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Improved bound-state method for calculating resonance eigenvectors and properties

M. Oppenheimer and H. Doyle

(Received 6 August 1975)

We derive a new criterion for determining an accurate description of the total wave function at the energy of
a resonance in the elastic scattering region from a bound-state representation. The criterion is based on an
extension of the stabilization and Harris phase-shift methods. We construct the theoretical framework for a
bound-state description of the resonance wave function and exhibit its connection to calculations of the bound-

state Green's function.

I. INTRODUCTION

The properties of quasibound or resonance states
of atomic systems have been the subject of inten-
sive investigation. Resonances have been studied
using close-coupling, ' var iational, "and stabiliza-
tion methods. 4 Bound-state methods lead to sig-
nificant simplifications in the calculation of photo-
ionization and scattering processes. "In this
paper we explore a new method for determining an
accurate description of the total wave function at
an isolated resonance in terms of bound-state
configurations in order to obtain a unified descrip-
tion of photoionization and scattering processes in
the elastic scattering region. In a preceding paper'
(hereafter referred to as I) we described the ap-
plication of bound-state expansions to photoioniza-
tion of helium and of the negative hydrogen ion.

The total wave function 4 is associated with a
phase shift given by the Breit-Wigner formula

+ arctan[-, F/(E„, E)], —

where &~ is the background scattering phase shift,
r is the resonance width, and E„,is the resonance
energy. In this paper, we shall choose a bound-
state representation @„with eigenenergy E„=E„,
for S by using (1) in conjunction with a previously
determined value of &~. This choice of 4„corre-
sponds to

4 „=c„e(E„)
within some radius 8, where c„ is a constant. It
enables us to avoid the separate calculation of en-
ergy shifts and leads to particularly simple forms
for the width and for the dipole transition moments
involving the resonance state. We shall present
results of calculations on the first 'S resonance
in He to demonstrate the efficacy of this method
for resolving uncertainties in the properties of
resonances.

II. THEORY

&q, IHIP'„& =V,„,
&q. IHlq. & =Ed(E' E). -

We can solve for the coefficients a„and b(E), ob-
taining

where

(3a)

(3b)

bound states of a Hamiltonian projected into a par-
ticular subspace of Hilbert space. ' In a two-elec-
tron system, a significant contribution to the func-
tion 4„comes from a particular doubly excited
configuration. However, the energy functional
&4„~H~4„&/&e„~eg provides an inadequate guide to
the choice of configurations describing background
scattering to be included in @„,being generally
insensitive to such configurations, whereas the
opposite may be true for other matrix elements
of the resonance state. We shall derive expres-
sions describing the effect of these background
scattering configurations on the width and the
dipole transition matrix, using the Fano' theory of
photoionization as our formal framework.

The discussion shall be limited to the case of an
isolated resonance, but it can be easily generalized
to the case of overlapping resonances. Following
Fano and the development in I, let the total Hamil-
tonian H have a solution 4(E) at energy E, and
expand 4(E) as

~N) o (~ )4 +f =&I@.)4. .«' (3)

where f„ is a real, square-integrable representa-
tion of the doubly excited resonance configuration,
and the g~ represent the background scattering with

"Core-excited" resonances lie below the ion-
ization threshold and can be described as real

E —(e„+n,„)
&n ([E (& +~ )]a+~i aj.~/2 (3c)
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dE I'"I
n E'

(3d)

(3e)
kf (E}= [(siny„}/wV*„]4'„—cosy„g s, (6)

double-continuum integrals are avoided. Equation
(3a}becomes

The resonance state may be redefined as

V'
P dEI E n

y ~

Let us examine this state near E =c„+6„.We can
approximate g~ by a real, square-integrable wave
function X, such that (X,IHIX, .& =e,6~, and (X~I(t)„&
=0. Then, as in I, we approximate the principal-
part integral at E =e„+A„by

V, .„~&y„la- e,lx,&

n

(4)

The new resonance state, including background
configurations, becomes

with the definitions of yn and VE„having ~„ in place
of f„. This will not change their values, as we
shall show below. The sensitivity of the width and
transition moment to the choice of background
configurations I,. was discussed in I.

We seek a criterion to determine when we have
included a sufficiently complete representation of
the background scattering in our basis Xj, and
when a particular root of the diagonalization of the
Hamiltonian in the basis (P„,X&} lies at the reso-
nance energy. Previous calculations' ' have in-
volved elimination of the background scattering
configurations from the resonance state entirely
and the separate solution of the background scat-
tering problem. In Feshbach notation, " this choice
corresponds to the projector Q such that

~ ((t).lff-e;IX,&X

c~E n n jj n

Q =1 —l(())0& ((t)ol =1 -P, (7)

If b, „ is small, the summation corresponds to a
perturbation correction to Q„owing to mixing with
the nondegenerate part of the continuum. The new
resonance state, lying approximately at energy

corresponds to a resonance at the shifted energy,
E„=c„+4„.C„could equally well be obtained by
diagonalizing H in the set (Q„,X~) to begin with and
omitting |I)~.. Then 4„ is one of the eigenfunctions
and its eigenenergy E„automatically includes the
energy shift. The principal-part integral, P fdE'
x [Vw„/(E —E')]ps. , no longer appears in (3a); thus
the difficulties associated with principal-part and

where $0 is asymptotically an eigenfunction of the
system constructed with one electron in its ground
state.

Vie shall now describe a method of choosing
(k„=-c„%'(E„,} such that the background scattering
is included in 4„. Let 4~ be a trial solution with
asymptotic form S(kr+5r), where S is a properly
symmetrized regular Coulomb (or Bessel function)
product wave function describing the scattering of
an incoming particle by the core. We shall evalu-
ate the matrix element in a sphere of radius g

(6)

where R lies beyond the range of the interaction
potential. It can be shown that"

(k,(ll rr(k(kr ~ 5))„=(k( ~ k l-(H —Elk )„—(k k
(kr k') —k(kr ~ k)k

'dS d4~
t =R

where the last term has been integrated over the
core variables. As r-~, '4r( wk'}'S(kr+5r), and

(4', IH - Els(kr+ 6)&,=&s(kr + 6)IH —EI q r&,*

—w
' sin(dr —6). (10)

If 4~ is chosen to be a single square-integrable
function 8, proportional to 4'(E) for r(R, and if we
assume 4 attains its asymptotic form S(kr+5) at
some distance less than or equal to R, then (10}
becomes

«IH- Els(kr+6)& =—0,

(

where we have dropped the subscript R because 0
is negligible outside R. Equation (11) is simply the
Harris variational expression" for the phase shift.
Now

(12)

where y„, is the resonance phase shift defined in
(3) for a bound-state representation. At the reso-
nance energy E„„y„,= —,'w. Let C(kr) be the ir-
regular Coulomb (or Bessel function) product wave
function. Since asymptotically

S(kr+6w+ —,'w) =cos5s[C(kr) —tand@(kr)],
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we obtain from (11) and (12)

(8H E„-, C(kr)}' (eg-E„,S(kr)) ' (I 3)

In general, bound-state functions employed in
Harris calculations, and those employed in this
work, do not go to zero at R, but have an exponen-
tial tail. Some error is thereby introduced, which
may be explored by varying the expansion set

The calculation of &~ in the neighborhood of the
resonance is separable from the calculation of 6j

itself and may be accomplished by using close
coupling, "Green's function, '" or other tech-
niques. ''" As we show in Sec. IV, E„„I', and
the dipole matrix element are relatively insensitive
to 6s. The ratio in (13}is highly sensitive to the
admixture of singly excited configurations in 0.
Therefore if tan6s is already known, Eq. (13) may
be used as an extra condition which the function 8

must satisfy to be an adequate approximation to the
exact scattering solution q'(E) at the resonance
energy. This is the criterion we have sought.

Equation (13}would be exact if 6 were exactly
proportional to 4(E„,) within R and zero beyond R.

III. RESONANCE WIDTH AND TRANSITION MOMENT

The resonance width has the form

(14)

where g„and gz are the same as in Eq. (3}. gx has
the form" y+S(kr+6s), where y goes to zero at
large r. gs can also be expanded' in the set (X,)
such that

~,&~,IH EIS( r-+6,}}
(i&E =S kr+6s +

F. —e)p. Wg

(15)

Then the matrix element in Eq. (14) takes the form

(Q„i(H- Eig }= Q„iH —E~ 1+ g ' S(kr+6, ) = y„+P ~" i ' iH EiS(kr-+6, )+ s „+

=(4„i(H Ei(s (kr + 6-s)), E = E„, , (16)

v&@„iH - EiS (kr+ 6,)}
' (17)

In Eq. (5) we have redefined the resonance state to
include a representation of the singly excited con-
figurations of importance which implied 4„
= c„q (Z„). Miller" assumed 4„=c„(k in calculating
the resonance width, but had no condition such as
Eq. (13) to ensure the validity of this assumption.
Hazi and Fels" made the same assumption and
verified their results with a graphical procedure
(cf. Sec. IV).

Bhatia, Burke, and Temkin' have attempted to

where, by Eq. (5), (k„=c„+(E„,). This transforma-
tion also leaves y„unchanged (since „E=e„+ „nas
well) and avoids the calculation of any principal-
part integrals. Therefore if I' is evaluated using
S(kr+6s) on the right-hand side, the proper bound-
state function on the left-hand side is 4„. Previous
authors have not always taken care that the two
functions be complementary, and this neglect may
lead to serious errors in I' when &~ is large. Then
(H- E)iy) is large, and the proper selection of

(P„,gs) is crucial.
The normalization constant c„ is derived from

(3) by letting E- e„+n„. Then cosy„-0 and

f

solve this problem by calculating the full back-
ground scattering function to be used with a 6) which
is orthogonal to the ground state of the target.
Their approach corresponds to calculating the
left-hand side of Eq. (16) using a close-coupling
representation for g~, whereas we calculate the
last matrix element in Eq. (16). We might equally
well have applied the bound-state method to the
calculation of the background scattering function
instead of 4 „, as suggested by the second term in
Eq. (16). The same remarks apply to the calcu-
lation of the dipole transition matrix element.

Finally, by choosing (k„proportional to q((e„+L„),
we automatically exclude S(e„+n,„)from 4( [since
cosy„=0 in Eq. (6}]and hence avoid entirely the
problem of orthogonalizing S to 4„. In addition, we
need not project X,. or Q„out of S because the over-
lap terms make no contribution to ((k„i((H —Eis).

To see how operators other than the Hamiltonian
depend on the choice of (I)„and $~, we have explored
the behavior of the dipole transition operator

(4'(E)IDI y, ) = 4'(E) Q cr; y,

where P, is some real bound state of the system.
In the Fano formalism we have

(18)
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The terms in the last integral include the contri-
butions of background scattering configurations at
E'0 E. If P,- P„ is a two-electron transition (as
in 1s'- 2s2p in helium), these configurations may
be very important. Our choice of

eliminates the calculation of the principal-part
integral by including the background scattering in

4„. Our expression is simply

(+(E )IDle )=- (19

IV. THE FIRST 'S RESONANCE IN HELIUM

The first '5 resonance in helium has been studied
extensively using close-coupling, "root-stabiliza-
tion, "and projection. ' techniques and the Harris
variational method. "'0 In addition, the total
phase shift in the elastic '5 channel for e-He'
scattering has been studied using many different
methods '4'5'9' "'"The polarized-orbital phase
shift" is in excellent agreement with the Harris
and close-coupling values well removed from the
resonance because the background scattering is
dominated by the polarization. Therefore since
the polarized-orbital method includes only single
excitations, it provides an excellent approximation
to the nonresonance phase shift &~ near the reso-
nance energy.

We have diagonalized the total Hamiltonian in a
square-integrable set of the form

(20)

to obtain eigenvectors 9„, where

such t at

(e.lH- E„le„&=0

for all m, n Th. e basis sets (I, m, n; o P} were
chosen in three ways. The first set consisted of
all 50 X& such that l+m+n«N where N='1-6 and
e =P =1.1-1.2. This set is identical to that em-
ployed in the Harris calculations of Shimamura"
and Bhatia." The second set was chosen as the
first 50 functions with /+m +@«7 but n «4 and

o =P =0.9-1.0. This set corresponded to roughly
the same region, of stability for the energy as set
1 as shown in Tables I and II. The third set con-
sisted of 47 functions from the second set, the
functions (I, m, n) =(0, 6, 0), (0, 5, 1), and (0, 4, 2)
having been deleted. These functions have been
discussed" with regard to the 'P resonances in
helium, and their presence or absence has a
strong effect on the resonance energy, as seen in
Table II. In the 'I' case, the deletion of these
states moves pseudoresonent eigenvalues away
from the resonance energy. In the '5 case, the
addition of these functions moves the psuedoreso-
nant vectors away. Because of the close proximity
of their eigenvalues to the resonance and the dif-
fuse nature of these three functions, they strongly
affect the degree of configuration mixing of the
nsn/ function with configurations resembling the
1skl background.

The irregular Coulomb function C(kr) was rep-
resented by a combination of regular scattering
functions" S(kr) in order to avoid the singular
point at y =0. This procedure differs from other
calculations"" which have employed an irregular

TABLE I. Set 1.

Parameters optimized by Eq. (13)

(10 a.u. ) (eV)

0.300
0.355
0.400

1.148
1.158
1.166

-1.556 34
-1.556 08
-1.555 87

Stabilization method

4.60
4.58
4.58

0.125
0.125
0.125

En+&n ' io„ lH E„lc(kr)&-
(a„(a-E„(S(kr)) (10 a.u. ) (eU)

1.10
1.15
1.20

-1.557 68
-1.556 29
-1.554 98

-1.555 96
—1.556 03
—1.556 06

0.005 64
0.318
0.679

4.575-4.576

nazi-Fels energy-shift approximation ealeulated using ~ =0.365 and I'=4.575 &10 3 a.u.
See Fig. 3.
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TABLE II. Set 2.

Parameters optimized by Eq. (13)

(10 3 a.u. )E, (Hy) (eV) D~ „(a.u. )

-1.556 27
-1.556 01
-1 ~ 555 80

0.940
0.949
0.956

0.300
0.355
0.400

4.75
4.73
4.73

0.129
0.129
0.129

0.2174

Stabilization method

a

(8„IH E„ I C(kro-
(8 IH E, Is(k-r))

E„e, P;N (eV) D~ „(a.u. )

-1.555 80
-1.556 05
-1~ 555 86
-1.5574
-1.5579
-1.5559

0.90; 50
0.95; 50
0.99; 50
0.93;47
0.95; 47
0.98; 47

0.006 36
0.377
0.721

30.8
-12.2
-4 ~ 1

-1.557 53
-1.555 98
-1.554 79
-1.545 40
-1.540 66
-1.519 92

0.2172
0.2174
0.2182

4.720—4.722 0 ~ 128

5.1-5.5 0 ~ 139—0.150 0.2123

' See Figs. 4 and 5.
Using & =0.379, I'=4.72 &10 a.u. in the Hazi-Fels approximation.
Using & = 0.39, I'= 5.5 x10 a.u. in the Hazi-Fels approximation.

tively. The corresponding values of the width are
0.125 and 0.129 eV, respectively. Since the two
sets differ by configurations for which l+m+n =7,
some of which are very diffuse, and since they
have very different ranges as determined by mand

P, the exponential tails occur at considerably dif-
ferent values of r and will make different contri-

function multiplied by an arbitrary cutoff term.
Figures 1 and 2 show the values of E„and

(8„IH- E„IC(kr)) /(8„IH E„IS(kr)) -for the first
two sets. Choosing 5s =0.355 (tan5s =0.371), the
polarized-orbital value, we obtain E...=1.55608
and E„,=1.55601 Ry from sets 1 and 2, respec-

I.5569
I I I I I

I.5569
I I $ I I I

I.O—
—I.5565

—I.5565I .0—0.9-
A

CA

IJJ
I

V

A

CJ

IJJ
I

X
C

Cb
V

0.9-0.8— A

CA

Lil
Ix

V

A

O
LLJ

Ix

V

—I.556 I

—I.556I0.8-0.7—

—I.5557
C

LLj

0.7-
'D

—I.5557 ~
C

LLI

0.5—

0.5—0.4—
—I.5553

04— —1.55530.3-

0.2-
—I.5549

—I.55490.2—0. I—

O. I—0.0—
I I

I.I6
a, P

I.5545
I.20

I

I. I 2
I

I .08
—l.5545\

I

I.OO

I I I

0.88 0.92
I

0.96
a, P

I.04
FIG. 1. Matrix-element ratio in Eq. (13) (solid curve)

and the energy (dashed curve) as a function of the non-
linear parameters in the basis set for set 1. FIG. 2. Same as Fig. 1 but for set 2.
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butions to the integrals over 8 and C. Hence the
discrepancies in E„sand I' are a measure of the
uncertainty introduced by the tail. This dis-
crepancy may also indicate the extent to which
O„has failed to achieve the asymptotic form
S(kr+5s+ —,v). For 5s=0.355, the matrix elements
differ by about 1.F/g for the two sets, leading to
similar agreement between the widths and the de-
termination of E„,to four decimal places. To
indicate the insensitivity of the results over a
range of &~, we have listed in Tables I and II re-
sults derived assuming &~=0.3 and 0.4, although
the real uncertainty in &~ is much smaller.

The value of the method in selecting a basis set
for representing the resonance is seen in Table II
from the results for the 47-function set. Nowhere
are the values of (8,IH E,IC-(kr))l( |l,l

H- E,IS(kr))
near the polarized-orbital value of &~. In fact,
(e„iH —E„iS) vanishes near n=P =0.94. This
means that these vectors are a poor representation
of 4(E„,), at least for the values of o& and P studied
here. This basis set probably provides an incor-
rect representation of background scattering con-
figurations in the resonance vector, and is inade-
quate as a representation of 4'(E) at E„,.

We have also calculated dipole transition matrix
elements D„„for the transition

for sets 2 and 3. This transition is basically a
one-electron transition because of the admixture
of the 2P' configuration in the '5 state. However,
the effect of dropping the three diffuse configura-
tions still amounts to several percent of the total
matrix element, much greater than the variation
found for the 50-function set over the range of &.

We expect an even larger effect in cases where
the resonance transition is basically two-electron,
as for the case

(1s') 'S - 2s2P 'P

in helium. %'e shall discuss this case below.
We wish to emphasize that stability, especially

with regard to variations in nonlinear parameters,
appears to be a less precise criterion for deter-
mining a good representation of 4'(E„,) than our
criterion, Eq. (13), as the 47-function set demon-
strates. Not only will error in the representation
of background scattering lead to incorrect calcu-
lations of &, the total phase shift, but other prop-
erties calculated from this representation, such as
I'„(E) or D~„, will be incorrect.

Let us compare our method for choosing reso-
nance vectors with the Harris and stabilization
methods. The Harris method for isolated reso-
nances allows direct determination of & from an
eigenvector O„by

& (E) =5s(E) + are tany„
1 I-«

=&&, &E) ~ a c&an ' "
)res

„.„(e.lH - E.IS)

As the nonlinear parameters are varied, if O„- @...,
then 5(E)- &s(E„,)+-,'v. However, since 5s is an
unknown, a unique set (&s, E„,I'„) is difficult to
determine with high accuracy. Equation (22) is
equivalent to the condition (13). Our method cor-
responds to using the Harris method in reverse.
Given 5s from another source, we use Eq. (13) to
select 4„ from among many O„, and, in particular,
from among the O„with E„near F.„„. Thus within
the uncertainties in our calculation, basis sets 1
and 2 generate equally good representations of
q'(E) for E= E„,and Eq. (13) helps us to determine
more precisely both E„,and the function 4„nq&(E„,).
In contrast, set 3 does not satisfy Kq. (13) for any
reasonable guess for &~ using the range of n and j3

tested here, and will be rejected altogether.
The stabilization method has been used to calcu-

late E„,and I'„, by a technique suggested by Hazi
and Fels." They assume that

8„—= c„4'(E„,)

for any O„with F.„-F.„„,and show that I"„,is inde-
pendent of O„even if E„ is not exactly equal to E„„
providing that the correct background phase shift
is used in calculating I . The widths 1 and 6~ are
simultaneously determined by calculating I' for
several O„with E-E„, The fact that I;„eF(E„)if
some other phase shift is used leads to a simple
formula for E„—F. , which gives an improved de-
termination of the resonance position. However,
the basic assumption (23) is valid only for E„,
—E„«I'„,and for O„ including an adequate number
of singly excited configurations in it. Hazi and Fels
calculate I' from the matrix element

(e„[H E„&S(kr+5,)), -
which they claim is equal to (G„iH E„if~ ). For-
any H„and fgs] satisfying (2) and (3), even when
(23) is not satisfied, we have

&~&K)IH-~
I & )(~ ~ ~ i1"",.&&„, ere .V, c ~,„&,,l~-~ I&, )=&~ I~-~ I&, )

n

(24)
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from Eq. (3) and the condition (gs IH-EIps} =0.
However„ it is not possible to replace $~„ in the
last term of Eq. (24) by its asymptotic form
S(br+&s) since (H E-„}8„w0in the interior region.
On the other hand, in the middle matrix element of
Eq. (24) I g„„) may be replaced by its asymptotic
form, but then the parts involving g~. and f~ no
longer vanish; thus this term is not equal to
& e„IH —E„IS&.

For a small background phase shift these extra
terms should be small. But when &~ is not small
they must be calculated. Furthermore, even if
8„ included an adequate number of singly excited
configurations in it, so that the principal-part
integral could be omitted, the condition E„—E„,
«I'„, must be satisfied to justify dropping the
(coty„gs„IH —E„IS}term. Hazi and Fels" avoid the
latter problem by using stabilized O„only. We

suggest, however, that whatever the size N of the
basis set used in determining 8„, more accurate
results may be obtained by simply using C'„ for
which Eq. (23) is valid at E =E„„sothat

(C'.IH- E-, lls„)=(4„IH- E„,IS(km+&, }),
where the 4„satisfies Eq. (13}for the known i)s.

4.730,

This criterion is more precise then stability and
has an uncertainty directly related to the uncer-
tainty in &~. However, our method depends upon
having a, prior knowledge of &~.

We illustrate this point in Figs. 3-5. We deter-
mined &~ and I'„by the method of Hazi and Fels
for the 50- and 47-function sets, respectively.
Bhatia ' previously obtained &~ =0.40 from this
method, but our values of & =0.365 and & =0.379
from the 50-function sets are closer to the polar-
ized-orbital value.

Results of our method and the Hazi-Fels method
may be compared in Tables I and II. The Hazi-Fels
approach works remarkably well for the 50-func-
tion sets. The resonance position, including the
Hazi-Fels approximation to the energy shift 6„,
is in excellent agreement with our value calculated
for &~ =0.355 which corresponds to 6„=0. How-

ever„ for the 47-function basis set, the Hazi-Fels
method leads to a value of I' with a rather large
uncertainty and an unsatisfactory values of E„
which cannot be corrected consistently by the en-
ergy shift even though the uncertainty in the de-
rived &~ is not large. The discrepancy arises from
the fact that E„—E„,&I' for these vectors, so that
the contribution of terms containing P~ cannot be
ignored; that is, these sets yield poor representa-
tions of 4(E„}. In fact, the results would be even

4.900

4.490-
O
X

C

4.700-

4.4 I 0-

4.370—

4.250

I

0.55
i

0.45
FIG. 3. Calculation of the width by the method of

Hazi and Fels (Ref. 17) for the three e„of set 1 (cf.
Table I). FIG. 4. Same as Fig. 3 but for set 2 (cf. Table II).
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I I.2

I0.4—

9.6—

8.8—

8.0—

7.2-
O

IO
O
x 64-

C

5.6—

4.8—

4.0—

2.4
0.35

I

0.40

Sg

I

0.45

FIG. 5. Same as Fig. 3 but for set 3 (cf. Table II).

worse, but the bulk of &s, about 8+, comes from
the static-exchange term involving S(kr) only and

the contribution of the configurations X& to l is not
large.

This example demonstrates several points.
First, the properties of a resonance may be ex-
tremely sensitive to changes in a few of the func-
tions in the basis set which represent single ex-
citations, even though the energy is not. Hence
considerable care is necessary when such small
changes are made. Second, while it may be argued
that the 0„ from the 47-function set are not well
stabilized, the stabilization criterion is apparently
not as sensitive as our phase-shift criterion to the
admixture of single excitations. Third, the Hazi-
Fels method may lead to inaccurate values of the
resonance width and energy if improperly applied
with the unshifted eigenenergy not lying well within
one resonance width of the true energy. However,
this method does generate a self-consistency cri-
terion, as illustrated by the triangular crossing of
curves in Fig. 5. Our criterion, Eq. (18), selects
more precisely the best 0„ limited only by the un-
certainty in &~.

Optimization of the nonlinear parameters e and

P for the 47-function set by our method leads to new
values of n = P = 0.725. This gives E„,= -1.556 13
Ry, which is in excellent agreeement with the
resonance positions from the two 50-function
basis sets.

Having recognized all of the abovementioned dif-
ficulties, we conclude that the Hazi-Fels method
may be very useful (i) when 5s is not large and
the basis set has no complications such as the con-
figuration interaction involved in the 47-function
set and (ii) when 5s is not otherwise available.

V. THE FIRST 'P RESONANCE IN HELIUM

A related problem arises in the calculation of
the transition matrix element (1s''SD)2s2P 'P)
where theory" and experiment" are about 5+
apart. Here &~ is very small, but because we are
dealing with a two-electron transition, the con-
tribution of singly excited X& to the 2s2P P function
is critical. To calculate the resonance oscillator
strength the matrix element (1s'~D~4'(E„,)) is re-
quired, and a good approximation to 4(E„,) must
include an adequate representation of the back-
ground configurations. We suspect that the dis-
crepancies can be traced to the use of an improper
basis set as a result of complications arising from
the three aforementioned "diffuse" configurations.
In this case, the static-exchange phase shift is
rather poor, and background correction terms to
any inexact representation e„will be both impor-
tant and difficult to calculate. The stabilization
calculations of Bhatia" lead to a value &~=0.015
in the 'P case. A well-converged value of &~
= —0.00670 has been calculated recently using a
Green's-function method, " indicating that the
resonance representation of Bhatia is inadequate.
Bhatia, Burke, and Temkin' have calculated a
background scattering function using the close-
coupling method which is employed with a projected
representation of @'„. This potential scattering
function gives &~= —0.025, also in substantial dis-
agreement with the Green's-function calculation.
We suspect neither representation leads to an
accurate representation of 4'(E„,). Our method
should be more accurate because scattering infor-
mation is available from two sources: the energy
operator, ensuring a good representation for the
doubly excited configuration in 4', and the back-
ground scattering phase shift, leading to a good
representation of the singly excited configurations
in +.
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