is stable) provided the eigenvalues of the ma-
trix I' are all negative.

%'e generally calculate the matrix E with pre-
vious intensity and relative phase values that were
used to predict the final values. Thus for a sta-
bility analysis either a new matrix I' must be com-
puted or the difference in the old and final intensi-
ties and phases must be small. Typically, in the
preceding step, the equations were zeroed to with-
in 1 part in 10', and the equations were mode
locked to within 5-10 Hz in that step. The final
values ordinarily were 10 '0 for zeroing and 1 Hz
for mode-locking. Thus, usually, the last matrix
of partial derivatives obtained may be legitimately
used for the stability analysis. It might be noted
that the stability analysis applied with less strin-
gent error requirements may predict unstable re-
sults when the final values give a stable solution,
or vice versa. We refer the interested reader to
Hambenne" for a more detailed discussion of the
material in this section.

E(z, t) = ,'E-(f)e '"' sinKz+c. c. (Al)

The self-consistency equations for the slowly
varying amplitude E(t) and for the optical frequen-
cy vare

E= ——,'(v/Q)E ——,'(v/e, ) Im(O'),

v = fl- —,'(v/e, ) Re(&) /E,

(A2)

where 6' is a complex, slowly varying polarization
component (in Lamb's theory' O' =0+f8, where C
and S are the in-phase and in-quadrature compo-
nents of the atomic polarization} defined in terms
of the polarization of the medium by

P(z t f) = z(P exp( svf) slnKz + c.c. (A4)

Our problem reduces to the calculation of the po-
larization component 6'.

We consider a medium of two-level atoms with
line center (g as depicted in Fig. 1. %e descxibe
the medium by a population matrix

{A6)

In these equations, 'U,
~ is given by the electric-di-

pole perturbation energy for the single-mode field
(Al } (in the rotating-wave approximation),

=- ~PEe '"'sinKz.
a5 (A7)

The equation of motion for the population difference
D of (32) is given by (38), in which we set
D(z, (o, f') -D{z',v, t'), where z' is given by

t ( , tt) P f, dt=f d , (tz„ , t )p( a *,tt, t t ), ,
o= a)Q

x6(z - z.- v (f - f,)) t

where p(c(, z, v, f, f,) is the single-atom density
matrix for an atom excited at time I;, and place z,
to the state a with z component of velocity p.
X (z„v, f,) is the pumping rate to the oth state
and varies slowly enough to be factored outside
the t, integration. Using the Schrbdinger equation
for the single-atom density matrix, one can
show" that the corresponding equations for the
components of the population matrix are just those
for p{z, &o, f), E(ls. (2'l}-(30), where the time de-
rivative is given by
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APPENDIX

The single-mode standing-wave electromagnetic
field has the form

and the frequency ~ is replaced by the z compo-
nent of velocity, v.

The solutions of E(ls. (27) and (38) written for
p(z, v, t) are given by Fourier series in terms of
the position coordinate z. To understand this ap-
proach, recall in Lamb's perturbational approach
that to zeroth order in the electric dipole interac-
tion energy (AV), the population difference is
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D(z, v, t) =N(z, v, t) g d, (v)e'" '.
k=-~

(Al 0)

Here time dependence not due to excitation varia-
tion could be included in the expansion coefficients
p and d„. We restrict our analysis to steady
state.

In terms of (A9) the polarization of the medium

given simply by N(z, v, t), which contains no opti-
cal frequency time or space variations. The first-
order contribution to p,~ contains the factor sinKz
corresponding to one interaction with the electric
field. The second-order term for the population
difference contains two interactions and hence has
sin'Kz dependence, and the third-order term for
p„has sin'Kz dependence. In general, we see
that the population difference D contains even
powers of e' ' and p„contains odd powers. Thus
we expand p„ in an odd-term Fourier series

p.»(z, v, t)=N(z, v, t) Q p (v)e" "'*K'e ''"'

(A9)

and the population difference in the even-term
Fourier series

is given by

v{*,t) f=e p.,{*, , t) ~ c . . (Al 1)

L
6'(t) =4P(2iL) ' dz(e&K, e 'K*)-

0

x I.-8 *-' "f z.*
Pm

00
m

= 2i5' dv pp p (A13)

Hence our problem reduces to finding P, and p, .
Substituting (A9) and (A10) into (27) for p„and

using the time derivative (A6), we find

Projecting this and Eq. (A4) onto sinKz and identi-
fying negative frequency components, we find the
complex polarization component

2 L 00

&P(t) =2P—(2i) ' dz sinKz dv p„(z, v, t) .
0 00

(A12)

Substituting (A9), one has

N g p [(2m+1)iKv —iv]e' '"' 'e '"'= —(i&u+y)N gp e" "'e

tN(PE/@)e-iv((2&) ((e (K-z eilce)-g d e»»&Kz

Equating coefficients of e" ""', we have

p = —,'(PE/h)$[(2v) +1)Kv+ ({)-v](d „—d„) . (A14)

Similarly substituting (A9) and (A10) into (38) for D, we have

Ng d, (2kiKv)e'"K'= —y„NQ d„e'" '+ ' 'N+-, (y.-y, )'N g&„(2kKv)e "' '
k k ab

+ 2&N (eiKz e (Ke) (pme-( m~&)&zK pze&&mv&)iICz)&pg
@2. e e m

Equating coefficients of O'"'E', we have

d,[2kiKv+y, »
——,(y. —y»}B, (»2k Kv)]

= (r.r, /r„) 5, .+-'(PE/@)(p*, p*, , + p, p, ,)-—
or

d, = 5», + PE(ky, y») 'y, »5'(2kKv}(p*»- p*», +p, —p», ),

Equation (A15) leads to a two-mode interaction
in which we identify

v~ = v —Kp, v2 = v+Kv, 4=2Kp. (A17)

We have further that vy k vy k+ etc. Then Eq.
(A14) is written

(A15) p = —,'(PE/h)B({d —v, )(d „—d ) . (A18)

where the complex factor

5 (2kKv) = ~z[S,(2kKv) + 5)(2»k vK)]( yy/y», »} . (A16)
In terms of this, the complex polarization compo-
nent (A13) is then
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e'(e)= —, «E—N(d«)' f d e "'" [d'e( —)(d,—d, )+, e(e—,)(d, —d, )J, (A19)

or in terms of the relative excitation 2 of (61),

(P(t) = —,ieo—X[QZ,(y)v zz] 'I' t' dv e ("~") [B((d—v, )(d, —d, ) —$((d —v, )(d, —d,}].
m (zo

(A20)

Substituting (A18) into (A15), we eliminate p:
d» = 6», + ,'y, «I—F(k&)(B(v„»—(d)(d», —d») —$(v, , »- (())(d» —d»„) + K)(&u —v, «)(d»„—d„) —B((d —v, »)(d» —d», )],
where the dimensionless intensity is

I= ', (VE}'/-a'y, y, .

This becomes

d, = e, , + —,
'
ey.,«(ed)(d, , lee(, ,— ) + ee( —,,)]

2

- «, E (ee( „., — )+de( — . ,)I ~ d, ., (ee( . ,— ) + de( —,,)I)
n=l

(A21)

(A22)

z, »"»ez+ 0»d»+c-z, »d»-z

where the coefficients are defined as

c, ,= y.,i[I)(v„»—(u) +n(~ —v, ,)], (A 23 a)

This yields the recurrence relation for d„, , frequency difference between the two running
waves, that is,

D(z, v, t) =N(z, v, t) P d, exp[ik(2Kz —(t))],

(A25)

,c,=-4[ 6( kA)]
' where the relative phase angle is

(t' = (v, —v )t + (t), —(t) (A26}

-y„I S v„,~- ~ + X) (d —v„~
n=l

(A23b)

The off-diagonal element p, ~ is similarly expanded
as

c, »=y„I[K(v„» ~)+S(&u- v, „)]. (A23c)

These are the same as the recursion relation (36)
and coefficients (71) for the two-mode unidirec-
tional ring laser with I, =I„except that co „con-
tains minus signs and a factor of 4. Note that the
minus signs can be uniformly canceled throughout
the continued fraction, yielding an overall minus
sign. This sign, in turn, cancels that for -d„ in

(A19), so that Eq. (A19) has the same form as the
unidirectional, two-mode versions of Eq. (90).

Now consider a ring laser with the two oppositely
directed running waves given by the field

E(z, t) = 'E, exp[-i(v, t+ (t), ——Kz)]

p„=N(z, v, t) exp[-z(v. t+ (t), —Kz)]

x g p exp[izzz(2Kz —(t))] . (A27)

v =v —Kvl +

V2= V ++V,

4= v, —vl = v —v, + 2K' .

(A29)

(A30)

(A31)

Substituting (A27) and (A25) into the equations
of motion and performing the appropriate projec-
tions, we find

P = —,'i(V/tz)X)(m—t»+(d —v, )(E,d +E d „),
(A28)

where the frequencies

+E exp[-i(v t+ (t) +Kz)]+c.c. (A24) Similarly we find

We describe the atoms by the Doppler-broadened
population matrix (A5) as for the standing-wave
case. Our Fourier expansion for the population
difference is almost the same as (A10) for the
standing-wave case, but must include the possible

d, = 6», +i(tI/n)y. «(y.y«) 'S(kn)

x [E,p', +E P*», —E, p» Ep „,], -
where 0(kh) is given by (52). Combining this with
(A28), we obtain the recurrence relation
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'&.. ((.(-)'"I»»(»...— )+»»( —», ,)]) . (A32)

as th«wo-mode case of our multimode result (55). The physics, of co„rse
ent, and this fact is reflected in the way in which the frequencies (A29)-(A3l) are evaluated in the integral
over the inhomogeneous medium. The length of the polarization calculation on the computer is the same
in either case.
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