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Transient processes for incidence of a light signal on a vacuum-medium interface
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We extend the classical Brillouin-Sommerfeld treatment of precursors in several ways: We consider oblique
incidence on an interface, the vector nature of the field, the efFect of different forms of the incident signal, and
the different refractive indices of the media. The amplitudes, frequencies, directions of propagation, and
duration of the signal at all stages of the transient process are calculated. The steepness of the form of signals
is one of the crucial factors for the experimental detection of the phenomena under consideration. The
difFerent possibilities of the experimental detection of the refracted and reflected signals are discussed.

I. INTRODUCTION

When a monochromatic electromagnetic plane
wave with frequency + impinges at an angle n on

a boundary between two media with relative index
of refraction n(&u), the amplitudes of the refracted
(d} and reflected (r}waves are determined by
Fresnel's formulas, which can be written in the
following form [see Eqs. (4) and (5)]:

cosa —[n'(&u)- sin'o]' '
fr cost&. + n' & —sin'n '" '

[n'((u) —sin' o] ' ~' —n'((u) cos tr

[n2 ((u) —sin'n] '"+n'( (g) cos n

ftt 2cosa
cos~+ pl ~ —sin e

2[ n'((u) —sin' n] ' ~'

n' (d —sin'0. ' '+n' cu coso.

Here the indices i and i correspond to the elec-
tric vector of the incident wave being parallel and
perpendicular to the plane of incidence, respective-
ly.

Relations (l) are simple consequences of con-
servation of energy and are associated with pro-
cesses that proceed for all times from —~ to +~.

In order to be able to study transient processes,
we must consider incidence on the boundary be-
tween two media of a wave train limited in extent
{"signal"), for example, a plane wave bounded on
one side,

E'(r, t ) =0, t& (x sino. +z cosa)/c,
=ED exp[ —z (do [ t —(x sine+ z cos n)/c] j,

t& (x sinn+z cosn)/c . (2}

Here the x-g plane is the plane of incidence, z
=0 is the boundary plane between vacuum and the
medium with a refractive index n(&u), and the z
axis is directed towards the inside of the medium.

In order to find the amplitude and phase rela-
tions between the signal (2) and the corresponding
refracted and reflected signals, it is convenient
to write (2) as a contour integral in the complex
co pl. ane in the form of a superposition of mono-
chromatic plane waves:

E'(r t)

exp[ —t (&ut —k„~ ~ r }]

where

Eo"' = ( —Eo coso, , Eo, +Eo sinn),
K~0=[ —Eo cosa, Eo, Eo coso. tanpj,

k, „=[((u/c) sina, 0, + ((u/c) cosa),
k, = (((u/c)n((u) sinP, 0, ((u/c)n((u) cosPj .

The angle of refraction P is related to the in-
cident angle o, by the relation sinn =n(&u) sinP.

The magnetic field is obtained via Maxwell's

(4)

27Ti

X
""'exp[ - t &u [ t —(x sin a+z c ops}/c] j d(d .- ~+iu o

(3)
Now the above transient nonstationary problem

is reduced to a stationary one, because for each
of the plane waves in (3) the laws of refraction
and reflection are described by the Fresnel
formulas (l}with the corresponding refractive
index n(~).

Then the reflected (r) and the refracted (d) sig-
nals are described by summing over stationary
harmonics:
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equation from (4):

„exp[ —i ((ut —k„, ~ r)]
dc' .

(6)

n((u) =[I +0'/((u', —(u' —2iy, (u)]'~'

II' =4w Ne'/m. (7)

Here N, &„y„e, and m are the number per unit
volume, the characteristic frequency, the damping
constant, the charge, and the mass of the par-
ticles considered as an aggregate of charged
harmonic oscillators.

Sommerfeld studied the transient processes oc-
curring immediately after the arrival of the signal.
He showed that the corresponding transient re-
sponse (precursor, or according to Brillouin's
terminology, ' forerunner) is propagated in the
direction of the incident signal with the velocity
of light c in vacuum and is damped as the time
increases.

Sommerfeld also showed that the end of the
transient processes and the onset of the stationary
signal with frequency ~, are mathematically de-
termined by looping the contour of the integrals
(4) and (6) around the pole ~ .

Brillouin considered the intermediate stages of
the transient processes using the saddle-point
method for an approximate calculation of the in-
tegrals. The branch points in the contour integral

It then remains to calculate the integrals (4)-(6).
On the molecular level the formation of reflected

and refracted fields is connected with the forced
oscillations of the charged particles of the mate-
rial, both electrons and ions, in the field of the
incident signal. However, it takes some time for
these particles to execute the forced oscillations.
During this time transient processes take place.
It is obvious that these processes are determined
by the inertial and relaxational properties of the
medium [i.e., by the refractive index n(&u)] as
well as by the character of the incident signal. It
is the object of our work to discuss these transient
processes in the optical frequency range of incident
signals.

The above-mentioned method of reducing the
nonstationary problem to a stationary one was
proposed in 1914 in the classical works of Sommer-
feld' ' and Brillouin' and has been used for study-
ing the propagation of scalar signals in dispersive
media at normal incidence. The refractive index
was assumed to have the following form:

are essential in this case. He found that the
damping of first "Sommerfeld" precursor is fol-
lowed by a second precursor, which then turns
into the stationary refracted signal.

Sommerfeld and Brillouin were interested in the
question of signal velocity in dispersive media and
in the resolution of the associated paradoxes
arising from the theory of relativity. The ex-
perimental investigation of precursors was con-
sidered by them to be impossible with the experi-
mental techniques available at the time.

However, the development of experimental tech-
niques during the last 60 years, particularly the
generation of ultrashort powerful light pulses with

steep wave fronts, may allow experimental verifi-
cation of these theoretical predictions.

Such experiments could be useful for studying the
microscopic properties of media on ultrashort
signals propagating in the media, for example, by
transfer of information along optical channels.
They may also have some relevance in applied
physics, such as the measurement of ultrashort
time intervals.

Following Sommerfeld's article, ' analytic ex-
pressions were found by Skrotskaya eI, «.' for the
beginning of transient processes (first precursor)
when the front of a light pulse impinges on the
border of a medium with a simple refractive index
and also when the pulse goes through a vacuum-
medium-vacuum system. The interest of the last
case lies in the fact that if one can satisfy the con-
dition sine =n(&uo) on the second interface, only the
precursor will be refracted, while if the electric
vector is parallel to the plane of incidence and if
the relation tann =n(ru, ) is satisfied, only the pre-
cursor and not the stationary signal will be re-
flected.

The present work has some relation to Ref. 4.
However, we shall use Brillouin's method, which
will enable us to consider all stages rather than
just the initial stage of the transient process.
Moreover, we shall properly take into account
properties of the medium and of the incident
signal corresponding more closely to the real
situation.

The paper is organized as follows: In Sec. II
transient processes are considered for incident
signals of the type described in Eq. (2) with a
medium of refractive index described by Eq. (7).
These considerations are similar to those of
Brillouin, but in our case the vector character
of the field gives us the possibility of studying
the time variation of the direction of propaga-
tion of the signal as well as the way in which the
Fresnel formulas are established. The properties
specific to an incident step-signal, in contrast to
those for a monochromatic signal (2), are investi-
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gated in Sec. III. We find both the reflected and the
refracted signal as functions of time in analytic
form for a plasma-type refractive index [simpler
than in Eq. (7)]. In Sec. IV we present results of
the analysis of transient processes in a medium
with several characteristic frequencies, i.e., with
a refractive index which is more complicated than
that in (7). The number of precursors is found to
increase accordingly. In Sec. V the influence of
the steepness of the pulse on the transient pro-
cesses are analyzed. It was found that the steep-
ness of the front is a crucial condition for the ex-
perimental observation of transient processes.
Finally, See. VI contains qualitative results, quan-
titative estimates, and conclusions.

II. FORMATION OF PRECURSORS FOR A
MONOCHROMATIC INCIDENT SIGNAL

Let the monochromatic signal (2), bounded on
only one side, with frequency ~o close to one of
the characteristic frequencies cu, of the medium,
impinge on the dispersive medium extending from
z =0, where it joins the vacuum, to g =~. Let us
now assume that the medium is desex ibed by the
refractive index (7), i.e. , the transient processes
are generated only by particles of one kind. The
different types of particle motions (electronic
oseillations in atoms and molecules, oscillations
and rotations of ions in molecules, displacements
of ions in ionic crystals, polar oscillations of par-
ticles with dipole moments, elastic displacements
of the dipole groups, etc. ) are characterized by
different inertial and relaxational. properties. The
intensity of the forced oscillations is a maximum
when the frequency of incident light vo is in reso-
nance with the frequency of any of these motions,
i.e., ~0-(d, , and the oscillations settle down after
a time t& yp [see (7)]. It is obvious that the
electronic mechanism of polarization is the least
inertial, i.e., at each point of the media the elec-
trons will be the first to react to the incident field.
Therefore we suppose that only the electrons give
a contribution to n(&o) in (7), and the more diffi-
cult case will be deferred to Sec. IV.

For analytical evaluation of the integrals in (4)
and (8), it is necessary first of all to investigate
the analytic properties of the integrand in (4) in
the complex ra plane. (For brevity we omit the
calculations for the magnetic field and give only
the results. ) The argument of the exponential
function in (4) can be written in the following form:

The last expression in (8) is found by using the
formulas (5) and (7} and the law of refraction,
sine =n sinj3.

From (8) and (4) one can see that the integrand
in (4) has a number of singularities':

A pole at the point co, :
Branch points of the function P(&u),

~, .=-ty, +(~', y,'}'-t',

ld~ ~
= —t'y~ k ((d~ —'p~ +Q~/cos &)

(I0)

(11)

x s 1n ot g e os Q

C
+

U~

&d (d 0&/cos ct

C (d + 2 'E P1 (d —
QP~

If we join the points +, to u, and &, to (d, by two
branch lines, the integrand will be single valued.
The position of the branch points (10) and (11}and
the path of integration I are shown in Fig. 1 for the
ease Rx & %0

For an approximate calculation of the integral
(4) we shall use, following Brillouin, ' the saddle-
point method. In order to do this it is necessary
to find the allowed region of integration, i.e.,
where Re[/(&u)] &0, the location of the saddle points
dg(&u)/d&u =0, and the line of the steepest descent
through the saddle points.

From (8) we can see that for a given point x, g of
the medium the location of the saddle point co = co,

changes with time t. The connection between +,
(the solution of the equation dP/der =0) and the cor-
responding t~ is determined by the group velocity
V) .'

P(&u) = i&u[t -n(&u)(xsi-nP+z cosP)/c]

= —t(a[t —(x sinn)/c —(z coso/c)n, ((u)], FIG. 1. Singularities of the integrand of E"(~) in the
complex ~ plane. ~0 is the pole, u&,2,3& are branch
points. I' is the path of integration.
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Since p((u} [Eq. (8)] depends both on (u and on
the function k, ((u), it is convenient to consider the
location of the saddle points on the dispersion
curve (u, (&) (Fig. 2). It is clear from (12) that at
some time t~ a signal with the group velocity v,.
will arrive at the point x, z. In other words, at
the given point x, z the main contribution to the
integral (4) will be given by those points on the
dispersion curve (u, (k) at which the tangent d(u/
dk, equals

z cosG
O. =

t, —(x. sinn)/c

The maximum value of the tangent, equal to the
light velocity c in vacuum, is reached at ~-~.
Hence the signal does not propagate with a velocity
greater than c (u, & c), and a time f, =(x sinn
+z coen)/c corresponds to the beginning of the
transient process at the point x, z and to the
formation of the first precursor. e

For t& t, the saddle point moves down along the
upper branch of the dispersion curve (Fig. 2), as
far as some time t, = (x sinn)/c+ (z coen)/u, at
which the first contribution from the lower branch
of the dispersion curve appears corresponding to
the second precursor. Then for t&t, the saddle
point moves up along this lower branch. Finally
at some time t, the path of integration will go
around the pole (u, [see Eq. (9)] which correspond
to the formation of the stationary refracted signal
and the end of the transient processes.

The locations of the saddle points in the complex
frequency plane depend, then, upon the time t
relative to the times to, t„and t, . At the beginning
of the transient period, i.e., for t=t„only the
high frequencies contribute. For subsequent times

lower frequencies contribute. With this in mind,
we introduce the following approximations to the
modified complex index of refraction, n, ((u) ap-
propriate to the high- and low-frequency regions:

Q', /cos' n Q,
2(u((u+2fy~) cosa (13)

n, ((u) = A+B(u ((u+2iy, ), (u& (Q, /coen), (u„

A = (I + Qg/QP~ cos n), B = Qy/2A (d~ cos n .
(14)

By using Eqs. (8) and (13) we find that the saddle
points at the beginning of the transient process are
given by

(d5 8
= —2ly~ k [ Q~ z/2c(t —to) coen]

for to S t.
Somewhat later in the transient process we find
from Eqs. (14) and (8) that the saddle points are
now located at

(u, , = {——,'y, +[ c(t„—f)/3Bz coen]'~') i,
for to& t&t, (16)

4)9 3 y, i for t = t,

= x sinn/c+ z cos n/u, ,

where u, =c(A, + -', y', B) '. For still later times the
saddle points are located at

(u„„=—-'. y, i ~[c(f —f, )/3Bz coen]'~', t, & t&t, .

Here

t, =x(sinn)/c + (A + 3B(u,')z (cos n)/c

is the time at which the stationary signal is formed
at the point x, z with frequency coo, group velocity
c/Re[n((u, )], and angle of propagation tl. In other
words, the duration of the transient process at
points z away from the interface is'

n. t = t, —to =z cos n(A + 3B(uo —1) .
According to the saddle-point method the essen-

tial contributions to the integral will be

( ) ~(„) 1 1 (f'Re[(u((u)]
2 lT d4P

FIG. 2. Dispersion curve u(k&). Solid line —without
damping (y =0); dotted line —schematic behavior when
y&0,

(18}

This part of our calculation is similar to that of
Brillouin. ' Hence we show here only the path of
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If (dp& &I this contour can approach the pole 0
and it must then be taken around the pole.

As a result of the calculation we find the re-
fracted field in the following forms:

(B.),
= E, —n, cos a f', F(t),

sin~

(19)

E„—cos ~

E, =ED (sino)/n, fbi F(t),(, j,„(-"~., j
(20)

integration and the results of the calculation (for
details see Ref. 3}.

At small t —t, the path begins at the point where
Re[ p(&u)] is negatively infinite and passes through
(d, along the line of steepest descent to (d2 where
n=~, i.e., v =0. Then it goes through ~7 to 4)I

and through &u, to the point where Re[ P(ar)] is
negatively infinite. This contour corresponds
to a time t, & t &t„ i.e. , to the velocities c)v

&v, =c(A+ 4y,'B) '. The velocity v, is a solution
of the equation dzk, /d&u' =0 and for a time t,
= (x sino)/c+ (z coso)/v, the path of integration
has a break at &, at which the two saddle points
coalesce.

The second precursor exists for t, & t &t, and
the path of integration has the following form:

For saddle point +, we have

F(t) =—
/

2wBz cosn(2y, +3i u&, i ) ~, '+ u&',

xexp — (d, ' yI+ &, , 22

where A and B are determined in (14).
Let us note that the expression (22) is a small

correction to (21) everywhere in the region to(t
& t, except in the immediate vicinity of t, .

From (21) it follows that for t a t, the field os-
cillates with a frequency which decreases con-
tinuously as (t —t,} 'i'. The amplitude of Re[F(t)]
(response to an incident cosinusoidal signal) de-
creases, and the amplitude of Im[F(t)] (response
to a sine signal) originally increases and then de-
creases.

Formula (21) is the first term of an asymptotic
expansion of the exact solution (for the beginning
of the transient process), which is a series of
Bessel functions (see Sec. III and Refs. 1 and 4}.
This means that (21) loses its validity for very
small t —t, which is mathematically connected
with the fact that the integrand along the line of
steepest descent does not decrease fast enough
for very distant saddle points.

Knowing the amplitudes of the refracted signal,
we can calculate the energy-flux vector S~

corresponding to the electric vector of the incident
signal being parallel (ii) or perpendicular (i) to
the plane of incidence. Here, by virtue of (7) and

(8), n((u) =n, ((u, a=0).
Let us give now the form of f and F in (19) and

(20} for different times.

f ii
= 1 + c (t —to) cos 2 o /2z cos o. . (21}

In this case the main contribution in the integral
(4) is given —for toto by the saddle—points &u, 8
in Eq. (15}and for t close to t„by the saddle point
(u, in Eq. (16).

Neglecting the small imaginary parts of cu, ,
everywhere except in the argument of the exponen-
tial function, we receive the contribution of the
saddle points co, „
F(t) = —[aw'(t —to)] 'i4 exp[ —2y, (t —t )]

x (sin([4a(t —to)]'» i —,
'

w)

+i(o,[(t—t,)/a]' ' cos([4a(t —t,)]' a+ w)w},

a =zA', /2c cosa, f~i = 1+c(t —t, )/2z cosa,

Si = —E', {(sino.)x+[ I —c(t —t, )/z cosa] (cosa)z)

x(f', )IF(t)l' (23)

sin~ Sln Q

n((u, ) 1 —II'/i(u, ~'cos'a

n, & n. (24)

As time increases the energy of the precursor
decreases and it is damped out. But as is seen
from (24) the direction in which the energy of the
fir st precursor is propagated changes with time
away from the direction of refracted signal. This
result which is at first sight surprising is con-
nected with the properties of the refractive index
of the medium at high frequencies (i&a, i

& ~, ) of
the incident signal.

From (23) it follows that in the beginning of the
transient process (small t —to) the direction o, of
the energy propagation in the medium coincides
with the direction of incident signal, a, =a. The
angle e, increases with increasing t —t„
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These components of the signal swing the
charged particles of the medium and they are
responsible for the first precursor. For such
high frequencies the refractive index for the
medium is smaller than the refractive index for
vacuum, n((4, )&l [cf. Eq. (30) below]. This means
that for these frequencies the medium is optically
less dense than vacuum, and it is natural that n,

Now the path of integration goes across the
saddle point &u, in Eq. (15). As mentioned above
this point corresponds to the extremum of the
group velocity d'0/d&u' =0, i.e. , the expansion
k(())) cannot be stopped at the second order and
the corresponding formula (18) is invalid. Also
taking into account terms of the third order in +,
we find

x/s
E(t) = )e(,+-,''e, ) B*ccec)

Bz cos~
2'r1

t t
Bz )e1 cosa

(25)9c

(('(«)-=f e c[-'(c — *)]ee

is the Airy integral.
The function (25) describes the transition from

an aperiodic signal (22), the end of the first pre-
cursor, to the beginning of the second precursor
(for t &t,), which is determined by the low-fre-
quency branch of the dispersion curve in Fig. 2.

The second precursor propagates in the direc-
tion n,',

sino, ' = (sin4r)/n((4, ) & sinn, n,'& o, , (26)

i.e., unlike the first precursor, the direction of
the propagation of the second precursor changes
towards the direction of the refractive signal as
time increases.

C. t&r

Now the contribution from the saddle points ~, ,
is small and the main contribution is provided by
the saddle points Qpyo yy 4

As a result we find for the functions f and E in

(19) and (20)

C exp[ —&y, (t —t, +4y21Bz cosc[/9c)]
Sw'zB cosn (t —t, ) (i 14«i'+ (d', )' —4(d2oc(t —t, )/3Bz coen

x ( ~
(d1J —())0)Re(())10)sing —1 P1( ( (d1J + (40() ) cosp —t(do Q&)

— +&'y1 cos[j)
3Hz cosa

c(t t ) 1/2
4

„SBzcos @
GOO Sing

4c(t t )4 1/4 2

27Bz coen ' ' 1+A +c(t - t, )/Sz coen ' '( 2 f) 14'-Sz

From (27) it follows that Z' oscillates with in-
creasing frequency. The amplitude increases very
rapidly when the path of integration reaches the
pole c(t —t, )/SBz cosa = (d20 and then damps ex-
ponentially. In this case the path of integration
is very near the pole and now, in addition to the
saddle points, it is necessary to consider also the
path encircling the pole. This gives

E' = 2, E, f4 (((() de{x-pi [(o, t k4(~,)r]]. (28-)

The time at which the curve is completed (9) =2z)
corresponds to the formation of the stationary re-
fracted signal and the end of the transient process.
It is easy to see that as in the previous case the
energy-flux vector continues to turn towards the
direction of the refracted signal as time increases.

The factor f4~ (( in (19) and (20) also changes
with time from f4=1 at small t —to [see (21)]
going (through the maximum f~~) to f4 =f4(())4) when
the line of steepest descent approaches the point

It is natural that the Fresnel coefficients are
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not the stationary values, but that they are formed
during the transient process.

III. STEP-LIKE SIGNAL

x(t) =
0, 1&0,

1, t)0. (29)

Using the simplicity of this case we shall receive
clear results both for refracted and reflected
signals at the beginning of the transient process.
For this purpose we can employ the following form
for the refractive index of the medium:

n = (1 —0'/(()')'/' 0' = 4mNe'/m . (30)

In the spirit of our model of the medium as an
aggregate of charged oscillators the expression
(30) means that immediately after the arrival of
the signal a charge does not have time to acquire
a velocity and a displacement from the equilibrium
position. In other words, at the beginning of the
transient process it is the high-frequency compo-
nents of the signal which arrive first at the given
point of the medium. But for them, +)+» y, and
formula (7) goes over into the "plasma formula"
(3o)

In this case it is possible by analogy with Refs.
1 and 4 to reduce the integrand for the first pre-
cursor in (4) to a generating function for Bessel
functions. If the electric vector of the incident
signal is perpendicular to the plane of incidence
we find for the reflected (r) and refracted (d)
signals

Let us consider the case of incidence of a step-
signal instead of the monochromatic signal in (2),
i.e.,

(0)

7=I
—0.5

E

E

I

i

E
I

I

I

I

(b)

7=I

-2 -I

05 —
) 7=2

I 2

and J„ is the Bessel function of order n.
From (31) we can see that the reflected signal,

unlike the refracted one, immediately begins to
propagate in the direction given by the law of re-
flection and depends on I; and z only through t —t„
i.e., the reflected field has a similar behavior at
any distance from the interface.

Using the power-series expansions of Bessel
functions for small arguments [k„& 1, i.e., t —t
& (cosa)/0] we find that the reflected field 8' is
proportional to k'„, i.e. , the amplitude of the re-
flected signal is zero on the front of the signal,
A'„= 0.

On the interface the amplitude of the reflected
signal has a spatial maximum and increases as a
function of time. The variation of the reflected
field at the beginning of the transient process is
shown in Fig. 3(a).

The refractive signal has a completely different
behavior. On the interface (z =0, t) =1) and near it
E oscillates and decays to zero. On the front of
the signal the amplitude has a maximum, which

0 0

H,
Eo cos cY

=JO(k~ )+3J2(k~ )t)'

where

+4[J, (k, )t}'+J,(k, )t)']+ ~ ~ ~,

k, = t t), -0
cos H

H, = E, cos a
~

[J, (k„) —1 +J, (k„)],

Hg r Sin Q

(31) -3 -2

-5 -4 -3 -2 -I
I I

0.5

0.5 05—

7 3
I

I

I
I

I

I

I I I

2 3

I I I

7=5

t —t Z/2
0

t —t(2*cos )/c),

pJG. 3. patios E"/E (a) and E"/E (b) of the ampli-
tudes of the refracted signals to the amplitude of the
incident step signal as a function of dimensionless dis-
tance from the interface $ = 0&&/c for different times &

= (0&/cos 0,) (t-(x sjno.)/cj.
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propagates into the medium as time increases
[see Fig. 3(b)]. Let us note that formula (21)
represents the asymptotic expansion of Eq. (31)
at large arguments of the Bessel functions.

%e now turn to the second precursor. In this
case we cannot find the exact solution and it is
necessary once more to use the saddle point meth-
od.

As shown in Sec. II the beginning of the second
precursor at t-t, is determined by the saddle point
&((, in Eq. (16) which corresponds to the condition
(t'k/d&o' =0. The important difference from the
case +pWO is that here the saddle point ~, =- —siy,
is located very close to the pole ~ =0 of the in-
tegrand in (4).

Near the saddle point (i(, we have [cf. (4) and

(25)] for t-t,

F(()-e ' 'i f ' exp(i(8u — ')] &, (i&)f, &u)

Bz cosot
Q = ((d —(u, ),

C

f (~(= (( — (tv+2(i, )),
and A and 8 are determined in (14).

Using the definition of the Airy integral Ai(8),
differentiating and integrating it with respect to
the parameter 8, we find

2 1 e 1 B c ' 'dAlF(t) = e" ~' — Ai(p)e ""odp+- -', y, Ai(e)++A 2w p 277 1 +A Bz cosa Bz cosy' d9

(33)

For small 8,

r
e

Ai(p) e ' " dp-I'(-'}6/M3

the two last terms in (33}are small; thus

The stationary fieM is determined by the pole
cu =0. For large enough t, when the transient pro-
cesses determined by saddle points will terminate,
only the contribution from the pole co =0 will re-
main. Hence in agreement with the Fresnel
formulas for a constant fieM, the following field
will be established in the medium:

(E,
H„[ = -g cos& Ep .

II, „„sin~ (36)

As t-t, increases the contributions of the saddle
points &u„» in Eq. (16) become important. These
points are located far from the pole & =0 and, ac-
cording to (27) with (do=0, we find

E(t) =—, , exp [ —', y, (t —t,)]-3Bz cosa
1

4c(t —t, )'
& sin 4 17 ~27Bz cos cy

(35)

Hence the second precursor arrives at the given
point x, z at a time

t, = (x sin n)/c + (e cos n)/v,

with velocity v, = c(A + 4 By2) ' and with relative
amplitude of order 1. At t&t, the amplitude at
first slightly increases [see (34}] and then has
damped oscillations [see (35)]. At the front of
the precursor the relative amplitude equals 1, and
behind the front it damps at large t.

The second precursor is observed against the
background of this stationary signal.

IV. TRANSIENT PROCESSES IN A MEDIUM WITH A

NUMBER OF CHARACTERISTIC FREQUENCIES

Let us now consider the refraction of a mono-
chromatic signal (2) incident on the interface of
a medium with, say, two different characteristic
frequencies ~' and ~" corresponding to oscilla-
tions of the electrons and ions which are located
in the ultraviolet and infrared regions of the spec-
trum, respectively.

The field of the refractive signal is determined
as before by formulas (4) and (6) but the refractive
index is now the following generalization of (7):

k, = ((e/c)n, ,

4P +2443 p —(d M +24(d p —(d

(3't)
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Now the argument of the exponential function [ see
Eq. (8)] in the integrand (4} and (6) has four pairs
of branch points rather than two as in (10) and (11).

After joining the corresponding points by four
branch lines the integrand mill be single valued
and one can perform the integrations in the com-
plex cd plane. As before me have no singularities
in the upper half of the u plane and F." =0 at t
& t, = (z sinn+z coen)/c. However, the dispersion
curve ld, (k) consists now of three branches rather
than the tmo in Fig. 2, i.e., three and not two pre-
cursors mill now propagate in the medium.

The saddle points corresponding to extrema of
the group velocity are determined from the condi-
tion d2k/did' = 0 and are given by

ld = —t —"/ +id(Q/VS 8}

For the corresponding velocities we receive

&'=c[~, +S(sa,a, )'"]-',

c(~ + 4 ft +II2)-l

g2 r/2 g2 ga t /a

4P (d CO

2A' ' 2 "A ' ' 2 "2A'

From (39) we can see that v' &v" and the follow-
ing general picture of the propagation of pre-
cursors emerges: At a given point x, g the tran-
sient processes (the first precursor) begin at a
time to=(z sinn+z coen)/ c T.he second pre-
cursor will arrive at this point at t' = (z sina)/c
+ (z coso.)/U' with a velocity u' and the third pre-
cursor at t" =(xsinn)/c+ (z coen)/6" with a ve-
locity U".

For R cRlculRtlon of the refractive signR1 in the
medium me shall again use the saddle-point meth-
od. It is clear that the results will be similar to
those in Sec, II. For different times me obtain the
folloming:

(i) t, & t& t'. The signal is determined by the
same formula (21) as in case of one characteristic
fr equenc y.

(ii} t-t'. The value of the integral (4) is essen-
tially determined by the saddle point ld,

' in Ell. (38)
and as a result me find

c '" y', az cosa
F(t)=- exp ——t —t'+ (sa,a,)"

27t 48, z cosa 6 3c

1. /S 2x Ai 4a, z cosa [ ~, —ld'(tl, /Ws &,)'"1'(t —t')

rosin ~' ' t —t +& (40)

If &do =
~
ld,

' (, the path of integration is very near
the pole and it is necessary to go around the pole.
The influence of the pole will then become apparent
before the beginning of the third precursor. At
normal incidence the second and third precursors
are observed against the background of a growing
signal with frequency ~„but at oblique incidence
they are separated in space.

(iti) t - t". Tile slgllal is deterlllilled by (25) by
changing A, B,z, -A„B„& correspondingly.

The directions of propagation and the amplitudes
(Sec. VI) of the precursors depend on the relations
between the frequency of the incident signal and
the characteristic frequencies of the medium: If
ld, =

) ld,
'

~

- ld'(II, /II, )'t', the second precursor
begins to propagate at the angle ~, where sine,
= (sintr}/n(ld, '). For the angle of refraction P we
have sinP=(sino)/n(&do), i.e., a, = P, and the
second precursor propagates almost along the

direction of propagation of the refracted signal.
For the third precursor we have sina, = (sinn)/
n(ld,"), i.e. , n, & p; thus in principle it could be
separated from the refracted signal.

If ~o & w", then n, ~ J3, but nom the difference
z2 —P is not small therefore it is nom the second
precursor mhich can be separated from the re-
fracted signal.

It mill be shown in Sec. VI that depending on the
relation between +o and w', u", the precursors
differ not only in their respective directions, but
also in their amplitudes. This latter fact mould

facilitate the observation of precursors.

V. INFLUENCE OF THE STEEPNESS OF THE FRONT OF
THE SIGNAL ON THE TRANSIENT PROCESSES

In all previous discussions me assumed that the
front of the incident signal mas very sharp, i.e.,



E, '"
b exp(st}

2m~, „s(s+b)
(41)

Let us note that in this case it is more con-
venient to use Laplace-type rather than Pourier-
type integral representations,

The steepness of the front is determined by the
parameter b. From the theoretical point of viem
the limit of sharp front corresponds to the case
mhen the field reaches its maximum over a distance
of the order of a wavelength of the incident signal,
Az a b/At = X. In the microwave range (&u, -10'—
10"Hz) sharp fronts can he achieved experimen-
tally (b-&u, ), while in the optical range (&u, -10"-
10"Hz) the steepness of the front is usually not
more than 10"Hz, i.e., b/ro, «I, and the front
accommodates 10'-10' wavelengths. Of course,
under such circumstances formula (29) for the
incident signal is insufficient and it is necessary
to use the expression (41).

Tx ansient processes in a medium with a plasma
refractive index mere studied in Sec. lTL. But nom
bw~ and, restricting ourselves to the case of a
normally incident signal, we have using (4}, (1),
(30), and (41) for the refracted (d) and reflected
(r) signals,

2b '" exp[ st —(z/c)(s'+Q')'~']
2vi, „s(s+b)[1+ (1 +Q'/s')' ']

(42)

the signal reaches its Inaximum amplitude instant-
ly, while the real signal mill of necessity smooth-
ly increase at the front and smoothly decrease at

tl ailing end of the signal.
This circumstance is not important for a quali-

tative description of the transient processes, i.e.,
the appearance of fern precursors before the sta-
tionary signal is established. However, it is es-
sential for quantitative estimates, because the
smoothness of the signal "smears" all transient
process.

Let us discuss first the case of a medium with
the plasma refractive index (30). I et the signal
impinge on such a medium, but, in contrast to
(29), with I'ts flout smeared,

0, t&0
E8

E,(1 —e "),

By a change of variables in the integrals (42) and

(43) it is possible to reduce the exponential factors
to the generating function for Bessel functions of
real arguments. ' To a good approximation me
can set b/Q«1 and find the following results:

(44)

The definitions of all quantities mere given above

[ see (31)].
Comparing (44) and (31) we see that the change

in the integrand in (4), 1/s-b/s(s+b), associated
with the finite steepness of the front of a signal
(41), induces important departures from the pre-
vious results (compare with Fig. 3}:

(i) On the interface (z =0}E~ increases first,
then at f -3/Q reaches a maximum, at t -10/Q
begins to decrease, and at t-100/Q practically
vanishes. I.et us note that for I- 100/ Qthe in-
cident signal E' has only lg of iis maximum
amplitude on the interface. The reflected signal
E" increases rapidly on the interface and at 4 time
f -10/Q we have E"=E', i.e. , from this time on

the incident signal is completely reflected (see
I'ig. 4}.

'" [s- (s'+Q')'~']exp(st —~z /c)
s(s+b)[ s+(s'+Q')'~'] 6(8

(43)

FIG. 4. Incident (E'), refracted (E"), and reflected
(E") signals on the interface as a function of time 7'

= (0&/cos&) ft -(x sinn)/c) for the case of smooth in-
crease of the axnplitM1e +0 of the incident signal.
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(ii) On the front of the signal

Recall that for the case of the step signal (29)
E =E on the front of the signal [see Fig. 3(b)].
Behind the front E~ increases somewhat and then
decreases. This increase is smaller for points
in the medium more distant from the interface.
The reflected signal E" continuously increases
behind the front and approaches E'.

E'=
V

0, t&0

z s '"-'(I —e b'-) t&0

E, '" 5 exp(st)
2vi

&
(s+ iso)(s+5+ i&go)

The refracted (d) and reflected (r) fields are
similar to (31) and (44) and are given by

Let us consider now the incidence of the mono-
chromatic signal with a smeared front:

Z', =E,(2b/Q) [J,(k, )6+2 J,(k„)6',2Z, (k, )6, ]

-tz, (2b/Q)(4cu, /Q)[ J,(k„)6'+3J,(k, )6''+54, (k, )68+ ~ ~ ~ ],
E", =- E( 25 /Q)[Z(k„)+3J, (k„)+. ]+iz,(2b/Q)(4(u, /Q) [J,(k, )+44,(k,)+ 94, (k, ) + ~ ~ ]. (47)

Comparing (47) and (44} we conclude that if k/
Q «I and ~, &Q, then, the response Re[E"'] to
the cosinusoidal incident signal in (46) and E"'~
for the signal (41}have the same properties. The
response Im[E"' ] to an incident sine signal in

(46) has the same properties, but its amplitude
is smaller by a factor &uo/Q. This is because the
field on the front of the incident sine signal in-
creases more slowly.

Hence for the incident signal (46) also the ampli-
tude of the reflected signal at a time t-10/Q is of
the same order of magnitude as the amplitude of
the incident signal. After this time the reflected
signal increases up to the amplitude Eo and then
oscillates with the same frequency w0 as the inci-
dent signal.

Let us consider the influence of the steepness
of the front of an incident signal on the transient
processes in the more general case of a medium
with the refractive index (7). We consider first
the step signal (41). The Fourier components of
this signal are proportional to 1/&u(1+ sF/5'}'~',
i.e., the smoothness of the front causes a de-
crease in the amplitude of the spectral compo-
nents of the incident signal correspondi. ng to the
high frequencies m~ b. However, the high fre-
quencies correspond to the first precursor (see
Fig. 2) and for the first precursor it is enough
to take into account the plasma reflective index
(30). Therefore the influence of the steepness of
the front is similar to that mentioned above.
Namely, the intensity of the refracted signal is
small, the reflected signal rapidly increases, and
its intensity becomes equal to the intensity of the
incident signal before the latter reaches its maxi-
mum value. Thus the smoothness of the front of
the incident signal is not important for the subse-
quent stages of the transient process. "

If the incident signal is the monochromatic wave
(46) with a smeared front, its Fourier-components
are proportional to

1 1 1

(u, 1 —(&u/&u, )' 1 —[((u + 5)/~ ]'

This means that as result of the smoothness of
the front both high-frequency (&u & &u, ) and low-fre-
quency (&u«uo) components of the incident signal
will be weakened. The weakening of the first
precursor will be as calculated above.

The second precursor is determined by the
value of the integral

f'(cu) exp] —t (u [ t —(z/c) n((u)] }„
((d —&do)((d + t b —(do)

near the saddle point u, = —-', y, i.
The influence of the steepness of the front is to

change the amplitude factor I/(&so+ —', iy, ) - I/&uo in

the expression (25) to

b

( s &'Yg —~o)( s &'Yg + &5 ~0) ~0

in (48}, i.e. , the amplitude of the second pre-
cursor decreases by a factor b/ruo-10 '-10 '.
Hence both precursors have small intensities
and as a result of the smoothness of the front of
the incident signal the transient processes are
smeared.

VI. CONCLUSIONS

%e shall now give a complete qualitative descrip-
tion of the transient processes when a signal im-
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pinges on the vacuum-medium interface. At
normal incidence a number of oscillations with
different amplitudes, frequencies, and durations
may be observed in the medium. These oscilla-
tions are connected with the establishment of
forced vibrations of different kinds of charged
particles. Because the different particles have
different inertial properties (the characteristic
frequencies of the electrons +- 10" sec ' are in
the ultraviolet range of a spectrum and for ions
~-10"-10"sec ', i.e., in the infrared part)
and different relaxation times, the transient pro-
cesses, caused by the electrons and the ions, do
not occur simultaneously. It is obvious that the
intensity of any transient process has a maximum
when the frequency of the incident signal is in reso-
nance with the given polarization mechanism.
Therefore by changing c.io it is possible to analyze
any transient process, once faster transient pro-
cesses have been damped out.

If the incidence is oblique the different relaxa-
tion processes turn out to be separated both tem-
porally and spatially.

Electronic polarization is the least inertial
mechanism for all substances. Therefor e it is
the electrons which first react to the incident
signal and which give rise to the first precursor.

At the beginning of the transient process the
electrons are quasifree, i.e., they are described
by the plasma refractive index (30). Thus the
properties of the first precursor do not in general
depend on the nature of the substance.

The next precursors are associated with the
properties of the substance and depend on the
characteristic frequencies and relaxation times
of the corresponding oscillations. All these pre-
cursors are gradually damped out and are replaced
by a stationary signal which is determined by the
forced oscillations of particles.

Let us now give some numerical estimates for
the case of two precursors at normal incidence
of a signal with frequency ~p 4 + 10 sec ' with
infinite steepness of its front, the frequency of
the medium being ~, =0, = 4 & 10" sec '.

The first precursor arrives at any point z, say,
1 cm from the interface at a time t, =z/c-3x10 "
sec with an amplitude equal to the amplitude of the
incident signal. Then the amplitude changes, and
after At -10 "sec becomes about 10 ' of its initial
value for an incident cosinusoidal signal and about
10 ' for a sinusoidal form [see (21)]. The ratio
of the average energy flux, transferred by the first
precursor across unit area located at distance d
from the interface, to the energy of the incident
signal is equal to' c/dQ, - 10 '.

At a time t, =z/v, -5x10 " sec the second pre-
cursor arrives at the point z with a relative ampli-

tude of about 10 ' for an incident cos-signal and
about 3x10 ' for a sin-signal [see (25)]. To start
with, the amplitude of the second precursor de-
creases as the Airy integral, after ht -10 "sec
reaches relative values of 10 ' and 10 ', respective-
ly, and then increases quickly as co —~,.

The behavior of the reflected signal is quite
different (see Sec. III and Ref. 4). The reflected
field is equal to zero on the front of the incident
signal. The reflected signal has a delay of time
At relative to the refracted signal because its
formation requires the exc itation of seve ral layer s
of the medium. For normal incidence at n, t-3/0
the depth of this "active region" is of the order
cdt -3c/0 -10 ' cm, i.e. , about 100 atomic layers.
If ~0& 0, the reflected signal near the interface
reaches the value of amplitude of the incident
signal quite quickly (after n. t -5/0 -10 "sec),
then oscillates with the frequency of the incident
signal. However, if ~, 0 there is no "total re-
flection" from the medium with plasma refractive
index and the stationary state is reached con-
siderably slower. The whole transient process
will come to an end after a time At = t, —t0-1.7
x10 " sec [see (17)].

From these estimates it is clear that the order
of magnitude of the energy transferred by pre-
cursors is at the limits of sensitivity of modern
detectors of radiation. The duration of the tran-
sient process and the amplitudes of the pre-
cursors depend on the values of the parameters
coo, u„and 0, . The duration of the transient pro-
cess turns out to be quite small with the above
choice of parameters. However, apart from de-
creasing the frequency of the incident signal, we
have a few other possibilities:

(i) Since the characteristic frequencies of the
precursors are different, it is possible, in princi-
ple, to separate them by means of frequency
filters.

(ii) For oblique incidence the directions of prop-
agation of the precursors are different. Roughly
speaking, the first precursor propagates along the
direction of the incident signal and the second along
the refracted signal. This fact may also be utilized
to separate the precursors.

(iii) The dependence of the amplitudes of the two

precursors on the distance z from the interface is
also not the same, namely E, - 1/Mz exp(- az/uP)
and E„-I/v z exp(- bzaP). That is, high-fre-
quency components in the spectrum of the first
precursor and low-frequency components for the
second one are damped less than other frequencies.
Therefore the further one is from the interface
the greater the difference between the character-
istic frequencies of the precursors and the longer
the duration of the transient process. At the same
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time, unfortunately, the intensities of the pre-
cursors are sharply decreased.

(iv) If the medium is characterized by the more
complicated refractive index (36), the number of
precursors increases to three, the additional one
occuring at an intermediate frequency which is
more convenient for detection. Let us make some
numerical estimates. For cg, =10"sec ', ~'=0,
=4X10" sec ' and cu" =0, =10" sec ' and at nor-
mal incidence of the signal the first precursor
will arrive at the point z =1 cm at a time to- 3
&10 " sec, the second one at a time t'-5&10 "
sec, and the third one at a time t" -5.7x10 "
sec. The whole transient process will terminate
after t, -5.8&&10 " sec.

It was shown in Sec. IV that it is not only these
three times which differ, but also the intensities
and directions of propagation of the precursors.
It was noted that results are essentially dependent
on relations between the frequency of the incident
signal (do and the characteristic frequencies u',
(u", and (v'(0, /MSn, )' ~'.

Thus if &u,
- &u'(A, /0, )'~'-3x10" sec ' (and &u'

=II, =4x10'6 sec ', ~' =0, =10'4 sec ' z =1 cm)
the first precursor, which does not depend on the
nature of substance, propagates at an angle which
is slightly larger than the angle of incidence. The
second and the third precursors propagate at
angles e» and e,«given by sine« -0.667 sane,
sine»~ -0.567 sine. The stationary signal propa-
gates at the angle of refraction P, where sinP
=0.665 sine, i.e., the directions of propagation
of the second and third precursors are close to
that of the refracted signal. Under these condi-
tions, the amplitudes relative to incident cosine
and sine signals are for the first precursor equal
to 10 ' and 10 ', for the second equal to 10 ', and
for the third equal to 10 ' and 10~. Hence for co,
-&u'(Q2/0, )'~' the amplitude of the second pre~
cursor is much larger than that for the first ~d
the third.

If ~0&&", the intensity of the third precursor
increases significantly. For example, for wo
=10'3 sec ' the ratio of intensity of the third
precursor to the intensity of the incident signal
is 10 ' and 10 ' for cosinusoidal and sinusoidal
forms of the incident signal, respectively. In this
case the direction of propagation of the third pre-
cursor almost coincides with the angle of refrac-
tion (a», zP), whereas for the second precursor
e» —P it is of the order of a few degrees.

Hence for ~0& +' the intensity of the first pre-
cursor is larger than the intensities of the other
two, for u, &~ the intensity of the third is the
largest, while for ~, -&u'(0, /0, )'~' the second
possesses the largest amplitude. Let us note that
the frequency of the second precursor is in the

optical range of the spectrum, which facilitate
observation.

Unfortunately, the difficulties of observation of
precursors are magnified by the influence of the
steepness of the front of the signal on the transient
processes (Sec. V). The spectral components of
the signals (41) and (46) with smoothly increasing
fronts are smaller than those for the signals (29)
and (2) with infinite steepness, and as a result
the intensities of the precursors decrease.
Furthermore, the sharp impulse, imparted to the
particles of the medium by the signals (29) and (2)
vrith infinite steepness is absent for the smooth
signals (41) and (46). The smooth increase of the
incident signal results in a smooth increase of the
refracted and reflected signals.

Both of the above-mentioned circumstances re-
sult in a smearing of the transient processes, es-
specially for the refracted signal. For examyle
(see Sec. V), in the case of a monochromatic inci-
dent signal the amplitude of the second precursor
decreases by more than a factor of 100. Therefore
for experimental investigation of transient pro-
cesses it is necessary to use signals with sharp-
est possible fronts (b- ~) or, failing that (h && &uo),

to observe the reflected and not the refracted
signal.

The passage of finite short pulses across the
interface could be of some interest. If the dura-
tion of the pulse is more than the duration of the
transient processes in the medium, all transient
phenomena will come to an end and the stationary
signal will settle in the moment the smooth end of
the pulse arrives at the interface. Therefore the
smoothness of the beginning and of the end of the
pulse will stimulate equal and nonoverlapping
phenomena in antiphase. A series of such pulses
will not change the picture because the medium
will have come to rest by the time subsequent
pulses arrive, and each new pulse will be per-
ceived as the first one. If the duration of the
pulse is less than the duration of the transient
processes, the reaction of the medium will be
much more complicated. This question demands
special consideration.

The Sommerfeld-Brillouin theory has been
widely used in investigations of the propagation
of radio waves, particularly in the ionosphere.
However, in the microwave region we know of
only one experimental work" where both pre-
cursors were observed in good agreement with
the theory. %'e hope that experimental investiga-
tion with light signals of different frequencies and
durations will be carried out in the near future.
For comparison with a specific experiment it will
be necessary to do a computer simulation of the
expected signal response using a specific form of
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the incident signal with a specific index of refrac-
tion of the medium. Such computer simulation
has been done recently by Birman and Frankel"
for a certain medium containing polaritons and
surface plasmons.

One of the defects of our consideration is the
restriction to a linear theory. This means that
the durations of the incident signals must not be
too small and their power should not be too large.
Accounting for the nonlinear dependence of the
polarization on the amplitude of the electric field
requires —for the oscillator under consideration-
the inclusion of anharmonic terms in the oscillator
equation. However, the anharmonic terms will
only become apparent after the harmonic ones,
i.e., our considerations apply for the description
of the beginning of the transient processes also in

the nonlinear case.
Furthermore, we are interested in, frequencies

in the normal dispersion regions. In the anomalous
dispersions region it is necessary to take into ac-
count the energy exchange between the field and the
dispersive medium, that the group velocity is not
simply related to the signal velocity, etc. All of
these problems are more complicated and demand
special consideration.
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