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Atomic decay in saturated resonant light scattering
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The emission spectrum is found for transitions between a pair of atomic levels which are coupled by a
coherent applied field, in the case in which decay to other levels of lower energy takes place during the
emission process. The problem is solved by first finding the spectral distribution of radiation emitted by an

atom which is initially prepared in some combination of the two coupled states, and which then decays to
states of lower energy. (The solution found to this initial-value problem is valid even when many photons are

emitted before the decay takes place. ) It is then shown how the solution so obtained may be used to describe

the case in which the atom is continually excited to the pair of levels in question by a weak, incoherent

pumping mechanism. Limiting cases are discussed and compared with those which apply when no decay out

of the two-dimensional subspace of coupled states takes place. The method of solution, which is based on

an evaluation of the appropriate atomic correlation function by means of the quantum fluctuation-regression

theorem, is compared to the method of simply adding imaginary terms, proportional to the decay constants,
to the state energies. The latter method is of far more restricted validity, in that it depends on a particular

strong inequality which must be assumed to hold between the decay constants.

The radiation emitted by an atom during transi-
tions between a pair of (nondegenerate) levels
which are coupled to one another throughout the
emission process by a coherent near-resonant
applied field has been the subject of numerous
theoretical studies. ' ' These have been motivated,
in part, by a recognition of the importance of the
driven spontaneous emission process in determin-
ing quantum noise in lasers, nonlinear amplifiers,
"superradiant" processes, and, more generally,
in any process in which the atoms are subject to
the resonant action of a large mean field. '-'" The
recent advent of high-intensity tunable cw lasers
has now raised the possibility that the essential
features of the driven emission process may be
clearly observable in resonant scattering experi-
rnents, "where the high laser intensity may in

certain cases lead to line splittings large enough
to remain clearly visible in the presence of Dop-
pler broadening.

Accurate solutions for the emission spectrum
in the process under discussion have so far been
obtained in simple closed form, only for the case
in which no decay out of the two-dimensional sub-
space of coupled states takes place. " The purpose
of this paper is to treat the problem as proposed
in one of its earliest formulations, 'in which one or
both levels are assumed to be excited states which
decay to states of lower energy during the emis-
sion process. The analysis presented here repre-
sents a substantial improvement over that of Ref. 1,
which was limited in its range of validity by a
strong inequality which wa, s assumed to hold be-
tween certain decay constants. "'

The density operator for an atom which is driven

by an applied electric field E(t}, while being
governed by a general relaxation process, obeys
the equations

(d/dt+i(u, , +~,', )p,,(t)=ih 'E(t) [tt, p(t)]&,

(j x k), (la)

(d/dt+K&)n~(t) —g n, (t)w» ih 'E——(t)'[p, p(t)]»

(lb)

where &u»=—(E, —E,)/h, n, =p.. . p is the ele.ctric-
dipole operator, and z, =Q, ~» Of particular,
though not exclusive interest is the case of purely
radiative relaxation, for which &» is the Einstein
A coefficient for transitions from the state ) j) to
the state

~ k), and ~'»=-, (tc, +x, ). The electric
field E(t}=Eoe ' '+c.c. is assumed to couple a
single pair of states

~
0) (not necessarily the ground

state) and
~ 1), i.e. , ~ =a&„.

It will be assumed throughout this paper that the
decay process proceeds only to states of lower en-
ergy, and that no decay sequence of the form ~1)
—

~ j)—~0) takes place. Also, it is convenient to
begin by assuming that the atom is initially pre-
pared in some combination of the states ~0) and

)1), and thus to defer a discussion of the effect
of the original process of excitation until the
initial-value problem has been solved.

Under the stated conditions, the density-matrix
elements referring to the pair of coupled states
obey the equations, in the resonant approximation,

(d/dt —i&)n'(t) =ih 'E tL, [n (t) —n, (t)]

(d/dt+i&*}a'*(t} = —ih 'E* ' p,* [n (t) —n (t)],
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(d/dt+K, )n, (t) =- ih 'E& ~ it+, a'(t)

+N 'E, p. „a'+(t)

(d/dt+ K )n (t) —n, (t)K, = ih ' E~ ~ p, ,* n'(t)

—N ' E p o'+(t),
(2)

where p, (t)= a'(t)e ' ', & = &&a+ iK,', , and &&a=—&u

~~o.
The emission of photons during atomic transi-

tions may be analyzed by introducing an appropriate
expansion of the quantized electromagnetic field
into oscillating modes, and then integrating the
equations of motion for the Heisenberg photon-
annihilation and -creation operators in the dipole
approximation. One finds in this way that the
mean number of photons radiated into a field mode
of angular frequency v„and unit polarization vector
e, during transitions from ~1}to ~0), within the
time interval T is

T t

N~=A~ dt dt'e'"&i' ' l(a (t')a(t))+c.c.,
0 0

(3)

where v~= ~„,A„—= v, ~ p„e, ~'/2&V, V is the quan-
tization volume, and the lowering and raising op-
erators a =—~0)(1 ~

and a~ =~1)(0~ on the right-
hand side are evaluated in the Heisenberg picture.
The quantity N, becomes small compared to unity
as V- ~, and in this limit represents the probabil-
ity that a single photon has been radiated into the
mode in question, irrespective of whether or not
photons have been radiated into other modes. It
should be emphasized here that although in the
limit V-~ the probability that more than one
photon is radiated during transitions from

~
1)

to ~0) into the same mode is small enough to be
neglected, the probability that more than one
photon is radiated at all during transitions between
the same pair of states need not be small. Indeed,
for sufficiently intense driving fields, the mean
total number of photons which are radiated before
the atom decays to a state other than ~0) or

~
1)

will become quite appreciable if K» Ko, K, —K»,
and will remain small compared to unity only if

K~0 K~+K
The atomic correlation function in Eq. (3) is

easily evaluated by means of the quantum fluctua-
tion-regression theorem. ""One finds the rela-
tion'

in which the functions %.'(t) are the time-dependent
coefficients which appear in the general solution

in which the caret denotes the Laplace transform
with imaginary argument

y(v)-=1 ue i(i)
0

of the time-dependent functions n, (t}, o.'*(t}, and
'lL'(t).

It follows directly from Eqs. (2) and (5}that the
functions 'n' in Eq. (6) have the values

it~~(v) = ['l/E(v)]((v —6 )(V+ XKi)(V+tKO)

—2Q (V+'EK )},
'll' (v) = —ik ' E, p„(v —5+)(v+iK, )/E(v),

0

where

K ~2(K~ KM+ Ko)

(6)

(g)

Q is the power-broadening parameter 2~ p, » E,(/h,
and E(v) is the fourth-degree polynomial

E(v) = (V + 5)(V —6 +)(V + S Ki)(V + t Ko)

(10)—Q (V+1K )(V+ZKio).

The coefficients n, (0) and o.'*(0) in Eq. (6) depend
on the initial density-matrix elements s,(0)=

No and-
n, (0) N, (the=—initia. l off-diagonal elements are
assumed to vanish) and may be found from the
relations

n'(0) = [ n, (0) —n, (0)] p,„E,/16,

K,n, (0) -N, =- nK, ( )+0n, ( ) 0„K+,N

=[n (0) —n (0)]-'Q'K,', /~6~' (ll)

In many experimental situations in which decay
processes are observed, the system is not initially
prepared in an excited state at a single known in-
stant of time, but rather is continually reexcited
at random times after decays have taken place.
Such an incoherent excitation process may be
represented by introducing appropriate transition
rates into Eqs. (1). Its effect is to produce non-
zero equilibrium density matrix elements n& and

p, (t) =p*, (t) = ne ' ' (where n& and n are constants)
and thus an equilibrium value for the atomic cor-

to Eqs. (2) for o.'(t),

o'(t) =~„' (t)o.'(0)+e' (t)n, (0)+~'„„(t)n,(0)

y%.„'~g (t)n'*(0). (5)

By substituting Eq. (4} into Eq. (3) and taking the
limit T -~, one finds

Nl, =A, 2 Re ( n, (0) 'k~„(v~ —u) + o,"*(0}cit'„(v~ —&u}},

(6)
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One may draw a connection between the initial-
value problem solved above and the stationary
process presently under discussion simply by ex-
pressing the equilibrium excitation rates to the
states

~ 0} and
~
1) in the present case as

i(J &pit)
n,. z,,=—AN, ,

(13)
n,. K,, =-RX, ,

i(s"pl &)

where Np+N, =-1 and A is the total excitation rate
into the

~
0) —

~ 1) subspace. It is then a simple
matter to show that the constant parameters in
Eq. (12) are just

n, =Rn, (0), o.*=Ra'*(0),

where n, (0) and n'*(0} are the quantities evaluated
in Eqs. (11) in the absence of the excitation mech-
anism, i.e. , for A = 0,

The excitation mechanism which induces transi-
tions to the states ~0) and ( 1) from states of lower
energy alters the general time dependence of the
density operator, and hence alters the functions
'lt'(t) in Eq. (5). It is clear, however, that for
sufficiently small excitation-transition rates &,p
and «;, (roughly speaking, for sufficiently small
R) the effect of the excitation mechanism on the
functions 'a'(t) may be neglected. This approxi-
mation requires that 8 be vanishingly small com-
pared to the other relaxation rates, and is valid,
in particular, only when the equilibrium excita-
tion probability is small (n, +n, «1}. For suffi-
ciently small R then, the functions a' in Eq. (12)
are well approximated by the values found for
them in Eqs. (8), so that Eqs. (12), (8), (11), and
(14) represent a complete solution to the proposed
problem whenever the equilibrium reexcitation
rates are known. (The soiution in question speci-
fies N„as A& times the asymptotic value found
for it in the absence of reexcitation. )

That the assumption 8 0 is really necessary
for the validity of the approximation being made
here perhaps becomes most readily apparent when
one notes that the coheren~ part of the spectral
density g (v), which represents the elastic scat-
tering of the incident light, is not present in Eqs.
(12) and (8). This part has the value

relation function in Eq. (4}which depends only on
the time difference I' —I". The expectation value in
Eq. (3) then grows linearly with time for large
times (rather than assuming a finite asymptotic
value) and has the value Ã, =A„g (v, )T, where

g(v) =2 Ite [n, 'a'„„(v —&u)+ n+'ll„'„(v —&o)].
(12)

g „(v)=2v[ ni'6(v —&u), (15)

and is thus proportional to R' (since o, is propor-
tional to R}. It is thus vanishingly small in inte-
grated value for B-O, compared to the incoherent
part as given by Eqs. (12) and (8), which is pro-
portional to R. The failure of the co/creat part of
g(v) to appear directly in Eqs. (12) and (8) is due
to the omission of terms proportional to A in the
functions '4', an omission which affects as well
the validity of the expressions found for the in-
coherent part of g(v}, except in the limit R-O.
[The problem with an appreciable reexcitation
rate can of course still be solved by the general
method based on the fluctuation-regression theo-
rem, but only by solving the general Eqs. (1),
which involve the occupation numbers of all states
which are part of the decay sequence or reexcita-
tion sequence. The answer cannot in general be
expressed in terms of the equilibrium reexcitation
rate A and the decay constants which refer to the
states (0) and

~
1) alone. (One of the effects of

appreciable A is a broadening of the spectral
lines. }]

In the stated approximation, the limiting forms
of the function g(v) are readily found. For weak
incident fields (Q-0) and for l&~I=

I
~ —~~ol

»~», ~~, , the function is sharply peaked at the
three frequencies cu«, m, and ~+~~. It is well
approximated by the relation"'

2n~ «~0

~io} +«co

(16)

8, =n, n, «„/(K—, —«,),
8, =n, [1yK, /(K, —K )] .

The first term in Eq. (16} (which is given ac-
curately only when N, &0) represents the familiar
spontaneous emission field at the resonant fre-
quency (O~p,

The terms proportional to Q2 in Eq. (16) repre-
sent scattering and stimulated emission processes,
due to the direct action of the incident field. It is
instructive to consider the case &, «&p, &, = 0,
&p +p for which the terms in que st ion reduce to
a Lorentzian function of width &p and integrated
intensity 2vn, ,'Q'/(4~)' If —( 0) were t.he ground
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state of the atom, then by taking the limit &,-0
one could recover the familiar result for the
coherent elastic scattering intensity. Here the
interpretation of the terms in question is some-
what different. The nonzero spectral width &, of
the emission field is due to the damping of the
driven oscillating atomic current which is caused
by the decay of the atom from the state ~0) to
states of lower energy. Though inelastic, the
process would nevertheless still have a coherent
character if all of the atoms were initially pre-
pared in the state

~ 0) and the transient emission
process were observed in the absence of any re-
excitation mechanism. When a weak reexcitation
mechanism is present, however, the process be-
comes almost completely incoherent by the time
the steady state is reached, simply because two
different atoms are then unlikely to be excited to
within the (0) - ~1) subspace at the same time.
The coherent part of the scattering intensity is
then given by Eq. (15}, and, as noted above, is
vanishingly small compared to the incoherent
part in the limit 8-0.

The term proportional to Q' in Eq. (16}repre
sents a parametric process in which two photons
are absorbed and two emitted. ''" One of the
emitted photons [the one represented in Eq. (16}]
has frequency co+4~, while the other, with fre-
quency ~ —&co=~,o, is masked by the much larger
spontaneous emission field. Here again the fact
that an atom is excited only a small fraction of
the time implies that the process, which would
have a coherent character if ~0) were the ground
state (with the two-photon amplitudes due to dif-
ferent atoms adding coherently in the forward
direction} is largely incoherent in the case under
discuss son.

In the limit of intense incident fields, the spec-
tral intensity is sharply peaked at the frequencies
ur, ~+0, and cu- 0, and is well approximated
by the relation

in which

I j.
~io —,r

(v —&u} + z,'o~(v —u& —0}'+I'
-'r
2

(v —m +Q }'+ I' (16)

I = K + (K +K +K )

= 2 (K~ + Ka} + 4K~

(I 9a)

(19b)

with Eq. (19b) holding in the case of purely radia-
tive decay, where x,', =-, (z, +&,). The radiative
decay of the atom out of the ~0)- ~1) subspace thus
broadens the emission lines equally at the side-
band frequencies and at the central frequency ~,
and leads to equal widths for all three lines in the
limit (Kq + Ko)/Kqo

In the analysis of Rautian et al. ,
' closed solu-

tions were obtained only for the limiting case
&,0«&, +&0, i.e., only for the case of vanishingly
small probability that more than one photon is
emitted before the atom decays to a state other
than ~0) or

~
1) . When K» is eliminated from

Eqs. (2}, the resulting equations are the same
as those obtained by simply introducing imaginary
parts —2i w, and —2 i&, into the energies of the
states ~0) and ~1), respectively. It is not difficult
to show that the general relation (4) for the atomic
correlation function then reduces to the relation'

(a (t')a(t)) =(V~(t')at V" '(t'}Vt(t)a V(t)),
t) t' (20)

where V(t) is the 2X 2 time-development matrix
for a pure state of the system with complex en-
ergies, under the influence of an applied field.
The method adopted in this paper, by contrast
to that of Ref. 1, depends on no assumption about
the relative magnitudes of any of the decay con-
stants, and thus retains its validity even when the
method of adding imaginary terms to the state en-
ergies ceases to be applicable. &&
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~sin Ref. 8 it is shown, however, that radiative atomic
decay as determined by general decay constants can be
described by the addition of imaginary terms to the
state energies, provided that the radiation field modes
are retained and an appropriate multiphoton calculation
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