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Complete redistribution in the transfer of resonance radiation
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The assumption of complete redistribution in frequency used in the theory of transport of resonance radiation,

when Doppler broadening is important, is shown to predict the correct number densities in the excited levels

at large optical depth. The line shape, however, is not a Doppler distribution in the wings but decreases like

exp( —u ')/ u.

I. INTRODUCTION solutions of the following eigenvalue problem':

In the theory of radiative transfer in spectral
lines under conditions such that Doppler broad-
ening' determines the spectral line shape, a
fundamental role is played by the assumption
that the line shape of the radiation emitted
by the excited atoms is proportional to the ab-
sorption coefficient Z(u) o- k(u). This assumption,
known in astrophysics as the assumption of com-
plete redistribution in frequency, has been dis-
cussed extensively by Holstein. ' He has argued
that the assumption is reasonable at large optical
thickness. In astrophysics, ' it has been shown that,
on this basis, models can be constructed for radia-
tive transfer problems which give reasonable agree-
ment with physical reality much better than with

the previous assumption of so-called "monochro-
matic scattering. " When the assumption is adop-
ted, it is not difficult for the stationary state of a
radiating plasma immersed in an electron gas to
derive the equation

A(2, l)nm(r) +n, (r)n, K(2, 1)

=n,n,K(1, 2)+A(2, 1) K(
~
r —r'()n, (r') dr',

V
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Here A(2, 1) is the Einstein coefficient for spon-
taneous emission 2-1 and n„n, , and n, are the
densities of excited atoms, electrons, and ground
state atoms, respectively. For the sake of sim-
plicity it has been assumed that n, , r4y and the
electron temperature are independent of position.
K(2, 1) and K(1, 2) are the rate constants for deex-
citation and excitation, Z(u) is the line shape, k(u)
=k,S(u) is the absorption coefficient, and

2(u) = exp(-u )/m ~, u = 2(v —vo)/hvz, , Avn

is Doppler breadth. The integration extends over
a certain volume V.

Equation (1) can be solved with the aid of the

A(2, 1))))(r) =A(2, 1))))(r)

-A)2, 1) I K))l — 'l))(r')d '. f2)

Here A(2, 1) is an eigenvalue and )))(r) an eigen-
function. For the analysis of Eq. (2) at large op-
tical thickness, only the behavior of Z(u) in the far
wings is important. ' More precisely, let the
volume V be a slab of thickness L. Define the di-
mensionless frequency uo(k) &0 as the solution of
Z(uo) = (koL/2k) ' when koL —~. For a Doppler pro-
file we have uo(k) = (lnkoL/2kx' ~)' ~. The eigen-
values and eigenfunctions of Eq. (2) are determined
by the behavior of the Fourier transform of the
kernel near k/koL =0.'6 For this behavior the
following formula has been derived~:

l & kLIg'r)e'"' dr —1 —— 0 ( $2(u) du,
2 k ups)

Ik I /k, Z —0. (2)

It follows that the solutions of Eq. (2) are deter-
mined by the behavior of Z(u) for frequencies of
the order of and larger than u„ the far wings of
the spectral line; u„ is precisely the frequency at
which a photon has a mean free path of the order
of' ', L, so that for —frequencies ~u

~

~ u„ the slab
is optically thin. The following criticism can now

be raised: Irrespective of whether the assumption
Z(u) )x: k(u) is valid in some frequency range or
other, it is highly doubtful that it is valid in the
far wings of the line, where the loss of photons
is substantial. If this is true, then the assump-
tion breaks down precisely where we need it, and
the whole theory is invalid.

It will be shown that this criticism is basically cor-
rect; we shall obtain an equation for the line shape and

prove that for k,L —~ it approaches the Doppler line
for frequencies' fuf&u, . For frequencies Jul &u„
however, ' it becomes proportional to u,e "/u and is
even anisotropic in that frequency range. Neverthe-
less, and rather surprisingly, our analysis yields the
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same eigenvalues and eigenfunctions'" as Eq. (2)
for k,L- ~, which means that the number densities
in the excited levels, the total production of ra-
diation, etc. , as calculated from Eq. (1}, are cor-
rect. The line shape of the emitted radiation is
not correct. The differences may be sizeable in
the far wings of the line, but, fortunately, this
is not the part of the line in which one is usually
most interested. The reason is essentially the
following: Suppose that Eqs. (1)-(3) remain valid
in the correct theory, in the sense that we need
only insert the correct line shape everywhere.
This is not absolutely true, but may be assumed
to be fairly close to the truth. " In first-order
asymptotic theor~ for koL- «, it does not matter
then whether e " or u,e "

/u is used in the in-
tegral in Eq. (3) because the exponential deter-
mines its behavior for sc, —

The plan of the payer is as follows: In Sec. II
the general equation of radiative transfer for a
stationary problem is reduced to a set of linear
integral equations. The set is analysed in Sec,
III, where the line shape of the excited atoms is
obtained and where it is shown that the eigenvalues
obtained from Eq. (2) are correct for large op-
tical depth.

The xnanner in which the problem is dealt with
is likely to be applicable to more difficult situa-
tions where the assumption of complete redistri-
bution certainly fails; for instance, when natural
broadening is of importance in addition to Doppler
and/or Lorentz broadening. "

II. REDUCTION OF TRANSPORT EQUATION

%e shall work in a simple geometry, namely,
the slab

V= (--,L «x « ,L, --~& y, s & +~).
The analysis can be extended to other geometries
(e.g. , an infinite cylinder) at the expense of some-
what more complicated formulas. The results,
however, remain essentially the same. There
will be present in V electrons whose density is
designated by n, (independent of position) which
excite and deexcite atoms. The atoms in the
gxound state, density n, independent of position,
will have a Maxwellian velocity distribution such
that the absorption coefficient k(u) is Doppler: '

=k,e "~ ' ', and atoms excited by electrons en
their radiation into the radiation field according to
the Doppler distribution. Our starting point will
be the, Milne-Edington equation for the intensity
of radiation I (r, u, s) in V. I (r, u, s) dud Q repre-
sents the energy transported per cm' and per sec-
ond at position r in the direction denoted by the
unit vector s at fx equency u, within the element
of solid angle dA. The angle between s and the
positive x direction is denoted by D. The angle be-
tween the projection of s on the yz plane and the
positive y direction is y and will be measured
counterclockwise. Since n, and n, are independent
of position and the density of excited atoms n~
is at most a function of x (and not of y and z),
I(r, u, s) will be a function of x, u, and sonly. We
then have the following transport" equation in V:

cosd —I(x, s, 8) +k(Q}I(x,R, 0}= (1 —E)S (tc) + ' A(l4, s; Q', s'}I(x,8', S'}dt's'dQ',
8 k (1 —e)

0'
(4)

1 —a=A(2, 1)[A(2, 1) +n, K(2, 1)]

represents the fraction of the primary excitations
[by the radiation field I(x, u, 8) or by sources S (u)
independent of I(x, u, 8)] that is emitted into the
x adiation field and where

4wS (M) =hvn, n, K(1, 2)Z(u}

is the energy per cm' and per second produced by
the electron gas in creating excited atoms. The
fraction (1 —e)S (u) is emitted into the radiation
field, the emission being isotx opic. Finally, "
R(u, s;u', s')

= (w siny) ~ exp[(-u~ —u'~+ 2uu' cosy)/sin'y].

B(u, s; u', s') gives the frequency u of the photons
absorbed from I(x, u', s'} and reemitted in the di-

I

rection s(cosy= s s'} when (a) natural line broad-
ening is negligible compared to Doppler broadening
and (b) the atom does not change its velocity
during the absorption-emission event. The
aim is to solve Eq. (4). However, since l(x, u, d}
is a function of three independent variables, a
direct treatment of Eq. (4) seems hopeless. We
therefore try to decompose Eq. (4) into a set of
(coupled) equations for functions with fewer inde-
pendent variables. These functions are construc-
ted such that1(x, u, s) and the density of excited
atoms and the line shape of the emitted radiation,
which are even more interesting, can be calculated
from them. We shall do this by reducing Eq. (4)
to a set of linear integral equations.

The principle of this reduction will be demon-
strated first be approximating R(u, s; u', s') by
exp[-u'-u']/m, the product of two Doppler dis-
tributions [assumption of complete redistribution;
the reemitted radiation is assumed to have a line
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shape proportional to the absorption profile, and

2(u) (x k(u)].
The result will be the Biberman-Holstein inte-

gral equation, Eq. (1). Next, using an expansion
of R(u, s;u', s') to be derived in Appendix A, we
derive in essentially the same way the required
set of integral equations which will be analyzed
in Sec. III.

A. Complete redistribution

We make the assumption of lcomplete redistri-
'bution, i.e., (without proper justification) we
insert in Eq. (4)

I

R(u, s;u', s') = Z(u)2(u') =w 'e " " . (6)

After perfroming the integration over y, Eq. (4)
becomes

+ oo fr

cos9 —I(x, u, 9) +k(u)I(x, u, 9}= (1 —e)S (u) +—,'(1 —e) Z(u) k(u') I(x, u', 9') sin9'd9'du'.
oo 0

The right-hand side of this equation is independent of 9 and proportional to Z(u). We formally put

+ 420

(1 — )lk( ) ~—', d( ) 2( ') l(4, ', 4')4' 4 dFd ')=(2 /4 )A(2, 1),(*1k( ).
oo dp

(7)

This formula defines n, (x), which can be interpreted as the density of excited atoms at position x. We thus
have

a
cos9—I(x, u, 9) +k(u)I(x, u, 9'} = {h v/4w)A(2, 1)n,(x)Z(u).

This is a first-order differential equation. When no radiation is incident from the outside on the planes
x=+ 2L, the. solution is

'
h v Z(u) ' k(u)—A(2, 1) exp (x' —x) n, (x') dx', 0 & 9& ,'w-
4' cos3 g/2 cos3

I(x, u, 9) =

l' —A(2, 1) exp (x' —x) n, (x') dx', 2w & 9& w .l
hv Z(u) ' k(u)

g 4F ' cos3 ~/, cosB

Multiply both sides of this equation by k(u} sia9d9du and integrate over 9 from 0 to w and over u from -~
to +~. Making use of Eq. (7}, and the defini!ious of S(u} and 1 —e, we obtain

I, /2

A(2, 1)n,(x)+n, (x)n, K(2, 1)=nkn, K(1, 2) +A(2, 1) K(l x- x'[)n, (xd) dx',
-1./2

+ k(u) I xl
K(l xl ) = — Z(u)k(u) exp

2 p COS3
tan3d3du .

(8)

Equation (1}reduces to Eq. (8) if n, is taken independent of y and z and the integration over these va~ables
is carried out. The analysis leading to Eq. (!!!)is very well known. It has been given because essentially
the same treatment applies in the general cage to which we now turn.

B. General theory

The approximation of Eq. (6) is the first term (n =m = l =0}of the expansion (to be derived in Appendix A).

(n+ z) (n —m}!P„(cos9)P„(cos9')e' (~ ~!e
R~g s Q s I Z Z Z l. V{!i+Pl + z)2

2)+ft(+I gJ4. fthm l '
n=p m= m ~=p

(9)

P„(cos9) is an associated Legendre polynomial" and II22, „(u) is a Hermite polynomial. " Equation (9) is
substituted into Eq. (4}. Since the intensity I(x, u, 9) is independent of (!), the integration over this var!iable
yields 2w6 0. The function n2(x, u, cos9) is introduced as follows:

(1 —e) S(u}+e " g ",'d"„",„,, k(u')H2„„(u') P„(cos9')I(x,u', 9') sin9' d9'du'
ff, f=p

= (hv/4w}A(2, 1)n2(x, u, s}, (10)
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where s=cos3, and where n, (x, u, s) can be in-
terpreted as the density of excited atoms at posi-
tion x which emit photons at frequency u in the
direction defined by the angle 3. According to
this definition, Eq. (4) becomes

8
cosa —I(x, u, 3)+k(u)I(x, u, 3)

= (k v/4v)A(2, 1)n, (x, u, s}. (11)

The quantity n 2(x, u, s} will in general be neither
purely Doppler nor isotropic (and even if it were,
me would want to prove it and not assume it).
Therefore the following expansion of n2(x, u, s} is
introduced in terms of the Legendre and Hermite
polynomials:

~g2

n, (x, u, s) = „, g (2n+ 1)P„(s)H»,„(u)n, , „(x).
ft, f=o

»« that if n, (x, u, s}were isotropic and Doppler,

only the term n = 1=0 in Eq. (12) would be different
from zero (apply the orthogonality relations" for
the Legendre and Hermite polynomials). The
terms with n, l t 0 apparently describe the devia-
tions from the Doppler distribution and the anis-
otropy which n, (x, u, s) may exhibit. S(u) in Eq.
(10) is proportional to e " and independent of 8.
Its expansion in Legendre and Hermite polynomials
contains only one term, '~ namely,

S(u) = ~Se " P,(s)HO(u),

S = (k v/2s'")n, n, K(1, 2) .

Equations (12) and (18) are substituted into Eq.
(10). Since the Legendre and Hermite polynomials
are mutually orthogonaV' (the latter with respect
to the weight function e " ), the terms in the ex-
pansions must separately equal one another. %'e

have

(1 —e) S5„05, 0+) k(u')H», „(u') da'du' = „2A(2, 1}n, , „(x).1!T' (l+n+ —,'j2"""" 2m'" (14a)

~e now proceed as in the case of complete redistribution (Sec. 11A). The solution of Eq. (11) ts

» A(2, 1) * k(u)(x' —x)
exp n, (x', u, s) dx', 0 & s & 1

4m s 8
I(x, u, 3) =

k v A(2, 1) " k(u)
exp (x' —x) u, (x', u, s)dx', —1 c s ~0.

4'tt' s I y2 s

Both sides of this equation ax'e multiplied by

k(u)H„, „(u)P„(cos3)sinSdsdu/[li Z'(I+u+ —')2'"~"]
and integrated with respect to u and 3 from -~ to +~ and from 0 to n, respectively. By means of Eq. (14a)
we obtain (s = cosa}

k(u)H„, „(u)P„(s)exp[(k(u}/s}(x' —x}], ~ &s &,
f } P (I 3)24i+2tl+1

~I'k(u)H», „(u)P„(s)exp[(k(u}/s)(x- x')]
I( P (I + + $)24I+2n+ 1 2

Equation (12), with the indices of summation
changed into n and I, is substituted into the xight-
hand side of this equation. W'e then note that only
for even values of n+n are the integrals obtained
different from zero, because for n+n odd,
H„,„(u)H», ,„,.(u) is odd while the rest of the inte-
grand is an even function of u. Using the definition

and of 8, we obtain after some simplifications the
following system of linear integral equations for
the functions n» „(x)(l,n=0, 1, . . .):
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r I, /2
[A(2, 1)+&,K(2, 1)]na, &,„(x)-&x&.K(1 2)6(, 6.,0=&(2 1) Q K)

~..)~,. (Ix-x'l)n. , )~,. (x')(fx'.
f~

~ ft = 0 ~-I /2
(14b)

k(+}ff „{M)P„(s)lf& „(s)P„'{s)d

Note that the term /=n =l =n =0 is precisely the
Biberman-Holstein integral equation, Eq. (8).
Because the kernels are actually zero for n+n
odd, Eq. (14b) separates into two sets of equations
for n, n both odd and n, n both even. The inhomo-
geneous term for the odd set is zero, and there-
fore its solution will be zero. Hence only the solu-
tions of Eq. (14b) for n, n both even need be anal-
yzed. %'e do not want to use 2n and 2n as sub-
scripts and therefore change the notation a little
bit. In the following, we denote n. ..„(x}by
n. . .(x) ~d K. .., , ,. (Ix-x'I) by K, . ~.
( x —x

I
). Equation (14b) for I,I = 0, 1, . . . , be-

comes

[A(2, 1)+n,K(2, 1)]n, , (x) —n,n, K(1,2)6, ,6,
=~(2, 1) g K. .., ., (fx x'I)

l', fft =0 "-L/2

x n. , ..„.(x')dx'.

The expression for K, , (Ix —x'I) is obtained
from the corresponding one for K, ,„, ,„.(Ix —x I)
replacing n and n' by m and I' everywhere in

Eq. (14b). Equation (15) is perfectly general and

applies both at low and high optical thickness.
It has the advantage over Eq. (4) in that it has
been formulated in terms of functions of one vari-
able only, but this has been achieved at the ex-
pense of the fact that we need to solve an infinite
set. This price, however, will turn out not to be
too high, at least if we restrict ourselves to the
important case of large optical thickness. We
shall show this in Sec. III.

III. ANALYSIS OF PROBLEM

In the analysis of Eq. (14b), Fourier techniques
play an important role. %'e first briefly demon-
strate the principle in the particular case obtained

by truncating Eq. (14b) at order zero (the Biber-
man-Holstein integral equation). The solution of
this equation will be needed later for comparison
with the solution of the complete set of equations
given in Eq. (14b).

A. Complete redistribution

Equation (14b) truncated at order zero reads for
fx I

—.'L
+I /2

n(X, ()(n, (x) — «( ~x —x'&)n, (x'&nx'}
- L/2

+n, (x)nP(2, 1)=n,n, K(1,2) .
(16)

For brevity we have set n, (x) =n. ..(x) and
K( fx —x'I) =K. ..,( fx —x'I). Equation (16) would
be correct if we could argue that (e.g. , for k,L» 1)
the line shape of the excited atoms is Doppler, be-
cause then all n, , (x) in Eq. (14b) vanish for
I, m ~ 1, as follows from Eq. (12). We introduce
in Eq. (16) the new variables 2$L =x, ~z$ L =x
and obtain for

I $ I
~ I

n(x, ()(n,(() —l««(l«l( —('l)n, ((')«'}

+n2 (t')n, K(2, 1) =n,n, K(1, 2) .

For the application of Fourier analysis, it is most
unpleasant that the integration extends over a fi-
nite interval. Actually this causes no difficuIty be-
cause the number densities n„n„and n, are
zero outside [-1,+1]. It is, however, necessary
to make this fact more transparent in the mathe-
matics. We introduce a function P($) defined as
f»»ws: P(t) =I «r

I

t-
I
= 1, P(t) = 0 «r

I ( I
».

%e then have

"(n )()({"«(() '&(J( «.(-*'~-l(-( l)«(()|n(()n()x'«(()n(()". «(x ')=«((&n .«((, x).

After applying Fourier transformation to both sides, the equation becomes (n, and n, are assum-
ed to be independent of position}

«(n, (&{~(n& (n.&- i J i(x x')ic( );. ) )(n+ nn. . n(x, &=«.(.n..», «(&, x&«(x&
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+CO

A, (k) = (2v) '" e'"'P($)n2($) dh,
CO

5k'
K(k) = ,'L ' —e K(KL))d),

~OO

(2x) '~'P(k) = (2v) ' e'"P($) d$ =—
m k

In connection with Eq. (17), the following eigen-
value problem is of importance:

Ag(2, I) v Xj' koL

where the X& are the eigenvalues of a certain inte-
gral equation which also yields the eigenfunctions
(t), (k). The integral equation is determined com-
pletely by the exponent (=I) of k in the second term
of Eq. (20). In the sequel we shall need this fact
only, and not the actual form of the integral equa-
tion or the actual form of its solutions X& and g (k).
This brings the analysis of the Biberman-Holstein
integral equation to a close.

(,(2) —(22) '"J K(k —k')R(k')k, (k')dk'
OO

', j,(k'). (18)
1

Assume that this equation has been solved. It can
be proved that the eigenfunctions constitute a
complete, orthonormal set. After having normal-
ized them to unity, we expand it, (k) as follows:

d, (k)=g id(k)d, .=f,(,k)il,.(k)dk.
0 ~ 00

Substitution of this expression into Eq. (17) immed-
iately yields the following soulution:

C~(k)
&.(k) =n,ndK(I)2) Q g (2 I) K(2 I)

x t P(k )P, (k )dk . .

(19)

If desired, inverse Fourier transformation can be
applied to yield the solution in ordinary $ space.
We shall not do this since we are only interested
in the form of the solution given in Eq. (19). The
eigenvalue problem defined in Eq. (18) is therefore
of crucial importance to us. Widom' has proved
that for kpJ»1 both the eigenvalues and the eigen-
functions of Eq. (18) can be derived from the be-
havior of K(k) near k =0. It is shown in Appendix
B that we have

~ u upL, -'~' luj
K(k) -I -- I „, , „-0 (2O}

and Widom' has proved that in that case

8. General theory —preliminaries

The analysis of Eq. (15) is difficult because we
have to solve for the n, , (x) all at once. The
problem resides in the off-diagonal kernels

.(~x —x ~)1f 2kf', m kkm', because if these
were zero, there would remain only the task of
separately solving a set of independent integral
equations. Using the theory of Subsection III A this
would be simple, and actually, because the inho-
mogeneous term contains only one nonvanishing ex-
pression (1 =m =0), we would retrieve the Biber-
man-Holstein integral equation. The idea is now
to calculate the functions n, r, (x), these being a
linear superposition of the functions n» (x) and
integral kernels Kr, r, „.( ~

x -x
~
}, being a linear

superposition of the kernels K, , (~x —x ~),
such that when Eq. (15) is reformulated in terms
of these quantities, the resulting set is diagonal,
at least in good approximation for @pl »1. The
resulting inhomogeneous term possesses nonvan-
ishing expressions for all values of p and q, so
that we have to solve separately a great number of
independent integral equations. It will be proved,
however, that from the n», (x} under nonequilib-
rium conditions, the one with p =q =0 dominates
the others for kpI »1. We shall obtain an expres-
sion for n, r, (x), p =q =0, and compare it with the
corresponding solution of the Biberman-Holstein
integral equation. Furthermore, the line shape of
the excited atoms will be calculated.

It is convenient to formulate the problem in
Fourier space. By applying the steps used in
transforming Eq. (16) into Eq. (17), Eq. (15) be-
comes, for both /, m = 0, 1, . . . ,

d(2, 1)(ll, , „(k) —(2 )
'1' I I P(k —k)K, , „.(2)ll, , ~ (1 )dk +", , „(k)kK(2, 1)

lr &r 0

,, 50n5, n, K(1, 2)P(k) .

(22)
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The definition of the various symbols is, mggtgtig

mutandis, equal to that given under Eq. (17). In
Appendix B it is proved that

SC, , {k')

(2m'+ -')2-"-'"
(
',

)
(g(k')k1 „,g(k')k, .. .},

k, =—exp(- &u')H» „(u)P, (s),
g(k') designates

g(k;u, s) = [1+4k 's'/k'(u}L'] '~',

and the inner product is defined as

(S(k )k1 Z(k )k1~,

trix can in general be reduced to solving an eigen-
value problem for an integral equation. " Some-
times (e.g. in our case) the latter problem is
simpler. We shall now define such an abstract
eigenvalue problem and study its properties. In
Sec. III C it will be shown that with the aid of its
solutions, Eq. (22) can be diagonalized. I et ns de-
fine for fixed k and p, q=0, 1.. . the following
eigenvalue proble~ [where k (u s)=e-" ~'H

(u)P, (s)]:

+~ 1

(k)f (k;u, s)= t R(k;u, s, u, s )
J„ce

x f, ,(k; u s ) du ds

R{k;u,s, u', s') ~g(k;u, s)g(k;u', s')

1

g'(k';u, s)e ~H„~ (u)H„., (u)
oo Jo

(4m+I)k, . (u, s)k, . (u', s')
I t T'(I + 2~ + ~)241+4m+1.

xP, (s)P, , (s)dsdu.

We shall use this inner-product notation from now
on. It is understood that the integration is always
over u and s and that the addition of k means that
the inner product is parametrically dependent on
k.

How can Eq. (22) be transformed into diagonal
form'P Suppose that the interval of integration in
Eq. (15) were -~,+~ instead of -~L, +-,L Apply-.
ing Fourier transformation, we would obtain an
equation similar to Eq. (22), the only difference
being that (2v) ' 'P(k —k ) is replaced by 5(k —k ).
After integrating over k, we obtain for fixed k a
simple set of linear equations for the n, , jk} The.
set can be transformed into diagonal form if we
can calculate the eigenvalues and eigenvectors of
the matrix K. ., .(k) for any fixed k. This is
what we shall do. Although the volume is actually
finite and (2v) '~2P(k —k ) not a 5 function, we hope
that the error introduced will decrease sufficiently
fast for k,L, -~. We shall derive an expression for
this error and prove it to be small. The calcula-
tion of the eigenveetors and eigenvalues of a ma-

g(k; u, s) = (1+4k's'/k'(u)L') 'i',

which in common operator notation reads

i1, ,(k)f, ,(k) =R(k)f, ,(k) . (23)

R(k) is the operator with kernel R(k;u, s, u, s ).
The eigenvaiues p~, (k) and the eigenfunctions

f~,(k;u, s) depend parametricalfy on k [k is no in-
tegration variable in Eq. (23)]. In the following,
it is necessary to keep the dependence on k ex-
plicit in the formulas. %e shall be interested only
in those f~,(k;u, s) which are real and even func-
tions of u and s. Equation (23) admits solutions for
zero and nonzero eigenvalues, and these solutions
together constitute a complete, orthogonal set. We
impose the normalization condition on the f~,(k)
with imp (k) & 0 ~ p, q = 0, 1,

(24)

The following is proved in Appendix C: The solu-
tions of Eq. (23) associated with the nonzero eigen-
values are given by (in first approximation for
k/koL —0)

C~„g(k;u, s) e "'~'H~„,(u)P,,(s), ~u~ &u(k, s) =(I kLn/2skv'~'}1~', 0 &s &1
t,
'k. u s&-

"g(k;u, s)— P„(s) P„—H„.„(t)dt, ~u~ -u, (k, s), 0-s- l.

The neglected terms in Eq. (25) are of order

(k L/k) ' [In(koL/2k'' ')]~+' ' '
near u = 0 and of order [In(koL/2kv ' ')] ' for
~u

~

o u, (k, s).
We therefore must have [ln(koL/2k''~')]» I if Eq.

(25) is to be a valid approximation. The constant
C, in Eq. (25) is determined by the normalization
condition Eq. (24). We have for k/k, L -0

C -v'"(4q+ I}-'2""'I'(2p+2@+1) . (26)

The approximate eigenfunctions in Eq. (25) are not
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exactly orthogonal. It is possible to show that for
P~p a'~a'

(f, (k),f; (k))=o- ) ' e*)""""*
0

i.e., they are orthogonal in very good approxima-
tion. For the eigenvalues we have for k/k2L-0

a' "I(2p+ 2q+1)
p!I'(p+ 2q+ -')

+ 0 ln &+&-~ ~2

kpL 20m

The first term is always smaller than 1 except if
p =q = 0. In that case, we shall need the explicit
form of the 0 term.

It is proved in Appendix C that

~ u

2 k2L 2ka' '
k2L

(28)

The two different expressions for f2, (k;u, s) in Eq.
(25} fit continuously at ~u

~

=u2(k, s)» 1; we have"

H, „,(u}-2"'"u"'"
~u~ »1.

The integral can be evaluated to yield"
1

22(ee2au2(e+2ae& P (f) f2&+22 df0 2Q
0

' 'I'(2p+2 +1)
2p! I'(p+2q+-,'}

We shall prove below that the eigenfunctions with
vanishing eigenvalues are of no interest to us. The
integral operator D(k) with kernel D(k;u, s, u, s)
is defined as

D(k;u", s', u, s) =g(k;u", s )g '(k;u, s)

D(k;u, s;u, s) acts like 5(u —u)5(s —s). The
integral kernel D(k; u, s;u, s}, however, is not a
representation of 5(u —u)5(s —s), for if we let
D(k) operate on functions of the type

g(k;u, s) e " f'P, (s)H22(u), P&q, q =1,2, . . . ,

this yields zero, while these functions are clearly
not identically zero. The reader will easily con-
vince himself that this means that the solutions of
Eq. (23} with l(2 (k) e0 cannot constitute a. complete
set and that there must be nonzero eigenfunctions
associated with vanishing eigenvalues. We shall
need the Fourier transform of n2(), u, s} introduced
in Eq. (10) ($ =2x/L, s =cosh)

m +c)c)

n, (k, u, s)=(2w) '
'l~ e' 'P(])n2(&, u, s)dt'. (31)

Analogously to Eq. (12), we have, where h, (u, s)
—= e "~2H2(, 2 (u)P, (s), the expansion

Il /2

n, (k, u, s)=,f, g (4m+1)h, (u, s)A2, (k) .
t, m=o

(32)

We have used this such that the odd terms in Eq.
(32} a,re zero, as stated at the end of Sec. II. We
may also expand R2(k, u, s) to obtain

",(k, , )=k '(k;, )e " e' pf, (k;, )k, ,(k).

(33)

The sum extends over the eigenfunctions with
i(,2, (k) kk 0 (p, q =0, 1, . . .) and those with g2, (k) = 0.
These two sets of eigenfunctions together consti-
tute a complete set. We now prove that the f,(k)
associated with l(2, (k) =0 can be omitted from the
sum in Eq. (33).

Let H, and H, be the spaces of functions consist-
ing of all linear combinations of functions

g(k; u, s)e "'f'H„(u)P, „(s)

(4m+1)h(, „(u2, s )h( (u, s}
k /21k(2l + 2m + I)22(+2m

m

It is easily verified from Eq. (23) and the ortho-
gonality relations of the Hermite and Legendre
polynomials in our notation, these being"

I'(2l+ 2m+ 1)
(m(ee, m' , v

(4m + 1) l, t' m, m' ~

(29)

(3o)

that for the f2, (k) with p2, (k) w 0 (in usual opera-
tor notation), we have

D(k)f2, (k) =f2,(k) .

Equation (30) shows that a,s far as the f2, (k} with

u2, (k) kk 0 are concerned, the integral kernel

with l ~ m and with l&m, respectively. H, and H2

together span the space of square integrable func-
tions which are even in both variables g and s, be-
cause the set of functions e-" f2H»(u)P2 (s), l,
m =0, 1 is complete. " It is readily verified from
the definition of the operator D(k) that D(k) acts
as the identity operator in H, but yields zero in
H, . Since D(k) also acts as the identity operator
for the f2, (k) with I(2,(k) 2-'0, these f2,(k) must be
situated entirely in H, . It follows from Eq. (32)
that g(k;u, s)n, (k, u, s) is in H„so that the sum in
Eq. (33) cannot contain functions in H„ i.e. , the
summa. tion is only over these f2,(k} with I(2,(k) kk 0.
We therefore need only the solutions stated in Eq.
(25). Applying the orthogonality relations of Eqs.
(24) and (29), we express the n», (k) in terms of
the n, , (k) and vice versa,
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n, ~,(k) =v '~' Q (4m 1}(f~,(k),g(k)h, )
lc m=0

xn, , (k),

x Q (h, ,g '(k)f~. ..(k)}A, , , (k) .
P~ a=o

(34}

actly this same property because the h, (u, s) are
independent of 0 and are mutually orthogonal. The

f~,(k;u, s) in Eq. (33) are dependent on k, but ac-
cording to Eq. (25) this dependence is very weak.
They can be removed under the integral sign and
we therefore have approximately, as for the

n. . .(k),

(2v) '~2 P(k —k)8~ q, (k)dk=A~ q, (k ). (35)
CO

A last thing remains to be done before we can pro-
ceed to the analysis of Eq. (15}in the form given
by Eq. (22}. By using the fact that the inverse
Fourier transform of P(k) is P($) and P'($) =P($)
[»nceP(&)=1, I&I-1 ~dP(&)=o, I&l»], itis
easy to prove from Eq. (31) that

(2v)-'~'
(

P(k —k')A, (k, u, s)dk=fl, (k', u, s).j co

Each of the functions il, , (k) in Eq. (32) has ex-

C. Solution and interpretation

We multiply both sides of Eq. (22) by

w '"(4m+1){f~,(k), g(k)h( ),
sum over all I and m, and substitute for n, ; (k)
the second expansion of Eq. (34) in Eq. (22).
Using the definitions of Eqs. (23), (30), and the
first expression of Eq. (34), we obtain for
P, q=0, 1, . . .

A(2, () ~, .()) —(2 )
"* I f P(a-),")((, ...., (V)ii, , . ..()t')dlt') (). ..()) .(((2, ))

pl ql~ 0

= v 'nn, n, K(1,2}P(k)( f~,(k), g(k}h, ,),
K~,~, (k) ={f~,(k), R(k)g '(k)g(k')D(k') f~. , (k')) . (36)

The terms on the left-hand side of the inner product have the following meaning: First D(k') operates on

f~, , (k ) resulting in some function of the variables u and s [it is actually f~, (k, u, s) itself]. This function
is multiplied by

(1+4k's'/k2(u)L )'i'( 1+4'ks /k (u)L ) '",
and the result is operated on by R(k). We now use the fact that B(k} is symmetric, and then from Eqs.
(23), (30), and (24), we obtain

K, , ~. ..(k')n, ~,, (k') = pp, (k)[n, ~. ..(k)5~, 5. ..
—(f~,(k),fp, (k)}n, ~. , (k)+( fp, (k), g '(k)g(k') f, , (k')}n, ~, (k'}].

Furthermore, we have

+ ()o

(2 )
'i P(k k')dk'= ' dk'=1

so that Eq. (36) assumes the following form for p, q=0, 1, . . . :

A(2, 1}[n, ,(k) —i), ,(k)n, ,(k) +E,(k) ] + n, ,(k}n,K(2, 1) = w
' 'n, n, K(1,2) P(k)(f,(k), g(k)h ),

), .():)=u, ..())~, . ((2 ) "'f ~() ) )((y . ()) (:-(~') (.).X' (())')) ())..'))d')'

-(f, ,(k),f, „(k))n. . . (k)

In order to put this into the form studied in Sec. IIIA, we multiply both sides by (2v) '"P(k" —k}, integrate
over k, apply Eq. (35), and use the fact that in the same approximation as in the case of Eq. (35),
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(2w)-"*f P(k -k)P(khiw, (k) d(k)k, ,) dk = (2w)-'"(f, .(k ) d(k )2, ,)f P(k -k)P(k)dk
~on

=(f~,(k'), g(k')k, ,)P(k') .

%'e then obtain our final equation for p, q =0, j,

d(2, 1)(ii...(k) —(2 ) "*f P(k —2')P, .(k')ii. ..(k')dk' ~, .(2)) ~ ii. ..(k) .K(2, 2)

= v-'"s,s,X(I,2) P(k)(f, ,(k), g(k)k, ,),

, .(k) = (22) "*f P(k —k')Z, .(k')dk'. (38)

Ne have achieved our purpose. If the error term
«P, (k) is small, then Eq. (38) constitutes a set
of indePendent integral equations, all of which
can be solved by Widom's theory expounded in

Sec. IIIA [cf. Eq. (17)]. Before proceeding to
its solution, let us explain the physical interpre-
tation of Eq. {38). As we have seen, n, (),M, s)
represents the density of excited atoms which at
the position E emit photons in the direction 3
(s =cos8) at the fre(luency u. The corresponding
function 8, (k, u, s) in Fourier space is written as a
superposition of modes f~,(k;u, s), and the density
in each of these modes is 82 d, (k). The electron
gas produces excited atoms with a Doppler pro-
file at a rate n, n j'C(1, 2), and these excited atoms
are distributed over the functions n, ~,(k) according
to the term in the right-hand side of Eq. (38). The
loss mechanisms are radiative loss at a rate
A(2, 1)n», (k), partially balanced by trapping re-
presented by the integral [cf. E(ls. (17) and (16),
and the physical interpretation of the integral in
the latter equation] and loss due to deexciting col-
lisions. Finally, the term «~, (k) represents the
loss or gain of excitation because the modes are
coupled. For an infinite medium this coupling is
zero; our procedure applies in this case, with the
only exception that (2v) ')"P(k —k) is to be re-
placed everywhere by 5(k —k), as discussed under
Eq. (22). It is verified from Eg. (37) that Ed, (k)
and hence «, (k) vanish in that situation. The
finiteness of the volume, therefore, introduces
some coupling, but because the volume is also
large (k,L» 1), we hope that «~, will turn out to
be small compared to the other terms. %e prove
this in Appendix D.

We now proceed to the solution of E(I. (38), in
which we put e~, (k) =0. Let us first consider the
none(luilibrium case A(2, 1)»np(2, 1) and p «0 or
q «0 (or both «0.) Some calculation shows that

(f, ,(k),g{k)k, ,)

+ Ook/k, L}[e(k,L/2k''i')]' '"), (39)-

r

where C~, is the normalized constant introduced in
E(I. (25). Hence the excitation rate of the density
function 8, ~,(k) of the mode f~, (k;u, s) by the elec-
tron gas is small for p «0 or q «0 (or both «0) as
k/k, L-0. Almost all excited atoms are produced
in the p =q = 0 mode.

It is observed that if c~, can be neglected, Eqs.
(38) are, for any value of p and q, of the same
type as discussed in Sec. IIIA. They can therefore
be solved in the same manner, and as shown in
Sec. IIIA, we need the solutions of the following
associated eigenvalue problem:

d(2, ()(il'i(k) —(hw) f P(l —2 )wi, , (k )dilk )dk )~ khc)

=Aq(2, l)it)q(k) . (40)

Both )t)&(k} and A&(2, 1) depend on p and q, at least
in principle. Applying %idom's theory as expound-
ed in Sec. III A, we obtain the solutions of Eq. {40)
by considering the first two terms in the expansion
of p~, (k), given in E(I. (27). We therefore have
for p «0 or q «0 (or both «0)

Ai(221) 1 v l(2P+2q+I)22()
A(2, 1) p! I'(t) + 2q+ —,')

(41)

Because the second term in the right-hand side of
the e((luation is less than 1, the eigenvalues A&(2, I)
for p, q «0 are all of the order of A(2, 1), i.e. , the
densities 8, ~,(k) p, q «0, all decay at a rate lower
than, but in the same order of magnitude as,
A(2, 1)." For p, q «0, the solutions are therefore
of order

n n~(I 2)P(k) 1 k L' ~ d~ A(2, 1}+nP(2„,1)k,L

Ke shall show that under nonequilibrium condi-
tions this is very small compared to n2&0(k). The
amount of radiation produced by the functions
n, ~,(k) is of the order of A(2, 1)n, d, (k) and there-
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fore, if A(2, l)»uUK(1, 2), of the order of (kUI }
{Ink LU/2v'~ )h" ' times the total number of ex-
citations per second n,T4K(1, 2),"hence negligi-
ble.

Let us now consider Eq. (38) for p =q =0. By
comparing Eqs. (28) and (20), we see that the as-

sociated eigenvalue problem Eq. (40) has, rather
surprisingly, exactly the same solutions as Eq.
(18). Hence the solution of Eq. (38) for P =q =0
is exactly the same in form as that of the Biber-
man-Holstein integral equation. Using Eq. (39),
we have for P =q =0

u„.(k) =v-'"u, u, K(1, 2) g j,(k)
P"-0

A (2 I) X,
' khl.

A(2, 1) 2 koL 2v'

P(k') j,(k')dk' [A, (2, I)+u, K{2,1)],

In order to compare n, „,( k) with n», (k), P, q u 0, put A, (2, 1)=A, (2, 1) in Eq. (42). Take @,K(2, 1) to be of
the same order as A, (2, 1). Because Zl()& (k)(1)&(k') =5(k -k'), we see that n»„p, (Ihh 0 is of order (k,L) '
{InkUL/2vv) " ' smaller than nhhh(k), and is therefore completely negligible. In the calculation of
n, (k, u, s) from Eq. (33), we need only retain the first term. We have from Eqs. (25) (the polynomials are
equal to unity for P = q = 0) and (28)

(43)

'v "e ", iu]- u, (k, s) =(Ink, l./2skv"')", 0 s
Z(u, s)-

v '~'u, (k, s)e "/u, ~u~~u, (k, s), O~s ~ l.

The precise meaning of 2(u, cos3) should be re-
called here: Z(u, cos8) represents the fraction of
photons which are emitted at the frequency u in

the direction of the angle 3 with the positive x
axis. Z(u, cos8) is a function in Fourier space,
but we shall show in a moment that the distribution
function in ordinary space is obtained by putting @ = I;
u, =(ink, f./2v' 'cos8)' ' is precisely the frequen-
cy beyond which the slab is optically thin. In the
far wings ~u( - u„ the loss of photons obliges the
distribution function of the excited atoms to be
non-Maxwellian and the line shape of the emitted
photons to be non-Doppler. Note that parallel to
the planes of the slab, i.e., for 3 =2m, there is no

loss of photons and the line shape is purely Dop-
pler Equation (4.3) should be compared with the
solution of the Biberman-Holstein integral equa-
tion, Eq. (19), by assumption to be multiplied by

1/2 g2the normalized Doppler line v '~'s " [see Eq. (12);
n, ,, ((), I =m =0, was abbreviated as n, (f} in Sec.
IIIA]. The line shape is different, but the density
in the excited state is the same. We mention that
the rate at which the true line shape approaches
the asymptotic one given in Eq. (43) is dependent
on the frequency. For g = 0, the error is of the
order (kUL) '(InkoI/2v'~') '~', andfor (u(a uo, itis
of the order (InkoL/2v' ') ', in agreement with
our expectations. In the center, the line shape
must be Doppler to a very good approximation.
The solution in ordinary $ space is obta, ined by
applying an inverse Fourier tx ansformation to

n, (k, u, cos3) in Eq. (43) [cf. Eq. (31)]. Now it can
be proved that the eigenfunctions g, (k) in Eq. (43)
are peaked in the neighborhood of k =X,. '. On the
other hand, Z(u, cos3) is a very slowly varying
function of k/k, L there. In the inverse Fourier
transform, we may put k = X,

' = 1 in Z(u, cos8) and
then take it outside the integral sign. The remain-
ing integral is exactly equal to the Biberman-Hol-
stein solution in Eq. {19)transformed back to or-
dinary $ space.

So much for the discussion of the solution of the
transport equation under nonequilibrium condition
A(2, 1)»n, K(2, 1). In the opposite case, when

A(2, 1}«n, K(1, 2}, we neglect all radiative terms
in Eq. (38). The solutions are, for all P, q,

n, h, (k) =v '~'n, [K(1, 2)/K(2, l)]{fh,(k), g(k)koo)P(k).

We substitute this into Eq. (33}, use the complete-
ness relation"

Q fh, (k;u, s)f, (k;uU', s') =5(u -u')t)(s- s')
U

and the fact that k„=e " /2 to find

n, (k, u, cos&) s " K(1, 2)p(k)
u, v"' K(2, 1)

gh (U +hP/kT)P(k)
g,n'/2

We have used detailed balance. Inverse Fourier
transformation yields, as it should, n, /n, =v ' '
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g2g 'e " ""t"«r I(I =I2X/LI- I, and 0 for I(I»,
i.e. , the usual equilibrium solution.

IV. SUMMARY AND CONCLUSIONS

We have obtained an equation [Eq. (23)] of which
the solution for p =q =0 has been shown to yield,
under nonequilibrium conditions apart from the
normalization, the line shape (or equivalently,
the distribution function of the excited atoms) when
Doppler broadening is dominant. The line shape
appeared to be Doppler in the core of the line, and
to decrease like e " /u in the far wings of the line.
Strictly speaking, the assumption of complete re-
distribution is therefore incorrect. However, it
has also been proved that the assumption yields
correct number densities in the excited states if
kpL, » 1. In other situations, when natural broad-
ening also plays an important role in addition to
Doppler and/or Lorentz broadening, complete re-
distribution will be a poor approximation, because
strong correlations between the frequencies of the
emitted and absorbed photons may exist. Can the
present analysis be applied in that case also'"
We have considered a particular redistribution
function, viz. , Eq. (5), and its expansion in Her-
mite and Legendre polynomials, viz. , Eq. (9), to
derive Eq. (23). However, the attentive reader
will have noticed that in the derivation, actually
only the orthogonal properties of these functions
mattered.

Other redistribution functions, e.g. , the one cor-
responding with the case mentioned above, will
have similar expansions in suitable orthogonal
sets of functions. It seems that a derivation sim-
ilar to the one given here must lead to an equation
of the same type and the same meaning as Eq.
(23). Now let us try for a moment to get rid of
our mathematical inhibitions which forbid us to
do things without proof. Let us conjecture how
the general equation should look. The function
g(k;u, s) is essentially the Fourier transform of
exp[-k(u}LI $I/2s] (see Appendix B). This ex-
ponential occurs always in transport problems of
this kind, independent of the precise redistribu-
tion mechanism. It must therefore remain unmod-
ified. The sum in Eq. (23} is clearly related to the
redistribution function given in Eqs. (9) and (5)
(integrated over y and cp', because of the slab ge-
ometry), and it is this expression which needs
modification.

Let us try some cases and see whether the right
answers result. Take R (u, s; u', s') as in Eq. (6)
{complete redistribution). Comparison of Eqs.
(6), (9), and (23) shows that the sum in Eq. (23)
should be replaced by [Z(u)Z(u')]'t'. Solving this
equation is trivial. There is only one eigenfunc-

tion, f(k;u, s) =g(k;u, s)Z' '(u}. Substitution in
Eq. (33) shows that the resulting line shape is
Doppler. The corresponding eigenvalue is

+ 2k
~(k) = 2„g(u)k(u) arctank du

~OO kuL

as it should be. ' The same result applies if Z(u)
is a Lorentz or Voigt profile. Now consider the
opposite case, when complete correlation exists
between the emitted and absorbed frequencies,
l.e.,

R(u, s; u', s') = 6(u -u')2(u')

=2'i'(u)5(u -u')2't'(u')

=2' '(u)Z't'(u') Z(p„(u)y„(u'),

with some complete set of eigenfunctions y„(u) for
which we may take" y„(u) =N„H„(u)e " t', where
H„(u) are the Hermite polynomials and N„ is a nor-
malization factor. The representation of the re-
distribution function thus obtained is very similar
to the one actually used in the paper. It is veri-
fied that the sum in Eq. (23) has to be replaced by
Zp, „(u)rp,„(u'), which is equal to 5(u -u') because
we only consider even functions f ~,(k; u, s). Solv-
ing the equation is again trivial. We have one ei-
genfunction f (k; u, s) =g(k; u, s) multiplied by an un-
determined function of u. The line shape is also
undetermined, as it should, because in absence of
a redistribution mechanism, it is determined by
the outward sources. The corresponding eigen-
value is

p, = [k(u)L/2k] arctan[2k/k(u)L),

a well-know expression also occurring in one-
speed neutron theory. It has thus been shown that
Eq. (23) yields correct results also in cases for
which it has not been derived explicitly. We there-
fore conjecture that Eq. (23}, mutatis mutandis,
has general validity and that is solution for p =q =0
will yield the line shape of the radiation emitted
by the excited atoms.

It follows from the analysis in Appendix C that
it is a good approximation to assume that the line
shape is isotropic, thus considerably reducing the
labor in solving Eq. (23). If the (isotropic) line
shape of the excited atoms has been calculated, it
is a straightforward matter to derive the transport
equation (see Sec. IIA) which can be solved in an
equally straightforward manner by means of the
theory in Sec. IIIA. Finally, it is recalled that
for the calculation of number densities and radia-
tive loss, we need not even calculate the line
shape; for these purposes the eigenvalue ppp{k)
contains enough information.
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APPENDIX A We define

In this appendix we prove the expansion given in

Eq. (9) of this paper.
Let cosy =s ~ s', and further let

R(u, s;u's')

-u' -u" + 2uu' cosy
exp

7T Slny sin'y

u —u u+u
v siny 2 siny/2 2 cosy/2

1 +QO

Rll(ul u } (2 )3/2 e In+1/2(2pp }(2pp

x exp(-ipu+ ip'u') dp dp'. (A3)

First, the series expansion' of the modified
Bessel function is substituted into Eq. (A3). The
integrals can all be expressed in terms of Her-
mite polynomials. " The result is

(A4)

The Fourier transform of R (u, s; u', s'), defined
as

+co

R(p, s; p', s') =— exp(ipui-ip'u')
27r

A second representation is obtained if we use"
the formula

xR(u, s; u', s')dudu',

can easily be calculated if the new variables t =

(u -u')/2 sin(y/2) and t' = (u+u')/2 cos(y/2) are in-
troduced. The Jacobi determinant of the transfor-
mation is siny. We obtain

R(p, s; p', s') =(1/2e) exp[—(-p -p' +2pp' cosy)].

(A1)

We then have the following expansion":

exp( —', pp' cosy} = (2w)'i' p '

n=Q (2pp

ln this expression P„(cosy) is a Legendre polyno-
mial. I„„i,(;pp') is a modified spherical Bessel
function. " We substitute this expression into Eq.
(Al), write

cosy = cos9 cos9'+ sin3 sin9' cos(&p —y'),

=2 e J„„(2(pt)Z„„I2(p't)tdt
0

The integrals resulting when this expression is
substituted into Eq. (A3) are all standard and can
be obtained from existing tables. " We obtain

'l=~ J „,)P ( , )dt—„—
(As)

Putting everything together, we have the following
expansions:

R(u s u' s') —P g ' ' P (cos3)
n 0 It=-n + m

xP„(cos3') e' '~"R„(u, u'),

and apply the addition theorem for Legendre poly-
nomials. " This yields

2
1/P

max(i u ), ) u'i)
Pn I'n—

R(p s'p' s'}= xp[--'(p'+p")]( 'pp') 'I' (2t-t) "'

g (u+k)(u -m)! p.(, , )
(n +m)!

xiP "(cos9') e (~-PI i&2(~PP )

(A2)

R(u, s; u', s'} is found by applying inverse Fourier
transformation,

+oo +00

R (u, s, u', s') =— exp(-iPu+ iP'u')
oo -oo

xR (p, s; p', s')dpdp'.

(A6)

The two expressions for R,(u, u') were first ob-
tained by Unno. "

APPENDIX B

In this appendix we calculate the Fourier trans-
forms of the kernels K, , ~ as defined in Eq.
(17). We have with s = cos3,

-k(u)L I $ I

~L e"t exp d$=2sg'(k;u, s)k '(u),

g'(k;u, s}=[1+4k's'/k'(u)L'] ',

so that
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ic... , „,()t) = ,'IJ-.e"')(. . .(lLI(l)&(

For ) =~ =E' =~ ' = 0, all the polynomials are equal
to 1 and the integration over s can be carried out.
Denoting K. ..,(k) by K(k} for simplicity, we
have, upon introduction of new variables t =k(u)I. /
2k, to =koL/2kn''i',

2k
K(k) =1+ (tarctant ' —1)

0 0 lnt, -lnt)"'
If we expand the square root and subsequently ex-

tend the integral to infinity, we find

K(k) —1--'.v(k/k, L)(ink, L/2ks'")-"', k/k, L —0.

This is the expression given in Eq. (20).

APPENDIX C

In this Appendix, we consider the eigenvalue
problem defined in Eq. (23),

+~ 1

(a)f„,(a. ;, )=
J ))()t;, ; ', s'lf, ()) ',.s')d 'd ',

E (k. u s. uj s r) (k. )g(k. i I) -(u +u's)ls ~ (4 + 1}Hs)+2m(u)+s)+sw(u ) ms(s)P ms( s)
~D, syQ ys —g ygfs j™ys e

t, m=O /, I'(l+ lm +-, )2

g(k;u, s) =[I+4k's'/k'(u)L') 'i'.

An equivalent representation is obtained by carrying out the summation over t. We have by Eq. (A6)

(Cl)

oo oo f

R(k;u, s;u', s'}=g(k;u, s)g(k; u', s')e'" '" '~s Q(4m +1)P, (s)P, (s') e ' P, —P, —dt.
ss=O max() g t, I g )}

(c2)

We need to consider Eq. (Cl) in the limiting case
k/k, L 0(i.e., k-,L ~). Th-e analysis of Eq. (Cl)
is tedious because we have to deal with functions
of two variables. %'e shall therefore consider a
simplified problem, in order to demonstrate the
principle of the calculation. The corresponding
results for Eq. (Cl) are obtained in the same man-
ner. Let us consider only those eigenfunctions
which are in good approximation independent of s
(i.e., those with q =0) [see Eq. (25)) and 1st us ap-
proximate them as follows: We put t) ~,,(k) = t), (,(k)
in Eq. (C1) and

g '(k;u, s)fs, (k;u, s) =g '(k;u)f, (k;u)

1 1/2
g(a; )= ( (a;, s()dz

k Le " 2am"'0 arctan
2k lf kOI.e

When these substitutions are made in Eq. (Cl), we
integrate both sides of the equation with respect to
s from 0 to 1. By the orthogonality relations fog the
Legendre polynomials, "only the term with ~ =0

contributes, and we obtain

W, (l)f, (&; )= j A((, ;, ')f, ((. ; ')a',

R(k;u, u') =g(k;u)g(k;u') e " '"

=g(k; u)g(k; u') e'" e ' d't.
~ max(I QI, )N )}

(c4)

It should be remarked that Eq. (C4) would replace
Eq. (23) and its solutions t(,~(k), fs(k; u) would re-
place 1(~,(k) and f~, (k; u, s) everywhere in the
paper, if we had assumed a priori that the redis-
tribution function in Eqs. (5) and (9) may be re-
placed by its so-called isotropic approximation, '"
i.e. , Eqs. (5) and (9}integrated over all angles.

Insight into the nature of the problem is afforded
if, using an idea by Field, ' we convert Eq. (C4) in-
to the differential equation [where F(u) =g '(kk, u)
fo(u}l

aor.e 2a~'~'
du kOIe "
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For k,Le "/2k''~'» 1 and «1, we replace the
first term in the brackets by, respectively, 2p.

(i.e., the first-order term for k/k, Le " -0) and

by vkoLe " /2kv' 'y. (i.e. , the first-order termfor
g2

k/k, Le " -~}. There result two differential equa-
tions of standard form, "which can be solved, re-
quiring the solutions to be regular, and even at
u=0, decreasing for ~u~-~, and to fit continuous-
ly at ~u~ = [In(koL/2k'' ')]' '. We also find the ei-
genvalue in first order. The eigenvalue to second
order in k/k, L is obtained by pushing the pertur-
bation theory one step further. Though the most

f,(k;u) =g(k;u)e "t'H„(u),

~u~
~ u, (k) =(Ink, L /2k)t' ')' '. (c6)

In the interval [-u„uo], g(k; u) in Eq. (CS) is ap-
proximated by 1. We have

elegant, the method cannot be easily generalized
to be applicable to Eq. (Cl).

We proceed, therefore, by a different method,
namely, we verify that certain functions are actu-
ally solutions of Eq. (C4). Put

R (u, u'}fp(u'}du' =g(k; u}e dd

'"o H» (u')H»(u')e

Q0 t=o -Q0 t 2

d2

-u /2~ H„(u')H„(u')e " '
g(k t u)e ~H2( (u) (, «+) du'

t=0 OO l1I l+ —2 '
v"'r(2P + I)

=g'(k;u)e " 'H»(u) p!r(p+ )22p+

One can prove that the error is of order

(Ink, L/2k/'~')'P '~'k

k,L,

near u =0 and of order (I nk, L /2kw' ') ' near u=uo, so that our guess in Eq. (C6) is correct. In addition,
we have obtained t), p in first order of k/k, L- 0, viz. ,

!).,(k}-1),,") =)p "r(2p+1)/p! I (p+-', )2""= (2p+1)-'.

Let us consider the second representation of R(u, u') in Eq. (C4). We have

(cv)

OO

u. p(k)fp(k; u) =2g(k; u)e" t'
11

OO' dt g(k; 'l "t' f (k; ')d ' — g(k; ') ' kf (k; ')d ')
~dt g v' 0 Iu)

OO OO

+
~

g(k;u')e" ' fp(k;u'} e ' dtdu'
"1t t

(C8)

We put for ~u~ -uo

fp(k;u) = —g(k; u)e" t' e'dt,
(c9) !,(k)f, (k) =R(k)f, (k). (Cl 1)

= fp)(k; u) +fp~')(k;u}. Equation (C4) reads, in oper-
ator notation,

C = 2 g(k; u' )e" t' fp(k; u') du',
0

and verify that the second and third integrals in
Eq. (C8) are small for k/k, L- 0 in the region
~u~

~ u, . The constant C in Eq. (C9) is evaluated
to be"

We have

p p(k }fp'
) (k }-R (k )fp

) (k ) =R (k )fp
) (k ) —u pfp') (k ) .

Because the exact eigenfunctions constitute a com-
plete set, we may expand as follows:

C = 2'p+'!), "&[In(k L/2k''t')]p"~' (C10)

It is verified that as a result the two representa-
tions of the eigenfunctions Eqs. (C6) and (C9) fit
continuously at ~u~ =u, (k). The second order con-
tribution to!),p(k) is obtained by perturbation the-
ory. Let us write pp(k) = pip')+ pip)(k) and fp(k, u)

f',"(k) = Qapp fp (k).
P'=0

We substitute this expression into Eq. (C11.), take
the inner product with some eigenfunction f,(k),
and use the fact that the eigenfunctions are orthog-
onal. We obtain
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[u (k) -u, (k)1,.(f,(k),f,(k))

=(R (k)f,"'(k) —u, (k)f"'(k),f,(k)).

For P =q the left-hand side of the equation van-
ishes and the result yields an expression for
u, ,"'(k), namely,

u',"(k)=(R (k)f,"'(k) —u, ,"'f,"'(k),f,(k))/(f,"'(k), f (k))

-(R(k)f(')(k) —u(')f ' (k) f ' (k))/(f"'(k) f"'(k))

(C12)

The procedure is well known in quantum me-
chanics. " The evaluation of the integrals in the
right-hand side of Eq. (C12) is straightforward
but tedious Th. e result for k/k, L-O and p =0 is

u. (k) =u("+u"'(k)
- I --', s(k/k, L, )(ink, f./2kv"')-'t'. (C13)

The results given in Eqs. (25), (27), and (28) are
obtained in similar fashion.

APPENDIX D

Here we estimate the error term e(„(k) in Eq.
(38),

~, .(e)=(2 ) "*J P(): -))')z, .(lr')1)". (0()

Z~, (k) has been defined in Eq. (37). The sum over
t)' and q' in that equation can be carried out by
means of Eq. (33), and we have, where k, ', rep-
resents e'"'~'&,

+oo

R(k)=p, ,(h,)((2tr)
'~'

i (Plr —ir. ')(f,()!),g (k)(; (k )'h n'(k '}ld'k, ' —,()'', (h), (((h)h, ', ,(k))).

Here n, (k) represents the function n, (k;u, s). In
Eq. (31) we can expand e ' " in powers of ik). Be-
cause the integration is actually over the finite
interval [-1,1] and the density of excited atoms
n, ($, u, s) is certainly bounded, all integrals con-
verge. It follows that n, (k, u, s) is an analytic
function of 4. Furthermore, it is verified that
n, (k, u, s) is real for purely imaginary values of
k and that n, (k, u, s) does not increase faster than

exponentially fast in the upper and lower parts of
the complex plane" for ~k~-~. Since

(2v) '~'P(k -k') =(t 'sin(k' -k)/(k' -k)
=Ime"" ")/v(k' -k),

we can calculate the integral over k' in Eq. (Cl)
by closing the integral in the upper part of the
complex plane. %e have

+ o ~ 4$ /282 l
(2)t) (~' P(k k')»-+1 n, (k', u, s)dk'k2 u J2

and obtain, by writing out the inner product

E, ,(k) =Imu„(k)e " g '(k;u, s) exp[-k(u)L/2s+-', u'] . ik(u)L
2ks/k(u)1, -i "' 2s (D3)

For koI. -~, n[ tk( u) I /2s, u, s] is given by Eq.
(43). It can be proved2~ that under nonequilibrium
conditions for k =ik(u)I/2s =it, t» I, the sum
over j becomes proportional to 1)(t)/t, where t, (t)
is a modified Bessel function, " so that n, [ik(u)/2s,
u, s] behaves like 2(u, s)I,(t)/t.

We substitute in Eq. (C2) the expressions for
g '(k;u, s)f~, (k;u, s) from Eq. (25), Z(u, s) from
Eq. (43), and the first-order approximation to

,(k) from Eq. (27), which is a constant. It is
readily verified that we have, apart from terms
which are smaller by a factor In(k, f,/2k(t''i')

E„(k)-ImCe "
~ e "H, „,(u)P„(s)

~0 0

„e -'I, (t) duds,

t =k(u)L, /2s; t, =k,f./2ss"'.

Changing the variable u into t everywhere and ap-
plying the asymptotic relations for the Hermite
polynomials" yields
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t os-tI (I)
E~, -lmc, e '" sP„(s) ' '. dfds

«i p

-.Imc, e ' sP„(s) '. dtds,
- e -'I, (f)

0 Q

C 2="'v"'C(ln), I./2v ")"""'(u,l,) -',

i.e., E~, is of the same order as the terms (f~,(k),
go't))t, ,), p, qx0, in Eq. (38) [cf. Eq. (39)] and of
the same order for p =q =0 as I —p, ,(k) [cf. Eq.
(28)]. However, this expression vanishes in Eq.
(Cl), since

as is shown by closing the path of integration in
the lower part of the complex plane and observing
that there is no singularity in that part. The treat-

ment is somewhat unsatisfactory because, although
it proves that c~, may be neglected, it produces no

precise estimate of this quantity, and suggests
that e~, is only of order Inhol. /2v'~' smaller than
the expression in Eq. (C3). We have the feeling
that e~, is of the order of

(y,l.}-'(InS,I,/2v")"""2,

and is therefore a factor (k,I) ' smaller. It if is
true, this could possibly be proved by substituting
the full expression of Eq. (C2) into Eq. (Cl) and

closing the path of integration in the lower part of
the complex plane. The evaluation of the integral,
however, requires a study of the functions
fI„(h; u, s) and the eigenvalues p~, (k) for complex
values of 0, which is outside the scope of this
paper.
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