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Small-signal-pulse growth in a homogeneously broadened amplifier vnth swept gain is discussed from a
quantum-mechanical and a semiclassical treatment. The regime in which Beer s law fails is discussed
analytically. There are 6nd nonexponential growth and the formation of steady states in the small-signal
regime.

I. INTRODUCTION

In the past, the subject of small-signal growth
in a laser amplifier has received extensive in-
vestlgataon for both pulsed" and continuous pump-
ing" (cw) modes of operation. These calculations
are usually carried out in the Fourier domain,
and the growth is characterized by Beer'8 law."
The condition of validity for Beer'8 law is that,
ln the absence of saturation, tile combined statis"
tical plus quantum-meehanieal averages of the
popQlatlon invex saon must vaI y slowly ln time com-
pared tothe inverse bandwidthof the amplifier. For
lasers as they are currently operated, this condition
applies. This is due to the manner in which laser
action is usually achieved, , namely that once a
pump mechanism is found, it is sealed up until
the gain is high enough for the medium to lase.

In a recently proposed x-ray laser scheme', a
different approach was outlined. There the pump
was fixed, and the gain was increased by removing
all the extraneous effects, such as Doppler bxoad-
ening, that make the gain small. In the limit of
hlghe8t possable gain pea unit population inveI'saon,
i.e. , with only natural broadening and instantaneous
excltRtloll of Rll Rtonls Rt R tlllle f = z/c ( swept
gain*'), the conditions of validity for Beer's law
no longer apply. As a result, one sees anomalous
behavior in the small signal regime. These ano-
malies wele found in previous studies" that used
numerical techniques to investigate this problem.

In this paper we present an analytical discussion
of the growth of pulses in the small-signal regime
of a eollisxonless homogeneously bx'oadeIled ampli-
fier. TM.S discussion applies ln principle to gen-
eral level decays and to the possibility of continu-
ous pumping, 'and allows a discussion of both the
normal and anomalous regimes of pulse growth. '
The method could be further generalized to in-
clude collisions, but the analytical procedure
breaks down if one tries to include Dopplex broad-

ening. The development also applies to both semi-
classical and quantum descriptions of the problem.

In Sec. II we discuss the equations and their so-
lution. We adopt the policy of giving only a limited
discussion of special cases in order to get to the
answer as expeditiously as possible. The methods
of generalization of the equations are discussed
extensively in the literature, "and the generali-
zation of the solution is then straightforward. In
3ec. III we choose a particular example to demon-
strate the most important anomalies, namely:
(a) that the pulse grows as exp[(8')' 'j rather
than the usual exp(gz). Thus the growth rate of
the pulse vanishes asymptotically; (b) when one
includes a finite loss, the semiclassical descrip-
tion (i.e., a buildup from an initial pulse rather
than internal sources) predicts that the pulse van-
ishes in the limit z-~ independently of the value
of the gain; (c) a quantum description (i.e., a
buildup from internal sources) leads to the pre-
diction of steady states in the small-signal regime
of the amplifier.

In the Appendix we show that the normal behavior
is recovered from our description in the limits
where one expects it to be valid.

II. FORMAI. DEVELOPMENT

A, Basic model

In a "swept gain" scheme, atoms are created
sequentially in an excited state; that is, at loca-
tion z on the amplifier (z) axis, an atom is created
in an excited state at time f = z jc. We describe
each atom as a two-level system, and discuss
here the special ease in which the decay goes from
the upper to the lower level. Generalizations to
other cases are mentioned at the end of Sec. IIB.

Mathematically, the pr"oblem of the buildup of
an electromagnetic pulse in such an amplifier re-
duces to an analysis of a linearized version of the
following equations':
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dp, 2
—S= ——S- S(8 +8)2&p + +

S3= —y(g+ Sq)+ [S (g y lie)

—(Sp+ &z)S ~,

Here p = i —z/o denotes a retarded time, y is the
Wigner-Weisskopf decay constant, z represents
losses due to scattering and other sources of un-
saturable absorption, p is the dipole matrix ele-
ment, X is the density of initially excited atoms,
and (d may be considered as either the field or
the atomic frequency since by hypotl1esls we only
treat homogeneous broadening. S' and 8, are re-
lated to the single-atom spin operators (denoted
as o;) by

S'= 0) e" "6 z -z, ,

ation field" 8'„, which arises from the atomic
sources, is responsible for the amplification pro-
cess. 8~ plays the role of a Langevin noise source
and is fundamentally related to the decays by the
fluctuation-dissipation theorem. (A similar noise
source associated with z has been left out since
it plays no role here. )

(d) The process of handling the decays has the ef-
fect of removing the singularities at z = z„which
are implied by the definition of S and S3 From
now on the variables are regarded as continuous
functions of z.

(e) Equation (1) is very similar to a, semiclassical
system; to obtain the latter, take expectation
values and assume all products factor; schemat-
ically (Sb) = (S) (C'). In the standard usage,
semiclassical theory describes the buildup from
an incident pulse with no internal noise. One then
needs a state (g) that is different from the vacuum,
and an incident field that is given by (g~br~g).

with an analogous expression for S, which does
not contain the term exp(i&up) Her. e z& denotes
the location of the jth atom.

In this paper our primary goal is to compute to
a good approximation the field intensity along the
amplifier axis as it builds up from the vacuum.
For convenience we work with a quantized field,
denoting the vacuum state by )4). We regard the
operator equations (1) as being approximate Heis-
enberg equations of motion in the following sense:
Namely, we expect to obtain to good approximation
the same expectation values in the regime of in-
terest that we would have obtained using the unap-
proximated Heisenberg equations. In other words,
if E'+ E is the full field operator and 8 =—8~
+~

(2)

along the axis of the amplifier.
At this point we make a few remarks concerning

our approximations.
(a) We emphasize that the validity of the approxi-

mation is guaranteed only in the sense of (2). For
example, the plane-wave description, which does
violence to the isotropic nature of spontaneous
emission, would surely be invalid away from the
amplifier axis.

(b) Although we have tailored our approximations
directly toward this propagation problem, a heu-
ristic (but systematic) derivation shows that ap-
propriate modifications permit analysis of quite
diff erent physical situations. '0

(c) We have written 8'= Sr + 6'„ in order to in-
dicate the manner in which decays have been in-
troduced. gr' denotes the slowly varying (in time)
amplitude of the free field operator. The "radi-

B. Linearization of the equations

The development of the equations in the small-
signal regime is obtained in a straightforward man-
ner by analogy with the standard perturbative dis-
cussion as given by Lamb. ' We remark only about
a few points in the logical development where the
operator and semiclassical derivations differ.
First, the free operators considerably complicate
the discussion. In the present case we take the
state of the system to be the vacuum in so far as
the field is concerned, i.e. , br'~Q) = 0, so that
terms containing 5~ do not contribute to the an-
swer and we ean ignore them for this discussion.
To zeroth order, the solutions are found by dis-
carding all terms in (1) that contain the field op-
erators and by solving the resulting equations.
To find the next order, one substitutes the zeroth-
order result into the terms containing 8~ and

writes the resulting inhomogeneous equation in
integral form. This is now sufficient to give the
small-signal growth, so the iteration process is
terminated at this point. The result for S is

S (p z)= S (0 z) e ~"i'

&S:(&'.z)&z(p', z),
where S,' is the zeroth-order approximation for
S3. The final step in linearizing the operator equa-
tions involves treating S,'(p, , z) as a c number. This
is a standard step which is obvious on physical
grounds but which has received little discussion
in the literature. At this stage it is convenient to
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particularize to the ease of a spatially homogeneous
medium so that 9,' is no longer a function of z. One
then substitutes Eq. (3) into (1) to ob«tn

"ez(~', z)

+ pe ~~r2S (0, z}. (4)
2'FSN

sions) is the restriction to the particular initial
data in (7) which is appropriate for spontaneous
eBliss ion,

In ordex to establish this xelationship more
closely, it is useful to see how one constructs
answers from G. In the quantized description, the
intensity is given as

(f(~, z) &
= &~ (I, z)~'(P, «) &

Equation (4) applies to more general situations
than the derivation indicates. No matter what type
of decay is under consideration, the function n(p, ')
represents a statistical and quantum average small
signal population inversion (normalized to unity
at its maximum). The decay constant j'/2 has been
replaced by 1/T„where T, represents the general
decay time of the polarization. " The explicit
source term [the one containing S (0, z)] is unaf-
fected by considering different decay schemes.
Modifications that arise from including an extended
(noninstantaneous) excitation are also straightfor-
ward and given in Refs. 7 and 9.

C. Connection with semiclassica1 theory

The procedure fox reducing these linearized op-
erator equations to semiclassical equations is
straightforward. The details are found in Ref. 7.
Here we emphasize the physical interpretation of
the reduction.

By definition the operator Sz(p, z) vanishes on

the boundary z = 0. Therefore, the only boundary
conditions that contribute to g ~ come from the
finite source terms at p = 0. Moreover, since the
operator equation (4) is linear, its solution can be
written as a lineax' combination of these source
operators S (0, z),

ea(p, z) = dz' G(p, z -z')S (0, z).

Substituting this form into Eq. (4), one sees that
6 satisfies

du'e '" " ""s(u')G(V', z - «')

&G(p~ z «)~

with the initial condition

G(p, 0) = G, e "~ra,

where 6, is a eoeffieient which measures the mag-
nitude of the spontaneous emission. This homo-
geneous equation is precisely the same as the
semiclassical equation, whose derivation was
sketched in Sec. IIA. The only difference between
G and the semiclassical field (other than dimen-

(f(g, «)) = dz'dz" G(p, z —z') G*(p, z -z" )

( S' (z) S (z') ) = X Ia I' 5(z —z'),

where In I2 is the population in the upper state.
Then, using (1}and transforming to z" = z —z'
gives

(10)

&f(), z}&=ALII I' «" IG(u, z")I'.

Thus, the picture given by the quantum theory
is straightforward. Since we have restricted our-
selves to the small-signal regime of the amplifier,
the equations are linear in the electric fieM. In
this limit the superposition principle is valid, and
one can calculate the amplified spontaneous emis-
sion by treating each source separately from all
the others. Each atom, labeled by its position z',
emits a coherent pulse [see Eq. (V)j which is amp-
lified by stimulated emission. This amplification
is described semiclassically. Since the sources
are statistically independent of each other, the
final intensity is an incoherent superposition of the
semiclassical solutions, which is described by
Eq. (11).

If we call I„ the semiclassical intensity [given,
within a constant, by IG(p. , z) I'J, the two theoret-
ical approaches are related by

«" f„(V,z" ).

In the discussion in See. III we will use the sub-
sex'iptmg in this form to identify and coDlpai e the
semiclassical and quantum-mechanical results.
One final point worth mentioning here is that this
quantum-mechanical formulation is equivalent to
a semielassieal description of spontaneous emis-
sion as a stochastic random function provided the
stochastic charaetex'istic of the source is chosen
correctly. Precisely, consider Eq. (4) as a sto-
chastic differential equation for a random class-
ical field 8s(p. , z; Q) (rather than as an operator

x(S'(z')S (z" ) ). (9)

If, as is the normal ease» the atoms ax'e pi'epai ed
randomly, then
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equation). In this interpretation the ra.ndomness
is introduced through the source S (0, z;0) which
is treated as a prescribed random function with
zero mean and the first-order correlation function
given by

(s(0, *5*{0,z'))-=f t'(Q)[s(o, z;()))'(o, z;{))]4l

=5I]a P()(z —z').

Then, the mean intensity of the stochastic field
(()z is given by (11), just as in the quantum-me-
chanical formulation. The advantage of the quan-
tum-mechanical approach is in setting up the prob-
lem, not in the solution of the final equations. Fi-
nally, for clarity we remark that the "sc"sub-
scripting, such as in Eq. (12), denotes determin-
'stic la s cal theo y a d ot the stochast c
theory.

D. A representation of the Green's function 6

In this section we derive an explicit representa-
tion of the Green's function G(p, z) which, as we
have seen, will be used in both the quantized and
the semiclassical approaches. The function t" is
defined by Eq. (6), together with a prescribed
boundary condition at z = 0 as given by Eq. (7).
[Here we seek G only in the first quadrant of
the (p, z) plane; it is chosen to vanish in the other
three quadrants. ]

The kernel in Eq. (6), exp [(g' —p)/Z', ] s(~'), is
factorizable in the form f(p)A(p'). Although our
analysis applies whenever the kernel factorizes
in this fashion, we restrict this discussion to the
particular case of interest here in order to em-
phasize the physical quantities that come into the
transformations. First, we place Eq. (6) in the
form

whe1 e p ls defined by

This quantity P., called the reduced time, " has
been used previously" to transform a nonlinear
semiclassical problem with decay into the sine-
Gordon equation for the special case we discuss
in Sec. III. We use it here to reduce a much wider
class of (linear) problems to the Klein-Gordon
equation (15}. Depending upon the specific decay
scheme, n(l(, ) is either always positive (as in the
case of Sec. III) or it is positive for l(, & p, and
negative for p & p, (as in the example discussed
in Sec. IIA). In the first case the reduced time
l((p) is a monotonically increasing function of p,
while in the latter case P(p) reaches a maximum
at p. = p, . We assume first that P(p, ) is a strictly
increa, sing function of p.

Equation (15}with boundary conditions (14) is a
standard Riemann problem. Its solution is obtained
by a straightforward modification of an argument
found in Ref. 12. Specializing to the case q((z)=0,
we find

G (P, z) = G (0, 0) [I,(2 (o' 'z p )' )]

+ I (2b'z(u-V')]''), G(P', 0}dP',
8

(16)

where Io denotes the zeroth-order Bessel function
of imaginary argument. Returning to physical
variables in the case where G (l(, , 0) is constant
(in y. ) yields

,—,G(~, z)= ii' J ((v'ii(~')G(~', *), G (p, , z) = G e "' e & 2 I (2[a 'z J s(p')dy, '] ).

G(p, z)=-e " 2e "'
G((u, z).

Differentiating (13) with respect to p shows G(P, z)
is defined by the differential equation

9'
8+Bz

G= o('n(p, )G,

For that type of decay discussed in Sec. IIA, where
the reduced time P, reaches a maximum at p, ,
representation (17}applies for 0 ~ p ~ p, . Using
G( P(p, ), z) as boundary data [i.e., giving (j)(z)],
one then solves

together with the boundary conditions

G(u, z = o)= G(u, z= o)e"'",
—(p. = 0, z ) = (j)(z) .BQ

(14)

to investigate the domain p. ~p., in the manner
described in Ref. 12.

III. TYPICAL EXAMPLE

In the particular case at hand, the boundary data
G(p. , 0) is constant (in p) and%(z)= 0. Next we
scale the y, variable to incorporate the factor n(p)

A "normal" laser amplifier' ' is characterized
by a condition in which, for one of a number of
different physical reasons, the ensemble average
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time variation of n(p, ) is extremely slow compared
to either T2 [see Eq. (4) for definition] or to the
Doppler time' T,* which affects the small-signal
regime in a manner analogous to T,. In this ease,
the fox'mal development proceeds in the Fourier
domain, 3'' since the kernel in Eq. (4) is a function
of the time difference. Our analysis allows us to
explore analytically what happens when this con-
dition is not satisfied. Since this problem has
already been parametx'ized using numerical tech-
niques, ' we deal with a single simple example that
shows the anomalies that occur. In the Appendix,
we show that the present analysis goes over to the
conventional discussion in the appropriate limit.

Although the decay scheme discussed in Sec. II
permits a. particularly simple derivation of the
operator equation, it yields a reduced time P. which
is not a monotonic function of p. . This complication
is avoided here by discussing a decay scheme in
which both states decay to distant ground states
with equal rates denoted by y. We also take the
system to be collisionless so that I/T2= y. In this
case n(i(, ) takes on the simple form exp (- yi(, ), and
the reduced time p is a monotonic function of g.

Using the solution generated in Sec. IID, we
find from Eq. (11) that

pulse growth (K = 0). Making the substitutions and
integrating as indicated above, we find that

& f(p, z) &
= G~& lu l2

xexp[8gz(1 —e "")]' '. (20)

«(*(& = f ~v (((u, *))

This integration gives

C2g l«( ) &= ' "' Ei[(8gz)'"1-r
2%~

(8 gg) ], /2 Bgz I
Sgz

(22)

Here, Ei is the exponential integral function and
I' is Euler's constant. Ignox'ing the uninteresting
power-law dependences, the pulse energy grows
essentially as exp (8gz)' '. In terms of growth
rates, we see that

The most interesting feature of this pulse is
that its growth does not go as exp(gz), which is
the "normal" growth law discussed in the Appendix.
To make this difference more explicit, we con-
sider the pulse energy, where

(18)

where g= 2n'T, is the usual gain coefficient for
this case as discussed extensively in the litera-
tux'e. " This solution can be put into a somewhat
more transparent form by utilizing the asymptotic
expansion I,(p) - exp(p) j(2wp)( '. We can do this
since the physically interesting features of the solu-
tionoecur for gz» I and p. -y '. Wehave extensively
tested the replacement in the region of interest
and have found that it introduces errors that are
not greater than 1 and are usually much small-
er. The singularity in the asymptotic expansion
causes no significant difficulties. The I, function,
because of its exponential character, has the prop-
erty that when one takes a finite integral a, b where
a«6, the contribution from the lower limit of
integration is negligible. We denote such an ap-
proximation by not writing the lower limit of in-
tegration, i.e. , by writing

dqF'(q) = I" (f ) - I"(u) -I"(h) = de+'(q)-

In other words, we treat the singularity by ignor-
ing it. %'e consider first the case of lossless

d(&&
(g'& dz z

i.e. , the pulse growth rate vanishes in the limit
This is in contrast to the normal case where

the growth rate is essentially constant. To see
this more explicitly, let us treat this as a semi-
elassieal problem, in which case instantaneous
growth rates have analytical significance. In Fig.
1 we show the semiclassical field amplitude 8
(which is equivalent to G in Sec. 11C. ) and the in-
stantaneous growth rate denoted gs(p, ) which is
defined by

»(V, z)
&(u, z)

with the derivative given by Eq. (6). One sees the
dropoff in instantaneous growth rate as the pulse
reshapes away from the initial exponential with
the most rapid drop occurring for small z. When
gz(p) is investigated in detail, its maximum
turns out to be primarily sensitive to the power
law in p. that dominates the rise of the pulse.
The growth rate then falls off due to the increas-
ingly gradual rise of the pulse waveform.

In the semiclassical case, the pulse energy is
given by
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(w ~)
f' (z)= ' "' — (8gz -I)"'

(8gz)' (25)

In Fig. 2, we show the mean steady state as a
function of g/z using the unapproximated Bessel
function. One sees the change from essentially a
simple exponential (g/» = 1) characteristic of the
spontaneous emission to the more customary
shapes associated with amplified light. The curve
g/z = 10 is near the upper bound of the limits of
validity of this analysis. Somewhere in the inter-
val 10&g/~ & 20, depending on the magnitude chos-
en for the noise source, there is a radical trans-
formation from this type of a steady state to the
customary "m pulse" form z'x One final point of
importance is the fact that the fluctuations" in
this system are Gaussian. If one continues the
analysis further, one finds for example that
([f(p, z) —(f,(g)) ]') is just (f,(p))'. This means
that the fluctuations in the steady state are as big
as the pulse itself. Hence, we emphasize the mean

~max

The growth is dominated by the same exp (Bgz)' '
as the quantum solution so that one can at least
qualitatively describe this problem semiclass-
ically. This resemblance is absent in the case of
nonzero loss. Then one has an additional multi-
plicative factor exp(-zz) in Eg. (25). The energy,
and hence the pulse itself, will vanish in the limit

The energy in the quantum description obeys
an equation analogous to (12). Since the area under
curve of l„(z) is finite, the value of ( W'(z) ) given
by the quantum prediction is a constant in the
limit z -~. In other words, the mean properties
of the pulse reach a "steady state" field, denoted
(I, (p) ) since it is independent of z. This is given
by Eg. (18) in the limit z -~ and using the asymp-
totic expansion as

OROXQPe '&"exp[2g(I —e &g/z]

2v[2gzv(I —e»)]&~ &

nature of the steady state.
To summarize, we find in this simple example

a number of features that are radically different
from the normal case. The growth law is charac-
terized by exp(8gz)' '. The growth rate is thus a
monotonically decreasing function of distance, and
when the analysis is carried through in detail, the
rate is found to be substantially smaller than the
one predicted by the usual formulas. As a conse-
quence of this growth law, one finds that steady
states are formed in the small-signal regime of
the amplifier in the presence of nonzero losses.

In this appendix we show how the normal growth
law is recovered from our solution. This is ex-
pected to occur whenever n(y, ) varies slowly com-
pared to T,. We therefore discuss an example in
which the atoms are not all excited at p, = 0, but
rather are excited uniformly over an interval 0 & p.

&T» where T~ »y '. We take the atoms to have
the type of decay as described in Sec. III, in which
case it is straightforward to show that n(p) is con-
stant over the interval (O,T~ ) except for small
domains near 0 and T~ which can be ignored. The
generalization of the source term in Eq. (4) and
the resulting generalization in the discussion of
Sec. IIIC are discussed in Ref. V. Following that
dj.scussxon we find

& &(V, z)) = & 0 I' t-!

dp. og '&~" "0~

&I'.([2''~(u —i .)]'") .
(AI )

We note (a) that p, , enters as a new parameter in
the Green's function that labels the retarded time
at which the atoms were excited and (b) the re-
duced time and the retarded time are proportional
here by virtue of n(p) being constant. (c) The co-
efficient Go has different units in this case from
those in Sec. III. (d) Finally, we emphasize that
the integral over p, , in the above expression comes

I)
~max

FIG. 1. Electric field amplitude h/8 max and its instan-
taneous growth rate g &(p) (on a fixed scale) as a function
of s.

FEG. 2. Shape of the mean steady state Q~(p)} as a
function of the gain to loss ratio g/x.
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from the generalization of the source term de-
scribed in Ref. 1. Writing r' = 2gyz'(p —p, ) yields

-r2
dr r exp, I,'(r) .

gz

(A2)

We are interested in the regime p. » 0, z»0.
In the integrand the neighborhood of z' = 0 is neg-
ligible because of the factor exp( r'-/gz'); hence,
because p. »0, we replace the upper limit of the
r integration by +~ and use Weber's second ex-

ponential integral" to find

X G(I(p, z)) =
2

' dz'exp(-, 'gz')I, (gz'/2).

(A2)

For large z, this last integral takes the form

X g (2G'
( I(p, z)) = ~ ' ~, exp (gz')

~ y v'gz'

(z»0, g»0), (A4)

which is the result one obtains from the conven-
tional discussion of the gain.
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