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The techniques of many-body perturbation theory with interacting resonances are used to calculate the
photoionization cross section of Sia from threshold to 1 keV, The Rayleigh-Schrodinger expansion with LS
coupled states and the Brueckner-Goldstone expansion are compared. Correlations among the 2p, 3s, and 3p
electrons are shown to have a large eftect on the cross section. Resonances from 3s 3p np, 2p'3s'3p ns,
2p'3s'3 p nd, and 2s 2p 3s'3p np configurations are included.

I. INTRODUCTION

The astrophysical importance of period-II and
-III elements is well known. '' Knowledge of their
oscillator strengths and photoionization cross sec-
tions are necessary for calculation of stellar
abundances, opacity, electron density and other
properties. ' Experimental determination of the
photoionization cross section of an ion such as
Si II is quite difficult because of recombination
effects, and calculations including electron corre-
lations have not yet been performed.

This work utilizes the techniques of many-body
perturbation theory to calculate the photoionization
cross section of Si II from threshold to 1 keV, in-
cluding resonances from autoionizing states. Both
the Brueckner-Goldstone' perturbation expansion
and the Rayleigh-Schrodinger perturbation expan-
sion were utilized in the calculation. The connec-
tion between these two approaches is discussed in
Sec. II.

The electronic configuration of the SiII ground
state is 1s' 2s' 2p' 3s' 3p 'P'. Dipole transitions
to the following final states were considered:
ls'2s'2p'3s' ('S) ks 'S 1s'2s'2p'3s' ('S) kd'D;
1s'2s'2p'3s 3p ('P) kp'S, P and 'D 1s 2s'2p
3s 3P ( P) kP'S 'P and 'D; ls'2s'2P' ks ('P)
3s 3P'S, P, and 2D; and 1s22s'2Pskd ('P) 3s'3P
'S, 'P, and 'D, where kl represents the photoelec-
tron of energy &k' and orbital angular momentum
I. The choice of coupling schemes is discussed in

Sec. III. Correlations among the 2P, 3s, and 3P
subshells were included.

II. THEORY

The application of many-body perturbation theory
to photoionization processes, including the inter-
action of resonances due to autoionizing states,"
was recently presented. ' This paper will follow the
notation and development given there, and the
reader is referred to Ref. 6 for a detailed discus-
sion.

The basic relation' is

o((u) =4w((u/c) lm n((u),

where n(&u), the frequency-dependent dipole polar-
izability, has a well-defined perturbation expan-
sion, ' and c is the speed of light. (Atomic units
are used throughout unless otherwise noted. ) As
shown previously, ' Eq. (1) becomes

u(c ) =8m(cu/ck)ÃIZ(p- k)I'

where

Z(p —k) = (4'„Ig s, I4g

is the length form of the electric dipole matrix ele-
ment, and 4', and @„are exact many-particle ground
and continuum states The n. otation Z(P - k) is used
to stress that the dominant contribution from the
exact many-particle states is from matrix ele-
ments where a spin-orbital P of the initial deter-
minant undergoes a dipole transition to a spin-
orbital k of the final determinant. The normaliza-
tion factor N is usually close to one and arises be-
cause I@o) is not normalized to unity9; and k
= (2I &u —I])' ', 1 being the ionization energy There.
is included a factor 2/k in Eq. (2) due to the form
of the continuum orbitals and taking the imaginary
part indicated in Eq. (1). The continuum orbitals
are normalized such that

R~ (r)- (1/r) cos I
kr + (q/k) ln (2kr) —~ n(L - 1) + &,]

(4)

as &-~, where V(&)-q/&. The energy of a con-
tinuum orbital of this form is E~ =~k' in atomic
units, and sums over continuum orbitals are eval-
uated by

2
dk.

The velocity form of the cross section may be ob-
tained by using the identity'
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where E„and Eo are the energy eigenvalues of
~@,) and ~q', ), respectively.

The matrix element Z(P- k) is obtained from
the series of all open many-body diagrams with
one dipole interaction and any number of correla-
tion interactions. ' In this work we calculated dia-
grams which appear in the random-phase approxi-
mation with exchange (HPAE). Other diagrams
which should be included in the HPAE for an open-
shell atom were also included, as well as normal-
ization diagrams. '

Some typical diagrams are shown in Figs. 1(a)-
1(c). Solid dots represent dipole interactions;
other dashed lines represent Coulomb interactions;
and time increases upwards. Figure 1(a) is the
lowest-order diagram, representing a dipole tran-
sition from a ground-state orbital P to an excited-
state orbital k. Figures 1(b} and 1(c) and their
exchanges represent terms with one Coulomb inter-
action. When the Coulomb interaction occurs after
the dipole interaction, as in Fig. 1(b), it is a final-
state correlation diagram. In Fig. 1(c) the Coulomb
interaction occurs before the dipole interaction,

and it is a ground-state correlation diagram.
Figures 1(a)-1(c)depictprocesses where the final
state differs from the ground state by one spin
orbital.

It is also possible to have processes where the
final state differs from the ground state by more
than one spin orbital, and this may correspond
to photoionization with excitation. An example in

SiII is Fig. 1(d) with p =3s, k =kp, q =3p occupied
in the ground state, &'=4's and &d, and q'=nP
(n~ 4}. In an open-shell atom, it is also possible
to have an excited-state orbital and a ground-state
orbital with the same n and E but different ~, and

m, . Figure 1(d), with P =3s, k=kP, k'=ks and kd,

q = 3P occupied in the ground state, and q'=3P not
occupied in the ground state, is an example of this.
In this case, Fig. 1(d}has the same radial part as
Fig. 1(b) with P = 3s, k =kP, q = 3P occupied in the
ground state, and &'=~s and &d; in this case Fig.
I (d) does not col respond to phototonizatlon plus
excitation. In the Brueckner-Goldstone expansion,
only the diagrams of Fig. 1(b) would normally be
included. It is found however, that the diagrams
of Fig. 1(d) are necessary to extract from the
Brueckner-Goldstone expansion contributions to
particular L8 terms. This is discussed in more
detail later in this section.

Denominators occurring after the dipole inter-
action are shifted by +(d. When the denominator
vanishes, a small imaginary part ig is added, and

the denominator is treated according to

lim (D+iq) ' = PD —iwd(D. ),

where P denotes a principal-value integration.
The -in&(D) contributions are denoted on the dia-
grams by a horizontal line. For example, Fig.
1(b) represents

dk' kq v Pk' E, —E„+~+iq ' 4' z q,

FIG. 1. Diagrams contributing to Z(p 0). (a) Low-
est-order, dipole matrix element; (b) final-stake corre-
lation diagram, first order in Coulomb interaction; (c)
ground-state correlation diagram, first order in Cou-
lomb interaction; (d) final-state correlation diagram
occurring for open-shell atoms. Orbitals of the open-
shell occupied in the ground state are labelled q; or-
bitals of the open-shell not occupied in the ground state
labelled q'. Exchange diagrams are not shown but were
included in the calculation.

where E, and E~. are the single-particle energies
of states q and It|', and v is the Coulomb interac-
tion.

Configurations containing excited bound states
which are degenerate in energy with the photo-
ionization continuum lead to resonances and are
referred to as resonance configurations. Figure
1(b) is the lowest-order resonance diagram, rep-
resenting resonance effects provided that the con-
figuration with hole q and particle k' (with k'bound)
is a resonance configuration.

To calculate Z(P - k), we first note that it is
possible to factor the angular coefficient of Fig.
1(a) from each of the diagrams. The sum of the

resulting series of reduced diagrams is denoted
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TABLE I. Contributions from Figs. 1(b) snd 1(d) to ( Ss 3p ('~P )kp 'S, tP, tD(gv
& &)

Sst k s'S ) ( Sst ks tS)g z& (
Sst 3p tP').

Orbitals ~

Figure p k q'
Angular part of

diagram
Projections onto' final, LS-coupled states

(3p)kp &S (&p)kp tS (tP)kp tP (P)kp tP (P)kp 'D (P)kp 'D

1b

0+

0

1/N3

1/N3

1/Q2

2/N2

1/46 3

2

3

-1/v'3

1d

1d

1d

1d

0+

0

1+ 1+

1+

0+ -1+

0 -1

-1/SA

-1/3v 3

-1/M3

-1/K3

-2/3 '2

-1/&2
-2/N2

0

-I/K6

-1/312 -1h 6 1/2v'3

-1/43

-1/N3
1

1

2

2

6

1
3

f
6

3

-1/K3

-1/2v'3

The labels are p = 3s, k =kp, q = 3p occupied in the ground state, q
' = 3p not occupied in the ground state, and k'

= excited s orbital. The notation 1 in the column under k refers, then, to continuum orbital with l =1, m, =1, and m,
The ground-state determinant is (3s0+, 3s0, 3p 0 ) so q, k' have m&

——0, m

by Zs(p-k), which is usually complex. ' For SiII
it is found that Zs(P - k) is independent of the m,
of the orbital P and also of M~, the total for the
final state.

In previous work' it was found that diagrams
such as Fig. 1(b), with k' an excited bound orbital
&t, were resonance diagrams for all n not occupied
in the ground state. It was convenient to consider
Zz(P —k) to be the sum of a nonresonant part
Zs(P - k) which involved only excitations of q to
the continuum and a resonant part D» which in-
volved only excitations of q to excited bound states.
For an open-shell atom, it may not be true that
Fig. 1(b}with k'=nl is a resonance diagram for all
n. In Si II, for example, Fig. 1(b}with p =3p oc-
cupied in the ground state, 4'=&d or &s, q=3s,
and &'=3P not occupied in the ground state, is not
a resonance diagram since the 3s 3P' configuration
lies below threshold. In this case, it is convenient
to consider Z„(P —k} to be the sum of Z„(P —k)
and D» as defined above, but Zs(P - k) is no longer
the total nonresonant cross section since those
nonresonant diagrams involving excitations of q
to excited bound states are included in D».

Calculation of Z„(P- k) may utilize either the
Rayleigh-Schrodinger (RS) expansion with LS
coupled, multideterminant states or the Brueckner-
Goldstone (BG) expansion which effectively uses
single-determinant states. Which method is sim-
pler to use at any point in the calculation depends
upon the configuration and coupling schemes in-
volved. Both are found to yield identical results,
as they must, since the two representations of the
states are related through a unitary transforma-
tion, and both expansions use the same perturba-
tion. An illustration of the connection between the
two approaches is seen by considering Figs. 1(b)
and 1(d}, plus exchange, with p =3s, k =kp, q =Sp
occupied in the ground state, q'=3P not occupied
in the ground state, and ~'=ns. The orbital &L

represents a continuum electron with orbital angu-
lar momentum &, and ns represents either a bound
or continuum orbital with & =0. We take the ground
state of the atom to be the determinant (3s0',3s0,
3PO ). Other closed shells are not indicated. The
results of the BG expansion are summarized in
Table I. The projections are obtained by projecting
the final, single-determinant state indicated by the
diagram onto the l S-coupled, multideterminant
state. The net result for all the diagrams of Table
I and the corresponding exchange diagrams is
[-—'~'R'(SP, kP; Ss, ns)+ ''~'R'(kP SP;3s, ns)]
x (ns(z~3P) for the final state 3s SP ('P)kP 'S, and
—,'R'(kp, Sp; 3s, ns)(ns~z~ 3p) for the final state
Ss 3P('P)kP 'S. All other contributions are zero.
Note that the angular part of the dipole matrix ele-
ment has not been included in the expressions
above, but is included in Table I. This angular
factor is 3 ~'.

In terms of the RS expansion, we start with a
3s'3P V" ground state and go to a 3s'&'s inter-
mediate configuration via the dipole interaction.
This interaction must leave the 3s 3P &P final con-
figuration in a 'S state. The contributions to 'P
and 'D final states are zero, and we must evaluate
only the matrix elements

(3s Sp(' "P) k'pipSvi Sks' ' s)S

x (3s' k's 'S~gz, ~

Ss' 3P 'P')

which yields the same result as the BG expres-
sion.

In performing calculations with the BG expan-
sion, only the diagrams of Fig. 1(b) would be in-
cluded if we only are calculating &r(tv) correct to
first order in the correlations. As shown above,
however, we must include the diagrams of Fig.
1(d) if we wish to extract contributions to particu-
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lar IS terms. Note that the contributions to the
total photoionization cross section are the same in
both cases.

The chief task in the BG expansion is to list the
diagrams representing all possible contractions
of annihilation and creation operators for each
order of the perturbation. The chief task in the RS
expansion is the L8 coupling of all possible con-
figurations. The angular parts of the Coulomb
and dipole matrix elements are also more difficult
to evaluate with multideterminant states. In this
calculation, it was generally found more convenient
to evaluate final-state correlations with the BG
expansion. A more detailed comparison of these
methods is given in a forthcoming paper. "

Consider the diagram of Fig. 1(b) with k' an ex-
cited bound orbital «. If E, —E„,-E~&0, then the
configuration with hole q and particle nI is a reso-
nance configuration, and Fig. 1(b) is the lowest-
order resonance diagram, which we will call RDI.
When the single-particle states nI have two pos-
sible angular momenta, we have the diagram of
Fig. 1(b) corresponding to each of the possible
values. An example in Si 11 is Fig. 1(b) with P = Ss,
&=&p, q =2p, and nI =ns or nd. In higher orders
of the perturbation expansion we have diagrams
similar to RDI, but with the segments shown in
Figs. 2(c}and 2(d) repeated. Then RDI and these
higher-order diagrams form two geometric series
(corresponding to the two possible values of I in
the q - nl transition), each with the ratio

(8)

In the BG expansion, (q'~) is the determinant formed
by replacing p with k in ~q'0) (the ground state) and

~
4'„, ) the determinant formed by replacing q with

nl in ~c',). In the RS expansion, the many-particle
states of the intermediate configuration with hole
q and particle nl may contribute to several dif-
ferent LS terms. This is analogous to the BG
treatment above, except that the sum over l be-
comes a sum over the LS couplings. Also, ~@', }
and ~@„,) are multideterminantal states rather than
single determinants, and the single-particle ener-
gies in Eq. (10) are replaced by the energies of
the states ~&', } and ~C'„, ). The sum of the geometric
series is then RDI(q-nl}(1 —Ro) ', where
RDI(q- nl) is used to stress that there is an RDI
corresponding to each possible & or each possible
LS term.

We include in RDI correlation modifications of
the basic q-nl dipole matrix element Z (q-nl).
The angular coefficient of the lowest-order dia-
gram may be factored from each diagram of
Zs(q-nl). As was found for Z„(P —k), ZD(q —nl)
may be complex. ~ Figures 1(a)-1(c), with the
labels for the p and q hole lines and the & and &'

particle lines interchanged, are diagrams which
contribute to ReZ (q- nl). Figure 1(b) with the
labels p, q, and ~, &'=n~ interchanged and the
denominator treated according to -ix5(D} is the
lowest-order contribution to ImZs(q- nl).

The contribution to Zs(P - k} from Fig. 1(b)
where the q-nl dipole matrix element is replaced
by ReZ (q-nl) may be written

where

(8)
where

1,n

is the half-width of the nth resonance of the series
q-nl, and

q„, (l) =—ReZ~(q- nl)

D«(I; &u) =E, —E«+ (u. (10) x (2/k)(C'al g U;ql~'. , )Zo(P —k); (12)

q(]n '~s n)i~)q pik n & q

p )i)I,k

(b) (c)

FIG. 2. Important higher-order diagrams contributing to Z(p k). (a) final-state correlation diagram; (b) final-
state correlation diagram which occurs when p and p' refer to orbitals of an open shell, p being occupied in the ground
state andP' being unoccupied in the ground state; (c) and (d) are segments of (a) and (b), respectively, which are re-
peated in higher-order diagrams.
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TABLE II. Ionization potentials used in this calcula-
tion.

Combining Dxr with Zs(P - k} yields

Orbital Energy (a.u. )
'

2s
2p
2s (Pcore)
3s (Pcore)
3p

7.052 298
4.104 736
0.978 196
0.840 944
0.601 052

The sources of the energies are given in Sec. III.

note that Z (P - k} in Eq. (12) is not reduced, i.e. ,
it contains the over-all angular coefficient that
was previously factored out.

The contributions to Zs(P - k} from Fig. 1(b)
when the q-nl dipole matrix element is replaced
by ImZ (q —nl) may be written

~ —,
' I'„(l; (())

&,n n&( ~ &i
(13}

D„r =(Dxr, +Dsra)(1 —Ro) ". (14)

Other diagrams involving bound resonance con-
figurations are possible, but we expect them to be
less important than those included in this work.

The lowest-order contribution to D», is seen in

Figs. 2(a) and 2(b) with P an open-shell orbital
occupied in the ground state and P' an open-shell
orbital not occupied in the ground state, but in the
same subshell as P. In higher orders of the per-
turbation expansion we find diagrams similar to
Figs. 2(a) and 2(b) but with the segments above the
horizontal line rshown in Figs. 2(c) and 2(d)J re-
peated. Figures 2(a) and 2(b) and these higher-
order diagrams also form a geometric series with
ratio given by Eq. (8}.

Summing the series whose first term is D»,
and adding the sum of the series whose first term
is Dxr„we obtain Dxr, our contribution to Zs(p- k)
from diagrams involving excited bound states:

(IS)

where Q„((l; (()) is defined by Eq. (11). This ex-
pression for Zs(P —k) is the analog of Eq. (23) of
Ref. 6 for the case of more than one series of
interacting resonances. Unless the series overlap
such that the separation between resonances is not
small compared to the half-width of either, the
effect of interacting resonances on the cross sec-
tion is slight. An example where good agreement
with experiment is obtained without including inter-
actions among resonances is given in Ref. 15. A

case where interacting resonances were found to
be very important is presented in Ref. 6.

III. CALCULATIONS

In the evaluation of diagrams, sums over bound
states are done explicitly for n-12 and the n '
rule' is used to sum from 12&n(~. Sums over
continuum states and the normalization of the con-
tinuum orbitals have been discussed in Sec. II.

When using the BG expansion, the final states
are not necessarily LS coupled. It is possible to
factor the m, dependence of the diagrammatic
series and average over the initial states. The
RS expansion, however, allows many LS terms to
arise from the same final configuration, and one
averages over Nli for each possible L and then
adds the cross sections.

Experimental energies were used in the energy
denominators wherever possible. This is equiva-
lent to including certain higher-order correlation
diagrams which shift the HF single-particle ener-
gy."' The 3P and 3s removal energies were taken
from Moore. " Two 3s removal energies were
used, corresponding to leaving the residual Si III
in a 'P and a 'P state. The 2P removal energy was

TABLE III. Some values of the 3p subshell cross section 0' (10 cm ).

~ (eV) Uncorre lated
Length

Correlated
Velocity

Uncorrelated Correlated

16.5682
26.7726
46.9687
70.7789

138.8080
234.0488
356.5012
506.1653
683.0411
887.1285

1.249 723
0.180 299
0.212 417
0.156 145
0.052 961
0.017 427

6.347 09x 10
2.539 10x 10
1.096 39x 10 ~

5.052 10x 10

1.086 394
0.290 607
0.269 306
0.166 876
0 ~ 048 164
0.020 001

7.379x 10
2.914x 10 ~

1.224x 10 3

5.72x 10

0.947 568
0.161 526
0.179 751
0.130882
0.045 114
0.014 972

5.487 67 x 10
2.222 70x 10 3

9.773 09x 10 4

4.595 44x 10

1.289 227
0.314 777
0.281 675
0.179 587
0.048 444
0.017 549

6.3289x 10 3

2.52445x 10 '
1.09378x10 '
5.245 97x 10
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TABLE IV. Some values of the 3s subshell cross section (3s3p~P core) 0 (10 cm ).

m (eV)
Length

Uncorrelated Correlated
Velocity

Uncorrelated Correlated

23.0961
30.5368
53.4966

107 ~ 9199
189.5548
240.5767
363.0291
512.6932
689.5689
893.6563

0.367 913
0.366 796
0.230 629
0.092 364
0.039 611
0.027 060
0.0135146

7.227 50x 10 3

4.067 72x 10
2,38636x 10

0.291 192
0.377 226
0,272 758
0.134 198
0.053 579
0.032 134
0.016 6648

9.30307x10 3

5.43411x10 '
3.279 90x 10 3

0 267 227
0.301 624
0.214 639
0.089 513
0.037 512
0.025 238
0.012 320

6.52623x 10 ~

3.675 68x 10 ~

2.17003x10 '

0.393 730
0.462 497
0.335 181
0.157 374
0.057 183
0.035 992
0.016 888

8.68045x10 '
4, 827 49x 10 ~

2.87620x10 '

obtained by comparing EH, (2P' :Ss' SP'}-E„,.(2P' 3s' SP~)

for Si I with the ESCA" value for the 2p removal
energy in SiI. The HF value using the center of
gravity of the configurations was approximately
10 eV too high. Assuming the 3s and 3P electrons
to be of comparable importance to the correlation
energy, we calculated E„,.(2P8 3s' SP)-E»(2P' 3s' SP }
for the center of gravity of the configurations in
SiII and reduced the result by 7.5 eV to approxi-
mate correlation effects. The 2s removal energy
was taken to be the HF 2s single-particle energy.
The values of the ionization energies are given in
Table II.

Both length and velocity forms of the cross sec-
tion were calculated. The total cross sections for
each subshell agree to within 30% for the two
forms, the largest differences occurring near
threshold. Differences away from threshold are
usually within 10-15'. Some representative val-
ues of the length and velocity subshell cross sec-
tions are presented in Tables III-VI. An interest-
ing result of using LS-coupled wave functions is
that adding correlations to the dipole matrix ele-
ment affects the agreement between length and
velocity forms to different degrees, depending
upon the particular LS state of the configuration.

An example is the case of correlations for the 3s
subshell. One of the largest diagrams is Fig. 1(b)
with P =3s, k =kP q =3P and k'=ks or kd. Pos-
sible final states are 3s SP ("P)kP 'S, 'P, and 'D,
but this diagram has no projection onto the 'P
state since the q —k' excitation can only result in

S or D. Thus, the 'P cross section is unaffected
while the 'S and 'D cross sections both have large
correlations due to this diagram. Any discrepancy
between the length and velocity forms of this dia-
gram will be reflected in the 'S and 'D cross sec-
tions but not in the 'P cross section.

Ground- and final-state correlations among the
2P, 3s, and 3P subshells were included in Z~ to
first order in the Coulomb interaction for all sub-
shells. The coupling schemes for particular cases
are discussed below.

A. 3p subshell cross section

The excitation of the 3p electron in Si II can only
lead to 'S and 'D final states, corresponding to
3P - ks and 3P - kd transitions, respectively. The
3P ground-state orbital was calculated in the Har-
tree-Fock ground-state potential. The continuum
s and d states were calculated in a V potential'

TABLE V. Some values of the 3s subshell cross section (3s 3p P core) 0 (10 cm ).

ao (eV) Uncor related
I,ength

Correlated
Velocity

Uncor related Correlated

26.8309
34.2716
57.2314
81 ~ 0416

149.0708
244.3115
366.7 640
516.4281
693 ~ 3038
897.3912

0.142 487
0,137219
0.082 244
0.051 180
0.020 379

9.16006x10 3

4.55122x10 ~

2.42672x10 3

1 ~ 363 25x 10 ~

7.987 79x 10 4

0.308 267
0.185 784
0 064202
0.039 942
0.028 210
0.015 233

6.985 49x 10 3

3.55935x 10 3

2.03443x 10 ~

1.31223x 10 '

0 076 686
0 ~ 089 585
0.066 877
0.044 832
0.018 614

8.284 04x 10-'
4.064 74x 10
2.159 68x10 3

1.218 63x 10
7.20332x10 4

0.231 915
0.163 702
0.079 817
0.054 977
0.033 338
0.016 611

7.488 43x 10 3

3.72908x10 ~

2.09198x10 '
1.362 96x 10 3
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TABLE VI. Some value s of the 2P subshell cross section 0'(10 8 cm ).

Uncorrelated Correlated Uncorr elated
Velocity

Correlated

111.9092
117.0114
132.9558
180.5761
234.1491
329.3899
451.8423
601.5064
778.3821
982.4695

4.155 966
4.390 768
4.617 094
3.478 000
2.177 082
0.960941
0.436 637
0.193132
0.088 660
0.042 602

4.143 304
3.915401
3.823 517
2.960 488
2.014 658
1.017 209
0.466 263
0.209 859
0.076 646
0.040 053

4.125 977
4 ~ 327 141
4.435 139
3.153 742
1.911148
0.862 118
0.378 695
0.170 643
0.080 184
0.039 4212

3.831426
3.993 270
3.893 998
2.962 858
1.939 036
0.944 308
0.430 967
0.196387
0.084 403
0.041 378

~n the presence of two 1s, two 2s, six 2P, and two
3s electrons.

The coupling scheme chosen for the excited
states involving 2p correlations to the 3P subshell
cross section was 2p'kl('P)Ss'Sp' 'L, where kl

represents a continuum orbital mith energy 2&' and
angular momentum /=0 or 2. As sh b As s own y mus'ya
et aL. ,'~ this choice of potential for the excited
states mill cancel many otherwise large diagrams.

is is iscussed further in Sec.III C. For the excited
states involving 3s correlations to the 3P subshell
cross section, the coupling was Ss SP("P)kP ' "L
Two sets of excited ~ =1 states were used, corre-

strictly orthogonal to the 2P and 3P states, but the
overlaps mere small enough to be ignored.

The configuration 3s 3P' lies below threshold,
and correlations involving this configuration, such

as Fig. 1(b}with P = 3P, & =&s or kd q = 3
k'= 3

r, g= s, a.nd
= P, mere found to be important. Matrix ele-

ments involving Ss-SP transitions are an order of
magnitude larger than those involving Ss - np

transitions with n & 3. Figure 3 shows aows a compari-
son of our SP subshell cross section (without reso-
nances} to that of Chapman and Henry. "

Besonances in the SP subshell cross section
arise from the following intermediate states:
3s SP ("P) nP'L (n~4) 2P'ns ('P) 3 'SP'L
an p nd ('P) Ss'3p'L (n-3}, where L =0 and 2.
Interactions between the 'PnP'L a d 'Pan n were
included as in Sec. II. Also 2p'ns ('P) 3p~L

, SP L series interactions mere included.
s sec con mere muchBesonances in the 3P - &d cross se t

broader than in the 3P- &s cross section. The
cross section shown in Fig. 5 for ~&22.88 eV is
due to the 3P subshell only. The very sharp 'k

1.4

1.3—
1.2—
1.1—

.6—

I

Is

gs

FIG. 3. Comparison of
3p cross sections near
threshold. Dash line is
length form, uncorrelated;
solid line is length form in-
cluding correlations with
the 2P and 3s subshells;
dash-dot line is velocity
form, uncorrelated; dotted
line is velocity form in-
cluding correlations, «dash-
dash dot-dot line is 3P
cross section of Ref. 13.
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are resonances in the 3P- ks cross section and
extend upward to approximately 100 Mb. Reso-
nances 1-5 of Fig. 5 are due to the intermediate
states ('P)4p, ('P)5p, ('P)4p, ('P)6p, and ('P)7p,
respectively. Of course, there is actually an in-
finite number of resonances converging to the ab-
sorption edge; for legibility, only the first few
resonances of any series are indicated on the
figures. The largest energy shift in the position
of the resonances is due to the ('P)4P resonance
being embedded in the ('P)np series. The ('P)4p
resonance repels the ('P}5P and ('P)6P resonances
and increases their separation by approximately
1.0 eV.

B. 3s subshell cross section

The excitation of a 3s electron in SiII leads to
3s 3p ("P) kp'S, 'P, and 'D final states. Two
sets of continuum P orbitals were calculated, cor-
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FIG. 4. Total and subshell cross sections without res-
onances (length form). (1) total cross section; (2) 3p sub-
shell cross section; (3) 3s cross section leaving the re-
sidual Si gati in a 3P state; (4) 3s cross section leaving
the residual Siill in a ~P state; (5) the Q cross section;
and (6) the 2s cross section. I is the region of the
3s—np resonances, shown in Fig. 5; II is the region of
the 2p —re resonances, shown in Fig. 6; and III is the
region of the 2s—np resonances, shown in Fig. 7.

responding to the 'P and 'P core, and each aver-
aged over the final coupling.

A cross section averaged over &II. was calculated
for each of the '$, 'P, and 'D final-state couplings.
The cross sections were then added to yield total
cross sections for the 'P and 'P cores. The cross
sections, without resonances, are shown in Fig. 4.
The curve labeled 3 is the 3s subshell cross sec-
tion leaving the residual SiIII ion in a, 'P state;
the curve labeled 4 is the 3s subshell cross sec-
tion leaving the residual Si III ion in a 'P state.
The dip in the 'P cross section around 100 eV is
due to large correlation diagrams involving the
3P subshell which correlates primarily with terms
involving the 'P core.

Resonances in the 3s - ('P)kP 'S, 'P, and 'D

cross sections arise from the states 2P'nd ('P)
3s'3p'S, 'P, and 'D(n~ 3) and 2p'ns ('P) 3s'3p'S,
P, and D(no4) For the 3~ ( P)kp S P and D
cross sections, resonances arise not only from
the 2P excitations mentioned above, but also from
3s3P ('P)nP S P and D(n~5).

C. 2p and 2s subshell cross sections

The coupling schemes chosen for the excitation
of a 2p electron from Sill were 2p'kl('P)3s'3p'S,
P, and D, where l =0,2. Our single-particle po-

tential cancels all matrix elements with passive,
unexcited states and diagrams such as Fig. 1(b}
and its exchange, where P and q both refer to the
2P orbital. "'" These diagrams can be large" and
their cancellation by the potential takes a great
burden off the perturbation expansion. The 2P

nonresonance cross section is shown in Fig. 4 by
the curve labeled 5.

Resonances occurring from 2s —nP excitations
with n~ 3 were included without any correlations
in Z(2s-nP). Figure 7 shows the 2s —nP reso-
nances in the 2P cross section. The background
in Fig. 7, however, is the total cross section, not
merely the 2s cross section.

The 2s subshell cross section is included for
the sake of completeness to I keV and is labeled
curve 6 in Fig. 4. Only the lowest-order result
is presented. No correlations were included,
and Hartree-Fock single-particle energies were
used.

D. Total cross section

The total cross section is the sum of the sub-
shell cross sections, and is shown without reso-
nances (in the length form) as the curve labeled1
in Fig. 4. The behavior of the cross section in the
region of the 3s —nP resonances is presented in

Fig. 5. The resonance due to the state 3s 3P ('P)
4P S and D, lying between 17 and 19 eV, has a
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I'IG. 7. Total cross section in region of 2s np resonances. Solid line is total cross section, length form; dotted
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resonances are due to the following intermediate configurations: (1)' 2s Pp63s 3p; (2) 2s Q 3g 3p 4p;
(3) 2s 2ps3s23p 5p; (4) 2s 2p Ss23p sp; and (5) 2s 2ps3s23p 7p.

broad profile in the 3s'kd'D channel and a very
narrow profile in the 3s'&s'S channel. The differ-
ence in position of the resonance peaks in the &s

and I|'d cross sections is due to interacting reso-
nance effects within the &s and ~d cross sections.

The total cross section in the region of the
2P -ns, nd resonances is shown in Fig. 6. The
extremely narrow spikes are due to 2P —ns excita-
tions, the broader peaks to 2P - +d excitations.
Resonances from the 2s- qP excitations are shown
in Fig. V. They were only included in the 2P subshell
cross section. The shape of the resonances would
be altered somewhat by including the 2s-nP reso-
nances in the 3s and 3P subshell cross sections.

The resonance heights generally ranged from
500-1500 Mb, although the 2P- ns resonances
are much higher due to their extreme narrowness.
Since the resonances have small half-widths rela-
tive to the separation between them, their inter-
action was generally small. The largest shift was
due to the Ss SP ('P) 4P 'D being embedded in the
3s SP ('P) nP'D series, as was discussed in Sec.
III A. Shifts in the positions of the resonances due
to interaction effects are less than 1 eV.

IV. CONCLUSIONS

We have shown how one may extract from the
Brueckner-Goldstone perturbation expansion con-

tributions to fully LS-coupled states by the use of
projection operators. The results for this case
are equivalent to those of the Rayleigh-Schrodinger
perturbation expansion with multideterminant
states. Using these methods, we have calculated
the photoionization cross section of Si II from
threshold to 1 keV, including effects from inter-
acting resonances. The resonances are generally
narrow and the interaction among them results in
a shift in the resonance position of less than
1 eV.

Reasonable agreement between length and velocity
forms of the cross section was obtained. However,
the calculation of cross sections for LS-coupled
states is found to affect the agreement quite
markedly. As seen from Table VI, the ratio L/V
of the correlated length and correlated velocity
2P cross sections ranges from 0.91 to 1.08. Tables
IV and V for the 3s cross section, however, show
that near threshold the ratio L/V for the 'P core
is 0.74while for the'P core it is1.33. Thus, while the

two couplings show differences near threshold of ap-
proximately 30Vo, for the whole 3s subshell (the many-

body result if we had not pro jected onto the 'P and 'P
core states), the ratio L/V is 0.96. For the 3P
subshell Table III shows that near threshold L/V
=0.84. Comparison of the uncorrelated length to
velocity ratios with the correlated length to veloc-



ity ratios shows that, while adding correlations
does improve the agreement between the two
forms, it would be desirable to investigate higher-
order diagrams.

Contributions due to photoionization accompanied
by excitation were not included in this work. We
hope to study this in later work.
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