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We describe a new type of analysis yielding the oscillator-strength distributions in several spectral series

throughout the lithium isoelectronic sequence. Individual oscillator strengths have been critically evaluated

and tied together by requiring that they fulfill simultaneously four basic spectroscopic constraints: (a)
regularities for individual transitions along the isoelectronic sequence, (b) regularities for the transitions of a
spectral series, (c) compliance with the requirement of continuity across the spectral series limit, and (d)
adherence to f sum rules. With only slight modifications, the best available data fulfill closely all four
requirements. The final set of f-value data —which are tabulated and partly presented in illustrations —possess,
therefore, a very high degree of internal consistency and reliability. Relativistic corrections for very highly

charged l.i-like ions are also considered.

I. INTRODUCTION

The body of atomic oscillator strengths (f val-
ues) for lighter elements has in recent years in-
creased to a level vrhere searches for interrela-
tions of data have become possible and where the
data may thus be tested with respect to their fit
into predicted regularities. Several kinds of sys-
tematic trends have been dexived from general
principles of atomic theory, ' and two trends have
proved to be especially useful: (a) regularities
for individual transitions along isoelectronic se-
quences, and (b) regularities for transitions of a
spectral series.

Such trends have now been firmly established
from available experimental and theoretical data
for many important transitions of first-, second-,
and third-roar elements. Hmvever, these trends
have remained as individual cases, unrelated to
each other. Regularity studies do not have to end
at this point; they may be carried further by in-
terrelating individual systematic trends, so that
more general patterns may emerge for the various
spectral series along an isoelectronic sequence,
and the oscillator-strength distributions in com-
plete spectral series become apparent. For the
lithium sequence, the oscillator -strength material
has become so plentiful that such a generalized
regularity study appeared to be feasible and
promising. In this paper ere orant to describe our
approach and px'esent the impox tant results.

%'e have combined in this investigation the fa-
miliar isoelectronic-sequence trends for given
individual transitions arith the spectral. series
regularities and with such general constraints
on oscillator strengths as the %igner-Kirkwood
f sum rule and the condition of a smooth transi-
tion from the discrete line spectrum to the con-
tinuum. %e could thus obtain for some prominent

spectral series a complete picture of' a smoothly
varying oscillator-strength distribution along the
isoelectronic sequence. The resultant set of data,
of @which the main parts are presented here, must
be regarded as a highly accurate one since it not
only adheres closely to the systematic trends but
also fulfills simultaneously the two fundamental
cons traints mentioned above.

A comprehensive oscillator-strength study of
the lithium sequence appears to be especially
timely because of the current strong interest in
the radiative properties of highly stripped, lith-
iumlike metal ions such as Fe"'. These are
present as impurities in plasmas generated in
Tokamak-type thermonuclear fusion research de-
vices' and appear to be a significant factor in the
plasma energy balance by contributing strongly to
the xadiative energy losses."

II. METHOD

A. I-'value regularities and other constraints on the data

To interrelate the individual f values, we have
applied four principal constraints on the data, i.e.,
two types of f-value regularities discussed under

(a) and (b) below, (c) the requirement of oscilla-
tor-stx'ength continuity between the discx'ete and
continuous spectrum, and (d) the Wigner-Kirk-
wood f sum rule. These "tools" will be reviewed
here to the extent necessary for describing our
approach.

(Q) TA8 f-VQIQ8 d8P8Qd8tlC8 OPS PlNCE8M CAQJg8 Z.
A general result of conventional perturbation the-
ory is that various atomic properties may be ex-
pressed as expansions in povrers of the inverse
nuclear charge Z. For the oscillator strength
specifically, the perturbation expansion is

f=f.+f.&&+f,&~'+"



700 G. A. MARTIN AND %. L. WIESE

where f, is a hydrogenic quantity. For Iithiumllke
ions, with just one electron outside the closed E
shell, f is simply the exactly known hydrogen f
value. ' Therefore the f value is known for the
point where I/Z becomes zero, which is very
valuable for establishing the systematic trend
towards the large-Z end of the sequence. How-
ever, it must be noted that Eq. (1) is the result
of an entirely nonrelativistic treatment, ' and rela-
tivistic effects are expected to show up for large
Z, e.g., for highly stripped lithiumlike ions.
Fortunately, some very recent calculations (to
be discussed in Sec. IV} provide good estimates
of the extent of the changes in the f values owing
to relativistic effects. It will be seen that for
most lines of Li-like ions relativistic corrections
in the f values remain below 5% until Z reaches
about 30, i.e., these effects indeed need be con-
sidered only for very highly stripped ions.

(b) Systematic trends off values tvithin a
spectral series. Another type of regularity is
found for the behavior of f values within a spectral
series. ' For the case of the hydrogen atom, it
was established a l.ong time ago' that any given
spectral series decreases with the inverse third
power of the principal quantum number n', i.e.,
that

f(n, l - n', I s 1)= c(n') ' . (2)

This behavior sets in for fairly small principal
quantum numbers, normally before the upper-
state quantum number n' reaches ten. As is evi-
dent from the spectra of l.ithiumlike ions, the en-
ergies of the higher singly excited levels approach
hydrogenic behavior rather quickly, so that the f
values for the higher members of the l.ithium
spectral series are expected to follow the above
relation [Eq. (2)] closely, too. However, n'

should be replaced by an effective quantum num-
ber which takes the quantum defect into account.
Thus the essentially one-electron lithiumlike
spectra are ideally suited for the application of
spectral series regularities.

(c) Con~ection betzoeen the discrete sPectxum
and the series continuum, and the requirement of
continuity at the ionization limit. The (absorption}
f value for a discrete transition from a lower
atomic state i to an upper state h is given (in
atomic units) in terms of wave functions g, and

g„and energies E,. and E„as9

P=l

where g denotes the statistical weight and+, , r~
is the sum of the position vectors of the N el.ec-
trons of the atom. The discrete eigenvalues &,.

and &, may assume any value below the ionization
potential &~. If one introduces the line strength

then Eq. (3) becomes

(5)

Analogously, a differ'ential oscillator strength
df/d& taken with respect to the free electron en-
ergy & has been introduced for ionizing transitions,
i.e., for transitions from a bound state i into the
continuum9:

(8)

1 ne~h df'1 ve2 df
4m&0 m, c de 4~&0 ~,c dv

For discrete transitions, n„peaks sharply around
the Une frequency v„sothat Eq. (7) can be read
ily integrated to determine the total absorption co-
efficient (per atom):

(8)

It is this quantity A, —multipl. ied with the lower-
state atom density N„,and the length of the ab-
sorbing layer —that is directly observable experi-
mentally and may thus be applied to the determin-
ation of discrete f values. For the continuous
spectrum, on the other hand, only the quantity
a, dv, i.e. , a band of continuum of width dv, can
be directly observed. (Actually, in many in-
stances a sum P, a,. „dvis observed. The sum-
mation arises because of the very extended spec-
tral range of the continua, which often causes an
overlap of different series continua from the var-
ious atomic states i. Also, the bremsstrahlung
continuum has to be included in the summation. }

Although Eq. (8) holds true for the entire spec-

with S(i, e) defined as in Eq. (4). Ez+ e is the en-
ergy of the upper (i.e. , ionized) state with respect
to the ground state of the atom or, in general, the
next lower ion; the free electron energy & can as-
sume any positive value.

The use of integer f values for the discrete spec-
trum and differential. f values for the continuous
spectrum becomes evident when directly observ-
abl. e quantities, such as spectral absorption or
emission coefficients, are considered. For ex-
ample, the absorption coefficient per atom (or the
absorption cross section) n, at a given frequency
v is related to the differential f value df/ds as
follows" (SI units):
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trum, it thus becomes difficult, if not impossible,
to carry out the integration of the absorption coef-
ficient for a particular series continuum, and it
is also of much less interest. One may therefore
consider the discrete f values for the lines, where
the integration is meaningful and desirable, as
special cases of the differential f values for the
continuum. Since Eqs. (5) and (6) may be formal-
ly unified into a more general relation which cov-
ers the entire energy range, there should be a
smooth connection at the ionization limit, where
the energy ranges of the two equations overlap.

Several authors have discussed the physical sig-
nificance of a smooth transition from the discrete
spectrum to the continuum. For example, in the
early 1920's, Sommerfeld" explained this behavior
in terms of the correspondence principle. He
stated that physically there is no sharp distinction
between a transition to a high quantum state and a
transition to infinity (i.e. , a photoionizing transi-
tion).

The motion of the electron in a bound state can
be represented by a Fourier series, with the in-
clusion of more and more terms as the ionization
limit is approached. Beyond this limit it is no

longer sufficient to use a Fourier series; the
Fourier integral is necessary for the representa-
tion of the motion.

Continuity of df/de across the ionization limit
has, in fact, been shown to exist for hydrogen,
for which exact wave functions are known (see,
e.g. , Marr and Creek"}. Marr and Creek also
reviewed the situation for the principal series of
the alkalies and concluded that the assumption of
continuity is indeed justified within the experi-
mental accuracy.

Turning now to the task of connecting the dis-
crete spectrum and the continuum, one must con-
sider that in order to compare the f values for the
lines with the differential oscillator strengths
df/Ch for bound-free transitions, the discrete f
values must also be given (or better, distributed)
per unit energy range. For a discrete transition
within a spectral series, the oscillator strength
is a function of the effective principal quantum
number n', «of the upper state (n', » =n' —p,„,where
p„.is the quantum defect ") Sinc'e fo. r any iwo

adjacent members of the series lan', »= 1, the f
value may be considered to be distributed over
a range of approximately hn,'« = 1 (for which there
is a corresponding range of energies b &). Thus
to a small increment dn,'ff corresponds a portion
df of the total oscillator strength f for the transi-
tion, or

df =fdn~«

Integrating this expression, one obtains

f= d = —dc= ' d&, 1P

and

dc 2Z,
dn,'«(n,'ff)'

df fdn,'ff (n,'ff)'f
d~ d ~e~e «2Zc

(12)

(13)

[It should be noted here that Eq. (13) is strictly
true only when the quantum defect is constant with-
in a spectral series. However, for ions of the
lithium sequence the quantum defect is essential. ly
constant for high quantum numbers n', and it is
in this region of the discrete spectrum that the
concept of a differential oscillator strength is
most meaningful. ]

For a given spectral series, therefore, one
plots (i) the quantity (n,'«)'f/(2Z', ) vs e =-Z,'/(n', „)'
for the discrete transitions and (ii) df/de vs e

for the bound-free transitions, in order to obtain
an overall picture of the oscillator-strength dis-
tribution.

(d) f sum rules Of the v.arious f sum rules,
the partial sum rule by Wigner' and Kirkwood'
appears to be the most useful one for our purposes
since it is concerned only with the transitions of a
given spectral series. The rule states that for
one-electron systems the f sum of a spectral ser-
ies nl- i+ 1 (including its continuum and all down-
ward transitions, as well as the virtual transitions
into occupied states) is

1 (l+ 1)(2l+ 3) (14)

or

1 l(2l —1)P f= —— for n, l- l —1 .
3 21+1

For the most common series this rule yields the
following numerical values:

ns —p-1 np —s- -& np —d- —'
nd —P - —-', , nd f--

For lithiumlike atomic systems, where only the

where e is the energy (in rydberg units} of the
upper state with respect to the appropriate ion-
ization limit. For discrete transitions, df/de is
therefore represented by the quantity f(dn,'«/de)
& is given by

e = —(Z N+ 1-)'/(n,'«)' = —Z', /(n,'«)'

where Z is the nuclear charge, N is the number
of electrons before ionization (N=3 for the lithium
isoelectronic sequence), and Z, —= Z —N+1 is the
core charge. One obtains by differentiation
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radiating electron is outside the closed 1s' shell,
the one-electron model is a very close approxima-
tion. Thus the sum rule is expected to be fulfilled
to within a few percent.

B. Cross correlations

The above-described analytical tools have been
applied to obtain a set of "best" data from the ex-
tensive numerical f-value material available for
the lithium sequence. As the first step, the com-
piled material on the Li sequence has been criti-
cally evaluated, and the selected data have been
used to determine empirically the I/2-dependence
for the oscillator strengths of a large number of
transitions. All selected f values have then been
subjected —in this order —to (a) the isoelectronic
sequence trends, (b) the spectral series regular-
ities, (c) the condition of f value co-ntinuity for
the transition from lines to continuum, and (d) the
partial f sum rule Ar. edundancy is generated by
the application of the f sum rule insofar as the f
sums may also be derived from the data after the
first three constraints are applied. If the agree-
ment obtained is not sufficiently close, the nu-

merical data may be modified to obtain the best
fit with the theoretical f sums.

For a number of spectral series and ions in

the lithium sequence, the data were so incom-
plete thai no redundancy could be achieved. In
these cases the f sum rule was applied to provide
the missing contribution (for example, the contri-
bution of the continuum transitions).

C. Data assembly and evaluation

Results of studies on systematic trends for a
number of prominent transitions of the lithium
sequence have already been reported. ' Addition-
al, more recently published material has been
studied here and has confirmed these regularities,
except for slight modifications in some cases.
Furthermore, some additional trends have been
established.

Most of the f-value data for the discrete transi-
tions have been obtained from quantum-mechanical
calculations and lifetime experiments. " The crit-
ical evaluation of the literature data has been
carried out according to the scheme discussed in
detail in Sec. C of the general introduction of Ref.
16. In essence, the critical factors in each meth-
od have been analyzed.

The most advanced theoretical data are from
calculations based on multiconfigurational wave
functions. " ' Other theoretical methods include
the self-consistent field (Hartree-Fock) approxi-
mation, """pseudopotential approaches, ""
the nuclear charge expansion method"' ""

(which is expected to be especially accurate for
the higher-charged ions), and the well-known
Coulomb approximation, "which is particular ly
suited for the essentially one-electron system
encountered in the lithium sequence.

The majority of the experimental data has been
obtained by the beam-foil technique in the form of
lifetimes of excited atomic states. "" Lifetimes
for neutral lithium have also been measured with
the delayed-coincidence technique" and the meth-
od of zero-field leveL crossing" (also known as
the Hanle-effect technique).

The results of anomalous dispersion (hook) mea-
surements" have also been utilized for the deter-
mination of f values for the principal series of
neutral lithium. But since the f values are only
on a relative scale, they have been normalized to
the f value calculated for the resonance transition
by Weiss. ~7

Lifetime results often cannot be readily convert-
ed into f-value data. In SI units, the lifetime 7,
of an excited atomic state k is related to the f
value f,, for a transition i - k by

-1
2me' m, c&p pp g~jp jp 16

where ~ is the wavelength and the sum must be
taken over all lower states i which radiatively
combine with k. Thus if the sum contains two
or more significant terms, lifetime data can be
converted into f values only if the relative f
values for these transitions —the "branching
ratios" —are known from some other method.

For the continuous spectrum of neutral lithium,
the measurement of the photoionization cross
section 0 by Hudson and Carter" is used to de-
termine the differential oscillator-strength dis-
tribution as a function of the kinetic energy e
of the ejected electron. In SI units, the relatibn
between o and df/de is as follows":

df m, c
d& p ne2h

where & is the kinetic energy in joules. For
df/de in Ry ', one obtains numerically df/de
= 0.124 x 1022 o (m 2 Ry ')

The data of McDowell and Chang, "who use
Har tree-Fock w ave functions which inc lude po-
larization and correlation effects, have been
used in the determination of the continuum con-
tribution to the f sum for the principal series of
BeII through Ne VIII.

To obtain the total continuum contribution, we
had to resort to extrapolations beyond the cut-
off energy for which the results are given in
each case. We made use of the asymptotic de-
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pendence of df/ds on E for high energies, where
df/de falls off as E ''2 (see, for example, Fano
and Cooper~'); Z=hv=Ez+s - &, is the photon
energy of the photoionizing transition, as defined
in Eq. (6).

Li sequence

2s 'S-2p aPo

III. RESULTS

A. Principal series 2s-np and corresponding continuum

Throughout the lithium sequence, the f-value
material for discrete transitions of the principal
series 2s-n'P, as well, as fox the corresponding
bound-free transitions, is so abundant that an
extensive analysis of this series has been under-
taken. For the first three discrete transitions of
the series (2s-2p, 2s-3p, and 2s-4P), where a
large amount of data is available for many ions,
the i/Z-dependence of the f value is presented
graphically in Figs. 1-3. The curves presented
are final results of this study, i.e., they have
been subjected to all of the constraints dis-
cussed earlier. They thus reflect not onl.y the
initial critical. evaluation —which includes such
factors as possible cascading effects in the
beam-foil data —but also the interrelation with the
2s-n'P series data for each ion and the connec-
tion with the continuous spectrum. Only minor
adjustments in the f values were required to
have the final. data consistent within a few per-
cent with ail four constraints.

The quite dx'astic change from 2s-2P to 2s-3p
and 2s-4p can be explained in terms of a com-
plex interplay of factors such as polarization
and relaxation, which have a very significant
effect on the overlap of the wave functions of
the initial and final states. For transitions to
4P and higher states of the series, however,
these factors play a very limited role, and the
form of the oscillator-strength distribution along
the sequence for 2s-5P and higher transitions is
praetieally indentieal. to that shown in Fig. 3 for
the 2s-4P transition. The magnitude of the f
value decreases with increasing principal quan-
tum number of the upper state; this is a con-
sequence of the decrease in the ovex lap of the
wave functions, which is more than enough to
offset the slight increase in the energy of the
tx'ans ition.

In order to examine the spectral. series be-
havior for a particular ion, the f values for the
discrete transitions were first converted to a
smooth curve of df/ds (i.e., to differential oscil-
lator strengths) as a function of energy according
to Eq. (13). To this was added the continuum dis-
tribution of df/d&, with the constraint of contin-
uity at the boundary between discrete lines and
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FIG. 1. f value for the 2@2&-2PBP'multiplet of the Li
sequence vs 1/Z. The data sources are (a} theory: 0
%eisa, ~ SCF with configuration interaction; Q Onello
et al .,~8 Z expansion method; 6 Hameed. et al. ,33 SCF
with core polarization; V Chapman, 2' SCF; j other theo-
retical methods combined22 24'2~ 32'38 (SCF, pseudopo-
tential approximation, Coulomb approximation); (b)
experiment: beam-foil data from (A) Buchet et al.,53

(B}Berkner et al. ,45 (C) Knystautaa et al. , 3 (D) Barrette
et ul. ,

43 (E) Martinson and Bickel, @ (F) Poulizac et al. ,
70

(G) Bromander, (H) Boberts and Head, (I) Martinson
et ul. ,

s {J)~deraen et al. , (K) Bickel et ul. ,
49 (L)

Buchet et sl.~~; g combined beam foil results —for N v:
Berkner et al. ,

45 Bickel et al. ,48 Desesquelles, s~ Berry
et al. , Barrette et al. , 3 Dufay et al ss Buchet et al Ss

Dumont, 59 Kernahan et ul. +; -for Ovr: Berkner et al. ,
4~

Martinson et al. ,
@ Buchet et al. 5~ p~»~ribbon et ul. ,"

Kynstautas et al.; 0 H&»e effect, Brog et al. ~3 The
error bars on the experimental points represent Qe
authors' uncertainty estimates. To preserve clarity,
experimental or theoretical results have been coxnbined
vrhen they agree closely.

continuum. Figures 4 and 5 are illustrations of
the 2s-p series for LiIand G IV, respectively.
The energy vat, ues on the abscissa are in rydberg
units, with the ionization energy of the 2s state
as the point of origin. Evidently, for 2s-4P and
the higher transitions, the distribution of oscil-
lator strengths along the series follows a very
regular pattern. %bile the shapes of the curves
for Li I and G IV are quite different, the redis-
tribution of oscillator strengths that occux's
among the fixst few transitions of the 2s-n'P
series from the neutral atom to the ionized
species takes place in an orderly, gradual fash-
ion. Fox G IV and the more highly ionized mem-
bers of the lithium sequence, the form of the
oscillator strength distribution has become es-
sentially "stabilized, " and only a scaling of the
magnitude of df/dk takes place for successive
ions.
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0.6— Li sequence

2s 8 3p P

0.12

Li sequence

2s 8 —4p P
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0.04—
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For the first eight ions of the Li sequence,
literature data are available which permit the
construction of the dependence of the differential
oscillator strength on energy for the bound-free
region of the spectrum near the ionization thres-
hold. By the use of extrapolation techniques for
higher energies, as noted earlier, and by apply-
ing the constraint of continuityacross the ion-
ization limit, the total continuum contribution
could be established. These results were then
added to the total line contribution in each case to
establish the total f sum for the series. The agree-
ment with the Wigner-Kirkwood partial f sum rule
[Qf(2s-P) = 1] has been found'to be quite good, with

deviations from the predicted value not exceeding
6%. Since this sum rule is rigorously appl. ic@ble
only to a one-electron system, the true f suah. may
indeed differ slightly from the value predicted by
the sum rule as a result of electron corx clat&on ef-
fects. However, the difference is not expected to
be more than a few percent for the low-Z ions of
the sequence.

For Na IX through Ni 2GDTI, no continuum data
are available in the l.iterature. Thus for these
ions our analysis has been reversed; i.e., the
Wigner-Kirkwood sum rule has been applied to
predict the continuum contributions by setting the
total f sum equal to l.

FIG. 2. f value for the 2s 8-3p I multiplet of the Li
sequence vs 1/Z. The data sources are (a) theory: 0
Weiss, ~~ SCF; x Onello, ~s Z expansion method; V Zapol'
et al ., pseudopotential calculation; 0 Chapman, 2 SCF;
0 hydrogenicf value; (b) experiment: beam-foil data
f'rom (A) Buchet et aE., 3 (B} Buchet-Poulizac and Buchet, ~

(C) Barrette and Drouin, + (D) Heroux, @ (K) Buchet and
Buchet-Poulizac, ~2 (F) Martinson et al. ,

66 (G} Hontzeas
et al.+; * Filippov, ~4 hook method (relative value, nor-
malized tof(2s-2p) from Weiss~~). No error bars are
given for the beam-foil data, since for the conversion
from lifetimes tof values the (small) contribution of the
3s-3p transition, which has been obtained from other
sources, must be considered.

Fe XXIV Ne VIII 0 Yl C IV B III Be0» Il1 i I I I
l l l

0 0.08 0.16 0.24 032'Ll I 040

FIG. 3. f value for the 2s 8-4p P multiplet of the Li
sequence vs 1/Z. The data sources are (a) theory: O
Moitra and Mukherjee, 22 SCF; 4 Warner, 3~ sealed
Thomas-Fermi calculation; X Kelly, t~ SCF-Sister ap-
proximation; C3 Doschek et aE. ,2 SCF with configuration
interaction; 0 hydrogenic f value. (b) experiment: ~
beam-foil data from (A) Barrette and Drouin, 4~ (B)
Buchet and Buchet-Poulizac, 52 (C) Heroux, + (D) Buchet-
Poulizac and Buchet, 56 (E) Martinson and Bickel, @ (F)
Martinson et a$. ,

68 (6) Hontzeas et al. ,
@ (H) Andersen

etal. , (Q Buchet et al.5; 4 Filippov, Y hook method
(relative value, normalized tof(2s-2p) from Weiss ).
No error bars are given for the beam-foil data, since
for the conversion from 1.ifetimes tof values the con-
tributions of the 3s-4p, 4s-4p, and 3d-4p transitions,
which have been obtained from other sources, must be
considered.

The final data resulting from the analysis
for the 2s-P series throughout the l.ithium iso-
el.ectronic sequence up to Ni 3OCVI a,re presented
in Table I. Results are presented for the dis-
crete transitions 2s-2P through 2s-7P, and in
addition, partial sums for all remaining bound-
bound transitions g„".s f(2s-n'P) of the series
are given, as well as total line sums. It should
be emphasized again that these are selected,
critically evaluated data for this principal series
which have subsequently been examined —and, if
necessary, modified —with respect to their fit
into isoelectronic sequence trends and spectral.
series behavior and checked (when possible)
against f sum rules.

The oscillator-strength distribution along the
lithium sequence for the 2s-P series is illustrat-
ed in Fig. 6; cumulative sums are formed from
the data of Table I for all ions of the sequence
up through Ni 3QCVI, and the nonrelativistic hydro-
genie sums are accumulated at the left-hand
side of the graph. It can be seen from the il.lus-
tration that the (nonrelativistic) f values for the
high-S ions smoothly approach the nonrelativistie
hydrogenic values. The oscillator strength for
the resonance transition (2s-2P) declines rapidly
along the sequence and tends to zero for infinite
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IU

0.1—

Li I

2s-p Series

Z, but this loss of f value is essentially recov-
ered by the next two transitions of the series.
In fact, the first partial f sum, f(2s-2p)+f(2s-3p),
nearly approaches a constant value for ions with
Z& 10. The total line contribution to the f sum,
and thus the ratios of the line sum to the con-
tinuum, also remains nearly constant beyond
C IV. Thus this single illustration contains, in

very compact form, all of the essential f-value
data on the principal series for all Li-like ions.
However, as noted earlier, no account is as yet
taken of any relativistic effects. As seen on the
far left-hand side of the graph and discussed
later, the f-value distribution for very-high-Z
ions will be appreciably changed by the inclusion
of relativistic effects.

B. Other spectral series

0.01
-0.4

df

de

LINES

2p
I I III

I

-0.2 0

CONTINUUM

I I I I

0.2 0.4 0.6 0.8 1.0

0.16—

0.12—

0.08—

O.04—
df

d&

0
-6

2p
I I I I II h I II

—4 -2 0

FIG. 5. Dependence of df/d& on c for the 2s+ series
of C ~v, based on the best available data. These have
been slightly modified to comply with the requirement
of continuity at ~ = 0 and to produce the best fit with the
systematic trends.

FIG. 4. Semilogarithmic plot of df/de vs e for the
2s-P series of neutral lithium, based on the best avail-
able data. These have been slightly modified to comply
with the requirement of continuity at a =0 and to produce
the best fit with the systematic trends.

A considerable amount of literature is avail-
able regarding transitions of the 2P-d and 2P-s
series, so that an analysis similar to that de-
scribed for the principal series could be under-
taken for these series as well. The same con-
straints have been applied, but the situation has
become more complex. For example, for the
principal series, the photoionization cross sec-
tion data (as a function of energy) could be sim-
ply converted to the quantity df/de by the use of a
proportionality constant, since the 2s electron can
jump only to orbital P states. However, a 2p
electron can undergo transitions to both s and d
states, so that the photoionization cross section
of the 2P electron includes implicitly a summation
of the cross sections for ionization to continuum
states of both s and d symmetry. To utilize the
total-cross-section data, one needs to know the
values of the corresponding radial integrals for
2P-s and 2P-d transitions in order to subdivide
this total contribution into its constituent compo-
nents. Fortunately, Leibowitz" performed calcu-
lations of "partial" cross sections (i.e., 2P-s,
2P-d, etc. ) for many photoionizing transitions of
C IV, so that for this ion the continuum contribu-
tion to the total f sum can be determined for
nearly any transition of interest.

A further difference and complication arises in
the application of the sum rule. For the 2s-P
series no downward transitions had to be con-
sidered, but for the 2P electron it is necessary
to include the contributions of both the 2P-2s
transition and the virtual transition into the 1s
state, since both these transitions are possible
in a one-electron model. Since an emission pro-
cess would take place in such cases, the quantity
that must be incorporated into the f sum is an
oscillator strength f„for emission. This emis-
sion f value is related to the absorption f value
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HYDROGEN

I non —relativistic)

Li sequence

relativistic

for Z=74
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CONTINUUM
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Li I
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FIG. 6. Oscillator-stxength distxibution fox the 28-p
series of the lithium isoelectronic sequence. The bxoken
line at the top of the figure indicates the actual f sums
obtained by summing line and continuum f values. For
f(28-2p) and the first partial sum, f(28-2p) +f(28-3P),
both the relativistic results of Kim and Desclaux82 (solid
lines) and the nonrelativistic results taken directly from
Figs. 1 and 2 (broken lines) are included for Caxvut g
=20) through % r.xxa (Z =74).

where g; and g~ are the statistical, weights of
the lower and upper states, respectively. The
resulting set of data for the 2P-s series, which
is given in Table II, includes the 2P-2s and
2P-1s transitions, and their headings have bgen
enclosed in parentheses to indicate this differ-
ence. We simply converted the data for f„(2e
-2P) according td tlie above formula [Eg. (18]]to
obtain f~, (2p 2s). For 2p-1s, it was not possible
to utilize this conversion since we did not hale any
data available for this virtual. transition. Never-
theless, we were able to assign f vaiues for this
transition in the following way: Beginning wifh th8
first upward transition of the series (i.e., 2P-3s)
we formed cumulative sums of f values for each idn
of the sequence up through NeVIH, using the data
of Table II. For each of these partial sums the da~
ta were pLotted as a function of I/Z (and are illus-
trated in Fig. 7), and beyond Ne VID the curves
were extrapolated to the hydrogenic values. Q'sing
the cross-section data of Leibowitz" to deter~inc
df/d& and applying the constraint of continuity at
the ionization threshold, we established the con-
tinuum f sum for C IV. This value was plotted on
the graph in oxder to determine the total positive
part of the f sum for this ion. In addition, the
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transition probabilities to line strengths, which
were in turn summed to find absolute strengths
for the transition array as a whole. These
could then be modified by the appropriate an-
gular factors (see, for example, Menzet79) to
obtain absolute strengths for a (single electron)
multiplet of the type 2P P' —ls S. Finally, by
using the very narrow range of wavelengths given
in each case by Gabriel, we were able to convert
these multiplet strengths to a correspondingly
narrow range of f values for 2p-1s. However,
unlike the transition arrays treated by Gabriel. ,
the virtual. transition that me are concerned with
is a transition into an already filled level, and
thus it shouM be interpreted as a hydrogenlike
case, but with screening by two other 1s elec-
trons. Therefore, we considered that the 2p
electron lies outside the inert 1s' core, so that
it is screened by two electrons and the effective
core charge Z off seen by the 2P electron obeys
the inequality

FIG. 7. Oscillator-strength distribution for the 2P -s
series of the Li sequence. The continuumf sum for
C )& is based on a calculation by Leibowitz. 2~

continuum contribution for the asymptotic hydro-
gen point couM be used to determine the total.
positive f sum for 1/&-0. With these two points
available, and judging by the cumulative buildup
of the positive f sums for the 2p-s series, the
other continuum f sums could be roughly esti-
mated by interpolation or extrapolation, and
these results are included in Table II. %e were
thus finally able to estimate the f values for the
2p- ls (virtual) "'emission" transition by assuming
that the total f sum for each ion of the lithium
sequence is equal to the value of --', predicted by
the signer-Kirkmood sum rule for the 2P-s
series; i.e., for each ion the absolute value of
f„(2P-2s)was subtracted from the total posi-
tive f sum, and in each case the deviation of
this difference from -9 provided an f value for
2p-ls.

The accuracy of these predicted f values for
the virtual 2P-1s transition may be checked by
the following procedure, which has been made
possible by the work of Gabriel. ' He calculated
transition probabilities and wavelengths in inter-
mediate coupling for all lines of the 1s'2s-
1s2s2p and 1s'2p-1s2p' transition arrays for the
lithiumlike ions 0 VI, Si XII, Ca XVIII, and
Fe XXIV. By using his data for either of these
transition arrays, we converted the individual

If the 2P electron were able to jump down to a
1s orbital without disturbing the 1s' core, again
it mould experience a screening of the type de-
scribed above. To provide upper and lower
limits on the 1s-2P wavelengths for the above-
mentioned lithiumlike ions, we used the results
of relativistic calculations of Dirac hydrogenic
wave functions by Younger and gneiss'0; for the
unscreened case we used the wavelength corres-
ponding to the actual nuclear charge Z, while
for the case of total screening by the two core
(ls) electrons the wavelength corresponding to a
charge of Z-2 was employed. The results are
shown in Fig. 8, and it is seen that our earlier
predicted f values lie between the results obtain-
ed by using Gabriel's wavelengths and the wave-
l,engths of those in which the screening by the
core electrons is assumed to be complete. How-
ever, in no case did our results deviate from
those of Gabriel by more than 17%.

An analogous procedure mas followed in ana-
lyzing the material for the 2P-d series. The re-
sults are presented in Tab1.e III, as mell as the
accompanying Fig. 9. However there are no
downward transitions possible in this case, so
that —once the cumulative sums are plotted
along the sequence —the continuum data can be
derived from the sum rule, which states that the
total f sum for each ion is equal to. The re-
sults of Leibowitz" have again been used to ob-
tain an actual continuum f sum for C IV, and
Fig. 9 demonstrates that the agreement with
the sum rule is excellent.

A partial. analysis has also been undertaken
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FIG. 8. Absolute value of the (emission) oscillator
strength f~& for the virtual 2p 1s transition in the Li
sequence vs 1/Z. Curve A shows our results derived
from the analysis of the oscillator-strength distribution.
For curves B, C, and D, Gabriel's results for the
average of 1s22p 1s2p and 1s22s —1s2s2p were used
to obtain line strengths for a multiplet of the type 2p2P'

1s 2S, which were converted tof values by using (B)
the range of Gabriel's calculated wavelengths for lines
of 1s 2p 1s2p and 1s 2s 1s2s2p, (C) wavelengths
calculated by Younger and Weiss for a hydrogenic ion
of nuclear charge Z, and (D) wavelengths calculated by
Younger and Weiss for a hydrogenic ion of nuclear
charge Z -2 (to account for screening by the core elec-
trons).

for higher spectral series in the Li sequence,
but the amount of material available is consid-
erably less complete than for the series already
discussed. As a result, the accuracy of the data
is somewhat poorer. Attempts to construct f
sums for these series are hampered by the
greater uncertainties in individual f values. This
problem is in turn compounded for those series
which include downward (emission) transitions
(with negative f values). In such a case, the par-
tial compensation of positive and negative con-
tributions to the f sums results in even greater
uncertainties in estimated partial sums, such as
the contributions from the continuum and the
virtual transitions. Nevertheless, some valuable
consistency checks can be made; e.g. , the be-
havior of f values for individual discrete transi-
tions can be investigated along the isoelectronic
sequence for regularity and smoothness, and
can similarly be studied for the dependence of
df/de on s throughout a. spectral series for indi-
vidual ions. Although there are no graphical
presentations given here for these higher series,
tables of discrete f values have been assembled
for several transitions and will be presented
elsewhere 8
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FIG. 10. Relativistic oscillator strengths for the 2s&~2-

2p«, and 2s«, -2p, &, transitions for very highly charged
Li-like ions. This graph represents the greatly ex-
panded lower-left-hand corner of Fig. 1. The broken
lines are the (interpolated) nonrelativistic f values, with
the multiplet value taken directly from Fig. 1, and the
solid lines are based on the relativistic f values calcu-
lated by Kim and Desclaux. 82

FIG. 9. Oscillator-strength distribution for the 2p-d
series of the Li sequence. The continuum f sum for
C tv is based on a calculation by Leibowitz. ~

IV. RELATIVISTIC CORRECTIONS

Relativistic effects become important for
highly charged Li-like ions since the core field,
i.e., the net field of the nucleus minus the two
inner electrons (Z-2), becomes so strong that
the radiating electron acquires relativistic
speeds.

As the nuclear charge increases, the first rel-
ativistic effect to become important is that of
spin-orbit interaction, which affects the f value
both through the line strength as well as the
transition energy [see Eq. (3)]. Another rela-
tivistic correction which becomes significant
only at much higher values of the nuclear charge
is the shrinkage of the electron orbits and the
accompanying mass increase of the electron,
again because of the rel.ativistie speeds. This
orbital effect will directly modify the transition
integral.

Kim and Desclaux ss as wel. l as %'eiss ~ have
recently studied theoretically the relativistic
effects on the energies and f values of several
very highly ionized Li-like ions. From Kim and
Desclaux's results for the f values, we have con-
structed Figs. 10 and 11 for the spectral lines
of the doublets 2s-2P and 2s-IIP. Their results
are slightly modified for small Z to connect
smoothly to the best exitically evaluated data

there. These graphs are thus essentially the
greatly magnified far-left-hand sides of Figs. I
and 2. The nonrelativistic data presented ear-
lier, i.e., the multiplet (or doublet) values, are
again included as the upper broken line. The
other two (lower) broken lines represent the non-
relativistic f values for the two individual doublet

Li sequence

28—3p

"On-re4t&

1/2-3/2

1/2-1/2

f
Mo XL Ti XX I/Z ~

W LXXII Fe XXIV Ar XVI Mg X NeVIII
I I, I I

I t I I I I I I I

O.O2 O.O4 O.O6 O.O8

FIG. 11. Relativistic oscillator strengths for the 2s&i&-

3p«2 and 2s&~2-3p3~2 transitions for very highly charged
-Li-like ions. This graph represents the greatly ex-
panded left-hand side of Fig. 2. The broken lines are the
(interpolated) nonrelativistic f values, with the multiplet
value taken directly from Fig. 2, and the solid lines are
based on the relativistic f values calculated by Kim and
Des claux. 82
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TABLE IV. Calculated relativistic and nonrelativistic excitation energies (in Ry) for the
2p and 3p states of some Li-like ions (from Refs. 82 and 83).

State Nv Ar xvI Fe xxIv Kr xxxIv Mo xr. W LXXII

2p f/2 (relativistic)
2P3&2 (relativistic)
2p (nonrelativistic)

3P f /2 (relativistic)
3p3/2 (relativistic)
3p (nonrelativistic)

0.740
0.742
0.738

4.35
4.35
4.35

2.36
2 ~ 59
2.31

38.7
38.8
38.5 ~

3.62
4.79
3.44

85.5
85.8
84.4

5.38
10.12
4.86

171.0
172.4
166.8 ~

6 ~ 56
15.77
5.70

237.7
240.4
229.6

15.80
126.1
10.19

824.7
857.6
733.3

Onello eg al ., Qnello. 9

components, which are always in the ratio of
2: 1 for sj/2-P»2.. sj/2 Pg/2 It is seen that the
relativistic f values of the s,~2-P, gm lines deviate
very little from the nonrelativistic data, even for
the highest point presented, which is 71-times-
ionized tungsten. Thus the relativistic f value of
the 2s«, -2P, /, l.ine still approaches zero in the
high-Z l.imit. The large relativistic corrections
occur in the s», -P3/, lines, especially for the
2s-2P case, where the f value increases dras-
tically beyond Mo XL. This large increase in the
f value is apparently almost entirely owing to a
very pronounced increase in the excitation energy
EI, for the state 2P,/„which strongly enlarges
the difference (E~ E&) in E-q. (3). (E; is the
ground-state energy and therefore remains zero
by definition. } To demonstrate the magnitude of
the energy corrections, we have tabulated
(Table IV) the results of Kim and Desclaux~
(as well as Weiss"), who have calculated the
nonrelativistic as well as relativistic energy
values. It is seen that the relativistic energy
change in the 2P», level becomes very drastic,
while for the 2'/2 level the energy still remains
close to the nonrelativistic value, up to the ion
W L3QGI. For the two 2s-3p transitions, the
energy changes are —on an absolute scale —again
very similar to the conditions for the 2s-2P
transitions. However, since the nonrelativistic
energy difference between upper and lower
states (E, —E, ) is much larger for the 2s-3p
transitions than for the 2s-2P transitions, the
relativistic energy change has only a small
overall effect on the f value.

Thus one should generally expect that the
largest relativistic effects occur for transitions
where the nonrelativistic energy difference
(E~ -E, ) is very small, i.e., for transitions in
the same shell. This would mean that for the
different spectral series presented here the
most drastic changes occur in the first lines of
those series where the leading lines are 4n =0
transitions, while the other lines remain relative-

ly unaffected up to very high values of Z.
The slightly modified data of Kim and Desclaux

(to give the best fit for low-Z ions) have also
been incorporated into Table I and Fig. 6 to show
the overall effect of the relativistic corrections
on the oscillator strength distribution. In Fig. 6,
where the relativistic changes can be shown only
for 2s-2p and the partial sum f(2s-2p}+ f(2s-3p),
we have also inserted, at the far-left-hand side,
the results of relativistic calculations by Younger
and Weiss" for a hydrogenic ion of charge X=74.
It is evident that this hydrogenic distribution is
very closely approached by the two Li transitions
for which data are available, so that one would
expect this to happen for the other transitions of
this series, too.

V. SUMMARY

Several fundamental spectroscopic requirements
have been utilized to perform a generalized anal-
ysis of the available line and continuum f values
for the lithium isoelectronic sequence. The body
of data has thus been tied together in a uniform
manner and has been adjusted for greatest con-
sistency. The resultant data adhere closely to
regularities and f sum rules and obey the condi-
tion of continuity at the transition point from dis-
crete to continous spectrum. Thus the compre-
hensive sets of data obtained for several spec-
tral series and for a large range of ions along
the sequence must be regarded as highly accu-
rate ones. Relativistic effects have been consid-
ered for the very highly charged ions and are
found to be very similar to those for hydrogenic
ions. This study may be considered as a first
example of a comprehensive data analysis tech-
nique where a large number of original, unre~
lated f-value data are interrelated and adjusted
to fit basic spectroscopic rules and constraints.
Additional applications should be possible for
other simple (essentially one-electron) atomic
systems, such as sodiumlike ions; however,
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fox isoel. ectronic sequences of greater complex-
ity it would be impossible to utilize fully and de-
finitively the generalized analysis scheme under-
taken in this study, since the one-electron model
would no longer apply.
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