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Excitation of atomic hydrogen in the eikonal-Born-series approxiniation
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The eikonal-Born-series method, developed recently to analyze elastic scattering of electrons by atomic
hydrogen and helium, is extended to inelastic scattering. In this paper we investigate the excitation of atomic
hydrogen to the 2s or 2p state by electron bombardment. Important differences from the elastic case are
discussed and a careful comparison with the Glauber method is made. Also, for angles greater than 20'
comparison is made with recent experimental data on the sum of the differential cross sections for 2s and 2p
excitation. Very good agreement is found.

I. INTRODUCTION

In a recent paper (hereafter referred to as I),
Byron and Joachain' have discussed the relation-
ship between the Born series and the Glauber' ap-
proximation for the case of electron-atom elastic
scattering. They pointed out that the Born series
is essentially a power series in k,. ', the wave
number of the incident electron, so that if one
wishes to achieve a consistent leading-order im-
provement on the first Born approximation one
must evaluate four terms, the real and imaginary
parts of the second Born approximation, the real
part of the third Born term, and the leading term
in the exchange amplitude. They showed that the
Glauber approximation when interpreted as a
series expansion in k, ' gives a good approximation
to the imaginary part of the second Born approxi-
mation via its term of order k,. ' and that in fact
this approximation to the imaginary part is good
even for large scattering angles and not just for
the small angles which are assumed in traditional
derivations. They also conjectured on the basis
of potential scattering theory' ' that the term of
order k, ' in the Glauber series gives a good ap-
proximation to the real part of the third Born term
at all angles.

Despite these remarkable properties, the
Glauber approximation is seriously deficient in its
treatment of elastic scattering because, in addition
to omitting exchange, an easily remedied omission,
it gives no account at all of the real part of the
second Born term, which is very important at all
angles and which dominates at small angles.

On the other hand, for inelastic scattering it is
known from the work of Ghosh and Sil, Tai et al. ,

'
and Byron' that the Glauber approximation gives a
good account of the experimentally well-known de-
partures from the first Born approximation for the
integrated cross sections for electrons exciting
the 2s state' and the 2p state' of atomic hydrogen.
It is the purpose of this present work to analyze

these two problems in the spirit of I to see if the
agreement found in Refs. 6 and 7 is fortuitous or
if it rests on some further remarkable property of
the Glauber approximation. The analysis of I was
rather general as regards the comparison between
the Born and Glauber series; thus one should ex-
pect that in the absence of some rather special
circumstances the Glauber approximation should
suffer the same kind of difficulties in the case of
inelastic scattering as in the case of elastic scat-
tering.

However, there are certain differences between
elastic and inelastic scattering which might have
an important effect on any theoretical analysis.
We mention briefly the two most striking ones:

(i) At small angles, elastic scattering is mod-
ified in a profound way by an effect which may be
physically described as a polarization potential
acting in the elastic channel . " The Glauber ap-
proximation takes no account of this effect.
Clearly, for inelastic scattering this phenomenon
will be considerably modified.

(ii) For elastic scattering the first Born term
gives the leading approximation to the scattering
amplitude in the high-energy limit at all angles.
This is not the case for inelastic scattering. It
is obvious that because of off-shell elastic scat-
tering in intermediate states the second Born
term will dominate inelastic scattering at wide
angles (momentum transfer K & I in atomic units),
because the most effective way for an "inelastic"
electron to get scattered through a large angle is
to elastically scatter through a large angle and
then inelastically scatter through a small angle to
get into the desired final state (or vice versa).
For example, in 1s-ns transitions such a term
falls off as k;.'K-' for K large, whereas the first
Born term falls off as K '. Since the Glauber ap-
proximation gives the imaginary part of the second
Born term quite well at all angles in elastic scat-
tering one might hope that it would give the lead-
ing term for inelastic scattering at wide angles.
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II. PRELIMINARY RESULTS

In this section we recall a few notations and re-
sults of I which will be particularly useful in what
follows. We shall write the Born and Glauber
series in a fashion nearly identical to that of I,
namely, for the Born series

f2l gf 21

n=I

and for the Glaubex series

(2. 1)

(2. 2)

The quantities f Bl„and f ~'„are trivial modifica-
tions of Eqs. (2. 13) and (2. 21) of I. The super-

These two questions mill be investigated in more
detail below.

The plan of this paper is as follows: In Sec. II
we summarize and generalize to inelastic scatter-
ing some of the basic results of I. In Sec. III we
give a detailed analysis of the excitation of atomic
hydrogen to the 2s state by electron bombardment.
ln Sec. IV the same analysis will be performed
for the 2P state, These two cases turn out to be
rather different; thus it seems best to discuss
them separately. In Sec. V we summarize, com-
pare with experiment, and attempt to draw some
conclusions and make suggestions for further
work. The notation used throughout is that of I
with one or two obvious modifications such as a
supex'script to distinguish the 2s and 2p final
states.

script I takes on the value of s or p depending on
whether we are studying the excitation of the 2s
or 2p state.

The evaluation of the individual terms in Eq.
(2. 2) is a straightforward numerical matter, but
this is not the case for Eq. (2. 1), where an exact
evaluation of any term save the first will be enor-
mously difficult. Thus the closure approximation
has been widely used (see I for a list of the major
references). For the problem at hand we have
directly from Eq. (2. 29) of I

1 1

K)EPy q —P —i&

x (2I ~e'it'" -e' '" —e '"y' + 1
~
ls),
(2 3)

where the subscript SB2 refers to the "simplified"
second Born approximation, K = k; —k&. K, = k, —q,
and K&-—k& —q. Here k,. and Q are the initial and
final momenta of the incident electron and p'= k',

—24„where ~, is the average intermediate-state
excitation energy, measured from the ground
state. Clearly it is a trivial matter to put in a few
intermediate states exactly. Since we expect
wide-angle scattering to be dominated by elastic
intermediate states, it is natural to include the
states 1s and 2l exactly in f~B'2. We shall also see
that it is reasonable to treat the intermediate 2p
state exactly in studying the 2s excitation process.
With an appropriate number of intermediate states
inserted exactly we shall call the resulting ampli-
tude the second Born term, although even this is,
of course, only an approximation. Thus [see Eq.
(2. 32) of I]

2 1f 2l dq (2I
~

eiK r eiK r e-i' r+ I
~

ls)B2 312 K2K2(q2 p2 fe)

+—, dq Q. . . „, , &2I ~e-'"i"—I ~n)(n (e'"1"—I
~

ls&
m'

dq . . . , . 2) e 'K&' —1 n n e'"3"—1 Is,
K;K~ q —p

(2. 4)

where k'„= k',. —24;„and n runs over those states
which me wish to treat exactly. The quantity &,„
is just the energy difference between the initial
state and the state n. Thus if n = Is, k„=k, , while
if n=2s or 2P, k„=kf.

III. EXCITATION OF ATOMK HYDROGEN TO THE
Zs STATE

A. Basic resuIts

We begin by recalling the well-known expres-
sion for the first Born approximation for ls-2s
excitation. It ls given by

BW2fBl (K2 + 9 )3
' (3.1)

It will be the purpose of this section to study the
corrections to this simple expression.

Using Eq. (2.3) it is straightforward to obtain

f~» fx om the bound-state wave functions of atomic
hydrogen. An elementary calculation yields

3&2 1 1
SB2 K2 K2(K2+ 2)3 K2(K2 + 122)3

(K +a )' KiKi q -p' —le
(3.2)
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where a =~. This can be written as

8~ 1 rPZ((422) 1 re~(aa) K'
Ir*"*r"'"}

(3.3}

1
2' K' (K' +a')(q'-p' ie) '

(3.4)

where the key integral J,' & is given by Using familiar Feynman methods as in I, we have

1 dg

[ct't+t(1 —t)K']' ~2[(a'+ 2&)t+2&f t
—2iP(a't+t(I —t)K')'~2] ' (3 5)

where the plus sign goes with J; and the minus sign
with Zr. In Eq. (3.5) & is the energy difference be-
tween the Is and 28 states (2 a.u. ) and &r = &I —&

is the average intermediate-state energy measured
from the final state. The real and imaginary parts
of J; I are virtually identical to Eqs. (2.37a) and
(2.37b} of I with minor modifications necessary to
account for the fact that the initial and final states
do not have the same energy. As noted in I, this
integral can easily be evaluated analytically. In
practice we used the analytic expression for J«
and differentiated it numerically to obtain faa»
from Eq. (3.3}.

Since we are dealing with intermediate and large
energies, the limit )'tt large (hence p and kz large)
is of interest. In this limit a simple expression
can be obtained for J; &. One finds

Re/=Re/, q(0) =, ), ~, .
(3.7a)

(3.7b)

2p(aa+K'}

(F22 a 2&)(t22+K2}+2&r t(K' —aa)
2paa(a'+K')2

(3.eb)
In order to compute f2882 we also need the quantity
J =4» z(ta' =0}. We see from these equations that
the limit is not straightforward, so we must return
to Eq. (3.5) and evaluate this at 12 =0. This may be
done exactly; as in I one finds

Im J —= Im 8& z(0}

[(P'K'+«& )"+PK]'
K(P'K'+4~, t,)' ~' 46,]by

1
Immit I — 2,

)

1
p'(422+K')' (n'+2&t. r)'

~2 g2 4p2 ~2

(3.6a)

Note that if one takes the elastic limit 4 =0, 4, = 4&
then Eqs. (3.7) reduce to Eqs. (2.39) of I."

With these expressions in hand, a useful large-
st form for fa» can be obtained from Eq. {3.3).
Upon differentiating twice Eqs. (3.6a) and (3.6b) we
have

282
p 2 4(~2 +K2) ~2(~2 +K2)2 (~2 4 K2)2

1 p'(n'+K')' pK [pK+ (p' 'K+a4a )"]'
(~2+K')2 +a~, ~, (paK'+4~,.n,,)'~2 (3.8a,)

8&2 a PK ~' - 3(~I+t,)

P (ta'+K')' (P'K'+4& & )' ' 8Pa'( '+K')

2aa —3(&, + &r) ta'+ 3(&t + &r) ea(&1+ ttr)
4pct'(a'+K'}' pot(ct'+K'}' p(~'+K'}' - =ata

For the energies of interest here (E & 100 eV) Eq.
(3.8a) approximates the true Imfaa, to better than
10% at all angles; Eq. (3.8b) does not represent
Refa» quite as well for reasons which will be dis-
cussed below.

B. Imaginary part of faar

I.et us analyze the imaginary part of f~» first.
We begin by noting that according to Eq. (3.7a), as
soon as K becomes a bit larger than 2(&t&I)'~'/P

Im J attains the limiting form

1m'=(1/pK') In(p'K'/n & ). (3.9)

thus Imfa» takes the form

8W2
882

P 2~4( 2 +K2) ~2(o2 +K2)2

3 1 (tr'+K')'
(ta'+K')' (aa+Ka)2 aaK2

(3.10)
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Note that this is independent of the average excita-
tion energy.

In I it was shown that the imaginary part of the
second term in the Glauber series (which is in
fact purely imaginary) approximates Im fs2; rather
well in the case of elastic scattering, not just for
small angles as one would expect from the usual
derivations of the Qlauber approximation, but in
fact at all angles. That this is also the case for
the excitation of the 2s state of atomic hydrogen
is readily shown. The second-order Qlauber term
is most easily evaluated" in closed form by trans-
forming the various terms of f~, [see Eq. (2.21)
of I] into momentum space. One obtains in a com-
pletely straightforward manner

where Q is a two-dimensional vector in the plane
of the momentum transfer. We note that this is
what would be obtained from Eq. (3.2) if one re-
placed the closure propagator G = (q'-P' ic) '-
by a "Qlauber propagator"

ond Born term the various intermediate-state
contributions of Eq. (2.4) do not affect this conclu-
8 ion.

The solid curve in Fig. 1 shows" the quantity
Imf s; as obtained from Eq. (2.4). The part corre-
sponding to Imf ss~ was evaluated as discussed
above; the terms coming from the finite sum on
intermediate states (taken to include 1s, 2s, and
2Pyn for reasons discussed below) offer no addi-
tional complications beyond those already dis-
cussed. The dotted curve gives the Glauber-ap-
proximation result of Eq. (3.10). Clearly, the in-
clusion of the three intermediate states in the fi-
nite sum of Eq. (2.4) has a negligible effect. How-
ever, they play a much more important role in the
calculation of Ref a'f, as we shall see below.

In Fig. 1 we have also included (dashed curve)
the contributions to Imfsm; of the 1s and 2s inter-
mediate states alone. It is seen that at large an-
gles these two states dominate strongly, but at
small angles they deviate from the full amplitude
by as much as a factor of 2. This strongly sug-
gests that the distorted-wave Born approximation
(DWBA) will not be able to give a useful account
of small-angle scattering, since it approximates
the second Born term by the contributions of the
1s and 2s intermediate states coming from the

Go = [—2k, (k,. —q) ~ K~ —is] (3.12)

where K~ is a unit vector perpendicular to K lying
in the plane defined by the triangle formed by k, ,
k~, and K. The integration of Eq. (3.11) is
straightforward; doing the azimuthal integration
and making the change of variable Q'= y, we find

2~2 d' 1
G2 ) d (o2)2 y[(y +K2 + ~2)2 4KRy] I /2

- l.00
E = IOO eV

(3.13)

Note that although there is a singularity in each
individual term, there is no singularity in the inte-
grand as a whole. Thus if one integrates on y
from e, to K' —~, and then from K'+ ~, to infinity
one gets a result which is perfectly finite as ~„
~„and e, go to zero. The value for fa, thus ob-
tained is precisely the expression of Eq. (3.10) but
with p replaced by k, Thus except at very small
angles the second Born and second Qlauber terms
agree to leading order in k,. '. It is a simple mat-
ter to show that for the imaginm'y part of the sec-

-0.0l
0 30 60 90 l20

FIG. 1. Imaginary part of the second Born term for
the excitation of atomic hydrogen to the 2s state by
electron bombardment. The solid curve shoves the re-
sult of this paper, the dotted curve is the Glauber ap-
proximation, and the dashed curve is the result obtained
by including only the 1s and 2s intermediate states. The
incident electron energy is 100 eV.
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static potential acting in the initial and final chan-
nels, respectively. Absorption and polarization
parts of the initial. and final channel optical paten-
tials act only in higher orders in k,. '.

C. Real part of fssr

%e turn now to the study of the real part of the
second Born term. This was found in I to play a
very important part in determining the leading
correction to the first Born approximation for
elastic scattering. The situation here is superfi-
cially very similar to the elastic case. Looking
at Eq. (3.8b) we see that just as in the elastic case
at small angles the real part of f,'a, is dominated
by a term of order P '.

This term of order P ', which we will denote by
f ', can be written for K «1 as

( tl )r (2s Ia a
I 1s ) pK'-))re "....)")

(3.14)

as has been shown elsewhere" for the very simi-
lar case of elastic scattering, where the matrix
element is (1s Isa I 1s). It is clear that this comes
from the sum on intermediate p states, and in
fact one can readily obtain the small-angle form
without carrying out the intermediate-state sum
by closure. Calling this quantity f a), we have

(
x 1—," „, , (315)

[(p„K)'+ 4a,„~,„]'"
where P2=k,'. —26,„, and where h, „and A~„are
the energy differences between the nth state and
the initial and final states, respectively. Note that
if one replaces P„by p and h, „and Az„by 6,. and

6&, respectively, then the sum can be done by
closure, and one obtains Eq. (3.14). Clearly, for
the 2P intermediate state Af„=0; this state does
not actually contribute to the sumt Thus itis clear-
ly undesirable to include this state in a closure ap-
proximation. In addition, the contribution of the
2P intermediate-state term to Eq. (3.14) is nega-
tive, while all other terms are positive. In the
identity

&» I
s'lls& = p &» I s I rtp&&np I a I»&

the left-hand side is negative because the first
term in the sum is negative a.nd all the other posi-
tive terms are not large enough to counteract this
one term. Thus the expression f "' is very mis-
leading since it is dominated by a large negative
term which in a careful analysis should not contri-

bute at all. For this reason, we put the 2P inter-
mediate state exactly [via Eq. (2.4)] in all the work
reported here.

In addition, for small angles it makes sense to
insert the sum on aQ states with n&2 via Eq.
(S.15) since the matrix elements (2s I

s I rtp) and

(np I
s I1s) are readily evaluated analytically, even

for continuum states. " This was done by adding
to the amplitude of Eq. (2.4) the expression

rf,",=«Q &»I s Inp)&rtpI s I»)

[(pK)'+ 4~,.n, ]
' ~'

1
[(pK)'+4n n ] "~'

(3.16)

which removes the small-angle average interme-
diate-state part of f,'a, and inserts approximately
the terms with their correct excitation energies.
The quantity nf s; is nothing more than f"' fn)—
with the term ~=2 removed and with p„approxi-
mated by p.

These small-angle effects fall off rapidly outside
scattering angles somewhat larger than (h,.nr)' a/

E. For angles larger than this, Eq. (3.8b) takes
the form

8&2 a' 3(~,. + ~,) 2a'-3{a,. + n, ,)
8n'(a'+K') 4n'(n'+ K')'
a'+ 3(a) + ar) 6a(h, + b r)

n(a'+ K')' (a'+ K')4

(3.17)

The key point to be made about Eq. (3.17) is that
because of the magnitudes of a, n, , and 4r (n

6f -——,'}, Ref sa, depends very sensi-
tively on 6; and 6&, in marked contrast with what
was found for Imfs~2, In addition, this term is
much smaller than order-of-magnitude estimates
would suggest. For example, the first term in
Eq. (3.17), which dominates when K is sufficiently
large, is proportional to a' —3(h;+ b, f); for the
values of 6,. and n.z given above, a' —3(b, , + nr)
= 8, which is a factor of 5 or 6 smaller than either
of the contributing pieces. This cancellation also
occurs at small angles. For example, when K «1,
the last two terms in Eq. (3.17}nearly cancel for
values of 4,. near —,'. The resu. lt of this is that over
most of the angular range the magnitude of Ref s'~,

is much smaller than Ref~, „even though the indi-
vidual terms in Ref s~, are of the same order of
magnitude as Ref~",.

This situation is illustrated in Fig. 2 where we
show Refa; for two different values of n, (0.5 and
0.6) compared with Ref~", . The values of Ref~,
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lO

Re f

E = lOOeV

gen the angular extent of this peak is very small.
We should point out, however, that for the excita-
tion of the 2'S state of helium, where 6, =1.3,
b, ~ =0.6, we would expect these long-range effects
to be important out to larger angles.

Finally, before closing this section we remark
that the contribution of the 1s and 2s states alone
to Reft, follows the same pattern as for Imfs", .
It gives a good account of Refs2; at large angles,
but as soon as the momentum transfer becomes
of order unity or less it bears little resemblance
to Refs;, other than being of the same general
order of magnitude. Thus distorted-wave calcu-
lations will probably be inadequate in this region
for Refs; just as they were for Imfs2;.

10 +
~ ~

yl 0~

/

t:
g:

8(deg)
I I I

0 30 60 90 120

FIG. 2. Solid curve shows the Glauber approximation
to the real part of the third Born term for 100-eV elec-
trons exciting atomic hydrogen to the 2s state. The two
other curves show two EBS approximations to the real
part of the second Born term, the dashed curve for an
average excitation energy of 0.5 a.u. , the dotted curve
for an average excitation energy of 0.6 a.u.

have been obtained via Eq. (2.4), with the 1s, 2s,
and 2P intermediate states inserted exactly and
with small-angle effects treated via Eq. (3.16).
Thus at large angles, where intermediate-state
elastic scattering dominates, Refsa is insensitive
to ~,. (unlike Refs»») because the dominant (elas-
tic) terms are put in with their correct excitation
energies. However, we see that at small angles,
particularly between 10 and 30', the sensitivity
to b, , is considerable. The amplitude is going
through two zeroes here, so it is very sensitive
to fine details. Clearly, one would probably need
to put in a great many states correctly in order to
get a reasonable approximation to the true func-
tional form. From the practical point of view,
since Refs~; dominates strongly over Refs; in the
region of sensitivity, the dependence on 6,. is un-
important, since Ref~, will dominate the leading
real correction to the first Born f'irect amplitude.
In the elastic case, we found Ref~, =Ref~3,. so the
correction due to the second Born term was very
important. For 2s excitation this will not be the
case except at very small angles where the peak
due to long-range forces comes into play. Be-
cause A, b,

&
is so small for the 2s state of hydro-

D. Exchange corrections

In I it was pointed out that if we write the ex-
change amplitude as

(3.18)

then the leading term in the exchange amplitude,
is of order k,. and real; thus it contributes

to the leading correction to the differential cross
section at the same level as do the real parts of
the second- and third-order terms of the direct
amplitude. The situation is very similar here,
but there are two differences.

First, for small values of the momentum trans-
fer the Ochkur approximation to ga"„which is
given as in Iby

go*,„=——, e'"''P,*,(r)y„(r)dr

8&2
(K2' 9)3'

t 4

(3.19)

tends to zero as K'. Hence it does not contribute
significantly to the scattering amplitude at small
angles, being in fact of order k, ' at 6=0 (since
K= 6/k, at 8=0). It should be noted that the terms
of gs", which are omitted by go,'h are also of order
k, 'or higher (for all K); so it is consistent to ne-
glect them.

The second point regarding the exchange ampli-
tude is the fact that for large momentum transfers
the Ochkur term falls off as k,. 'K ', just as in the
elastic case. One would expect that intermediate-
state elastic scattering should produce a second-
order imaginary term, Img~2, which varies as
k,. 'K ' for K large. By interference with Imfa,
this will give a contribution to the differential
cross section which varies like k, 4K 4 when K
is large. The leading term in the K-large limit
comes from the square of Imfgy (not from the
square of fgI as in elastic scattering) and varies
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as k,. 'K ', as is clear from Eq. (3.8a). Thus the
second-order exchange term mill give a piece of
the leading correction (of relative order k,. ') in the
large-angle region. Unfortunately, as we shall
discuss below, me do not know horn to cal.culate
all of the terms which contribute to the leading
correction for the direct amplitude. Thus we have
not bothered to obtain Img"„although it is possi-
ble to do so at large angles.

and

do'
= l I

f" + g "I'+-:lf" g" I'. -(3.21)

This expression, "as explained in I, will give all
terms of relative order k,. 'which correct the first
Born approximation to the differential cross sec-
tion, as long as the momentum transfer dependence
of all these terms is the same. This was the case
in I where all terms in the Born series for elastic
scattering fall off as K ' for large K. Here, how-
ever, Eq. (3.20) can be used only in the small-to-
intermediate momentum transfer region, since
fs2; falls off as K 6 for large K, whereas the other
terms fall off as K ', as in the elastic case. At

large momentum transfers, the dominant term in
do" /dQ will be given by (Imfs", )'.

To see the situation more clearly let us write
out in detail the leading terms in the scattering
amplitude for large momentum transfers:

f"= 8&2/K'

Refs 2
= 3 Q/8 k '. K '

(3 ~ 22a)

(3.22b)

lmfs;= —0/k;K' —99/4k, K'+ AQ/k3K2, (3.22c)

Ref s", = RefG;
= 9[2 In(-, K) + I ] /k'. K ' (3.22d)

E. Full scattering amplitude

Let us now turn to the problem of putting together
all of the pieces of the scattering amplitude which
me have been discussing. We have seen above that
the second term in the Glauber series, f~", , agrees
very mell with the imaginary part of the corre-
sponding term in the Born series, Im f~;, at all
scattering angles. In potential theory, ' ' various
workers have made it appear highly likely that
when k,. is large, in addition to agreement for the
second term, there is agreement in all orders.
That is, for odd-order terms fo„(K}=

Re fs„(K)
for all K, while for even-order terms f o( K)

=i 1mfs„(K) for all K. As in I, let us conjecture
that in third order, by analogy with potential scat-
tering, we have Refs2;(K) = fo2;(K) for all K. Under
this assumption, me may proceed as in I to mrite

f2@ f2s+R fms+fas+Ilmf2s +28 g2s

Im f 2' = IIq/k~K ' (3.22e)

Imfs2,*=Imfo2; = Q[21n'( —', K) +21n(—', K) + —,'v'] /k,'K',

g "= —8 v 2/O'K'

Imgs", = CQ/k'K'

(3.22f)

(3.22g)

(3.22h)

+9/2K'+ ~ ~ ] . (3.23)

Notice that if me had neglected the overlap between
Imfs2; and Imf~2;, the leading correction term
would have been (4/k, '. }ln'( —,'K) ra, ther than (3/2k, '. )
xln(-', K), i.e. , we would have a spuriously large
correction. It should also be noted that although
we cannot evaluate B we still get the M eakly doyni-
nant part (proportional to lnK) of the correction to
the lowest-order term. It is interesting to con-
strast Eq. (3.23) with the Glauber result. Using
the k, ' part of Eq. (3.22c) together with Eqs.
(3.22d) and (3.22f) we find

d 02~' 2" 1 —&'//3 9
d 0 3'k'K k' 2K' (3.24)

i.e., the Qlauber resul. t falls below the asymptotic
form at large angles, whereas at sufficiently high
energy the EBS result will rise above the asymp-
totic form.

The discussion above clearl. y indicates that al-
though Eq. (3.20) is fine for small-angle scatter-
ing, it mill give spuriously large results at large
a.ngles. However, from Eq. (3.21}we see that if
we use

$02s
EBs & (Ref2s ~g2s )2 + k(Ref28 g28 )2

+ (Imf~;)'+2(imp~;)(Imf~;), (3.25)

where Ref" is given by Eq. (3.2D), we will have
all terms of order 1 and order k, ' for small angles
(along with some terms of higher order) and at lar-
ger angles we will have no spurious terms in lnK.

where Q= 2" '/3' and A, 8, and C are constants
independent of k,. and K. The asymptotic forms of
Eqs. (3.22d) and (3.22f) are derived in the Appendix.

The constants A and C are fairly straightformard
to obtain, coming from elastic intermediate states
in the second-order terms of the direct and ex-
change amplitudes. However, 8 is by no means
so simple. That Imfg; must have the form given
in Eq. (3.22e) can be readily deduced from the
generalized unitarity relation, but a precise eval-
uation of J3 does not seem possible.

Using Eqs. (3.20) and (3.22) we can write at large
angles

d g2s 213
, [I+(-,ln —,K+'—,", - &&' —2A —2B -C)k,'.
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lations in Refes; outside the small-angle region.
Whether or not this cancellation has some signifi-
cant underlying physical reason is not clear.

Finally, let us comment briefly on the accuracy
of the EBS results. Since they derive fron. per-
turbation theory and since one has obviously
stopped at the order in question because one
doesn't know how to calculate all of the next-or-
der terms, it is difficult to make reliable esti-
mates of accuracy. The most optimistic estimate
would be to say that at small angles one expects
corrections of order k,. 4, which would mean an
error of only a few percent at 100 eV. However,
a more realistic scale factor [see Eqs. (3.3) and
(3.6) j would suggest that higher-order terms
should be of order (3/2k, )', which leads to an esti-
mate of about 10%, certainly a more reasonable
figure. At wide angles, similar considerations
suggest that the accuracy would be of order
(3/2k, )', i.e. , about 30%. As one goes to higher
energies, these errors rapidly become smaller.

Another possible approach would be to calculate
the Glauber cross section in a manner analogous
to Eq. (3.27), i.e. ,

FIG. 3. Differential cross section for the excitation
of the 2s state of atomic hydrogen by electron impact at
100 eV, multiplied by sino. The solid curve is the re-
sult of this paper, the dashed curve is the Glauber ap-
proximation, and the dash-dotted curve is the first Born
approximation.

In particular, for large k and large K one would
have an expression similar to Eq. (3.23) but with
B = C =0. It is Eq. (3.25) which we shall use for
the EBS cross section in this paper.

In Fig. 3 we illustrate the situation at 100 eV.
In addition to the EBS result (solid curve) we show
the Glauber approximation (dashed curve) and the
first Born approximation (dash-dotted curve). We
note that the results of Fig. 3 all contain the over-
all multiplicative kinematical factor kz/k, . which
has been omitted for the sake of convenience in the
cross-section equations given in this section. The
dramatic manner in which second-order, off-shell.
elastic scattering modifies the first Born approxi-
mation at large angles is very clear. The EBS
result lies significantly higl. er than the Glauber
result at large angles, as one might guess from
the presence of the term in lnK in Eq. (3.23). At
smaller angles, the EBS result falls below the
Glauber result by 10-20%. This is much less than
the difference found in elastic scattering' at the
sa.me energy. In I the difference between EBS and
Glauber was always at least a factor of 2 for scat-
tering angles less than 30'. The reason for this
change is twofold: The very small region of long-
range effects in Ref~", and the remarkable cancel-

d 02S
= (fo;+f~;)'+ I f~; ~'+ 2(1m'",)(ImfG~) (3.26)

and then compare this to the full Glauber result.
This estimate agrees fairly well with the one just
given, within about 10/0 at small angles and about
20% at large angles. The region of major sensiti-
vity lies between 30' and 50'where the cross sec-
tion changes over from being dominated by the
first Born term to being dominated by the second
Born term. In this region there is considerable
cancellation between terms and hence great sensi-
tivity to higher orders.

IV. EXCITATION OF ATOMIC HYDROGEN TO THE
2p STATE

A. Basic results

Proceeding as in Sec. III we have for the 2P ex-
citation amplitude

f ~, = 1 1
q2 p2 g~ K2K2

K K;
(K'+ o.')s (K'+ o.')'

K~
(K2 + ~2)3f

(4.1)

(4.2b)

where from this vector amplitude the amplitudes
for excitation to a particular magnetic sublevel are

fsss = + (I/V2 ) I (f sos). + &(I ss s), j, (4.2a)

fsss = (f sss)~
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f" = -12 v2iK/K'(K'+a')' (4.3)

To evaluate Eq. (4.1), it is convenient to decom-
pose it via partial fractions to Feynman form.
This yields

6 &2i d'
f 2P

s82 v2 d(a2)2

1 K) Kq
q' —p' —ie a'K~(K,'. +a') a'K', (Kf+a')

K2 K
a'(K'+ a'}K', K~2

In this same notation, the first Born term is given
by

Clearly, all the integrals in the above can be
obtained by differentiating a single basic type of
integral with respect to a'. This integral is

1I; K
& if d3 (4 4 )

7[' (q' —ti' te)K' (K' +a')

In terms of I,. f, fs2~~, can be rewritten

d' K2

(4.5)
where 4 is given by Eqs. (3.7). By some lengthy
but straightforward algebra I,. f can be written in
terms of the integrals J, f of Sec. III. One finds

k~ K2 —24 &,k,. —P n K +26
ReI, = ~ ~ + —+tan ' ' -tan

q kf 2 a k,. +p k,.

—4K sin ', ,» + [(2a —K ') ( a2 +K ') +4 a &K '] ReJ~K'+ a' "' J

+ —2kf& — —+ tan ' ' —tan

+ sin ' », &, + [2kt2(K' —a') —(K'-2h)' —2i[i&(24 —K')] Ral,2(2b, —K') . , K

kt K'+26 (k +P)'+a' K' —26 k~+P

(4.6a)

+ K k~+ ti 2k( —K'+2L (k, + ti)'+a'
Rial — 1 ', , ~ [iirf[K' — '[ —(ia —K')' —ia, (ii —K')]tmZ),

q ~ kf-p 2k, (k, —[[)'+a'

(4.6b)

q = [K'- (k, —k~) '] [K ' —(k, + k~)'], (4.6c)

and where 6, , hz, and 4 are defined as in Sec. III.
Note that q vanishes at 8=0 and 6= ~. Thus if we
have done things correctly the zero in the denomi-
nators of Eqs. (4.6a) and (4.6b) must be cancelled
by a zero in the numerator. This is not obvious
by casual inspection, but it does in fact occur. To
obtain I&, one merely interchanges i and f every-
where in Eqs. (4.6) and replaces A by —b. . Since
J,. &

is readily evaluated analytically one has a com-
plete expression for I, , Upon differentiating this
expression„we have all the ingredients for Eq.
(4.5).

In practice, since the differentiation process is
rather cumbersome to perform analytically, it
was done by elementary numerical methods. As
an additional check I, ~ and its derivatives (taken
analytically) were also obtained by Feynman inte-
gration of Eq. (4.4) using numerical integration
with respect to the Feynman parameter t [see,
e.g. , Eq. (3.5)].

Although Eqs. (4.6a) and (4.6b) are very cumber-
some, one point is clear immediately, namely,
f SB~, is not simply proportional to the vector K as
in f ~a'„but depend~ on one additional vector, taken
to be kf in Eqs. (4.6a) and (4.6b). In this respect
it differs from the Qlauber amplitude which is,
like f ~~„proportional to K as a result of choosing
the trajectory to lie along a direction perpendicu-
lar to the momentum transfer. This choice, as
is well known, implies a vanishing ~ =0 compo-
nent of the scattering amplitude in the frame de-
fined by a z axis perpendicular to the momentum
transfer. Thus upon rotating back to the frame
whose z axis is k;, one obtains an amplitude pro-
portional to K.

The recent experimental work by Eminyan et
al. ,

" in which e -y coincidences are measured
following the excitation of the lowest P state in
helium, determines parameters & (8) and )L(8)

which can be interpreted as measuring precisely
the extent to which the physical amplitude is or is
not simply proportional to K. The quantity A, (6)) is
just the differential cross section for excitation to
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the ~ =0 magnetic sublevel divided by the full dif-
ferential cross section, and X(6) is the phase dif-
ference between the complex numbers represent-
ing the && =1 and ~ =0 amplitudes. Any theory in
which the scattering amplitude f '~ is proportional
to K will. give

X(8) =-o,

a(6) = 1 —kq (sin'6)/K'.

(4.7a)

(4.7b)

In helium Eminyan et al."find major departures
from Eqs. (4.7}which show very clearly that the
physical amplitude hRs R significRnt component
which does not lie in the K direction. Clearly, the
same situation is expected to occur in hydrogen,
although experimental verification will be more
difficult.

B. Real part of the second Born term

We begin by looking at the real part of the sec-
ond Born term since apart from an unimportant
azimuthal phase factor the second term in the
Qlauber series will be real. for excitation to the
2P state. In light of the extraordinary large-angle
properties found elsewhere for potential scatter-
ing' and elastic electron-atom scattering' and

noted in the previous section for 1s-2s excitation,
it would be desirable to have a more transparent
expression for Re f SB, in the 1Rrge-angle reg1on.
Fortunately Eqs. (4.6a) and (4.6b) simplify con-
siderably under the assumptions k,.» 1 and K»1
which correspond to wide-angle (0&60 ) and inter-
mediate-angle scattering. Using Eqs. (3.6) for
J,. f Rnd expanding the remaining terms in Eq.
(4.6b) one finds for Ref ss', the following expression:

(4.8)

Looking at Eq. (2.4), which gives the second
Born term with certain intermediate states in-
cluded exactly, we see that it will be the part of
the elastic matrix element which behaves like K,. '
or K&' for K, or K& large which will dominate the
large-angle contribution of the elastic intermediate
states to f~,. Qiven the importance of the 6,. and

a~ dependence of Eq. (4.8) we should clearly in-
clude these elastic terms exactly. In the large-k, -,
large-K limit all of the correction terms can be
evaluated analytically. For the correction terms
lnvolvlng the flnRl stRte Rs Rn 1ntermedlRte state
one finds

(-„12&2
k,'-n' 3

4k; K 2k,'K,'. 2

(4.9a)

where a,. = h in the "on-shell" case [second term
of Eq. (2.4)J and has its usual value (2h,. =k',. —p')

off shell case[th rd term of Eq' (2 4)1
Similarly, for the correction terms involving the
initial state as an intermediate state one finds

{f2,
)

12&2

4k K'
t 1

(4.9b)

off-shell contribution of the elastic intermediate
states in second order, we obtain precisely Eq.
(4.8), as we expect since off-shell elastic scatter-
ing should dominate. Thus the true second-order
amplitude will be given at large momentum trans-
fers precisely by the sum of Eqs. (4.9a) and (4.9b)
with the appropriate on-shell values of 6,. and hz.
We thus obtain

6&2 - 6v2s k,'. a' 3
Ref~2 =

k.K K 6k3K2 n a' 2

12' 2A k,'. n' 3
e'k'K' 4' 2

(4.10)

Since Eq. (4.10) contains terms in k, it is clear
that it cannot agree with the second-order Qlauber
term which contains only terms of order k,. '. The
terms of order k,. ' are the same size as the first
term when K is 1arge and thus causes Ref~~ to dif-
fer significantly from Ref~„ in marked contrast
to what was found in the ease of 2s excitation.

For the small- and intermediate-angle region,
the situation is somewhat different. In this case a
simplified expression for Ref s~, is readily ob-
tained. Using Eq. (3.6a) in Eq. (4.6b) one has {when
k,- »1 and k,. »K)

where Az =- —6 for the on-shell ease and has its
usual value (2Af = k~2 —p') for the off-shell case.
If we combine Eqs. (4.9a) and (4.9b} to get the total

Ref~s~2 = (1/k;)T, (K)R+{1/k()T2(K)k(,

where

(4.11a)
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12&2 1 ' 2'. (a' K')' k, K . [(k', K'+.44;4 )'1'+ k;K]')T ~K)=- a' K' (a'+K')' u'rk 6 (k'K'+ 44 6 )'~' 4h 61—

1 a'+K' 3u' 3n'
(22 2((22 yK 2)2 (Q12 + K2)2

u' n'+ K' 3 Q2 3a'
T K)=- K'( ' ~ K')' a' 4(a' ~ K') ( '+K')' 2( ' K')')ln + + +

1 n6 k,. a k]a

(4.11b)

(4.11c)

The main point about these equations is the follow-
ing: Because T, and T, are of the same order of
magnitude when K~ 1, when the z component of K
is of order k,. ', i.e. , when O-k,. ', the two terms
contribute equally to the ~ =0 amplitude. Since
the term in T, is missing from the Glauber ampli-
tude, this means that the ~ = 0 part of Ref&» will
be very different from the corresponding Glauber
quantity. Because the term in T, does not contri-
bute to the ~ =+ 1 amplitude, it is possible that
the ~ =+1 components of the Glauber second-order
amplitude will agree with the corresponding part
of the ~ =+1 second Born amplitudes in this small-
and intermediate-angle region. That this is in fact
the case may be shown in a manner nearly identi-

Re f

I

cal to that employed in studying the 2s amplitude.
Using the Glauber propagator of Eq. (3.12) in Eq.
(4.1) to replace (q2-p2 ie) -' we obtain

3v2 d' 1
c2 2k d(oi2)2 oi2

Q
(Q —K)'(Q'+ ~')

K-Q
+

IK)'[(q —K)'+ a']
K4 K dg

* Q*(Q-K)*)
(4.12)

The integral is readily done by Feynman integra-
tion; one finds

fC22= (1/k, )T (2K)K~ ~ =2 2 (4.13)

which tells us that except at very small angles the
~ =+1 Glauber amplitude agrees to leading order
in k,. ' with the ~ =*1 Born amplitude, a result

E=200 eV
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FIG. 4. Real part of the second Born term for the ex-
citation of atomic hydrogen to the 2P+ state by electron
bombardment at 200 eV. The solid curve is the result
of this paper and the dotted curve is the result of the
Glauber approximation.
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FIG. 5. Same as Fig. 4 but for excitation of the 2PO

state.
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similar to what we found for the 2s amplitude.
The situation at an electron energy of 200 eV is

shown in Figs. 4 and 5. Figure 4 gives the real
part of the» =1 amplitude while Fig. 5 does the
same for the» =0 amplitude. In all of these fig-
ures the dotted curve denotes the Glauber approxi-
mation Refs't and the solid curve shows Refs2~

obtained by putting in only the Yukawa part of the
average potentials in the initial- and final-state
elastic matrix elements in Eq. (2.4). In other
words, in computing quantities like

d 2~
EBS k 4g -2

dQ
(4.16)

whereas the Qlauber cross section will vary like

the 2s state the non-Glauber term Imf~", dominates
wide-angle scattering. Thus the differential cross
section given by the eikonal-Born-series method
will. look very different at larger scattering angles
than will the Glauber differential cross section.
Indeed, we see from Eq. (4.15) that for large scat-
tering angles the EBS cross section varies as

(k„2pm I Vl q, 2pm)
d a2t' -k K
dQ (4.17)

C. Imaginary part of the second Born term

The quantity Imfs'~, is much simpler to analyze
than was Refs2a', . Using Eq. (3.6) one finds that in
the limit of large k,. and large K Eq. (4.6a) simpli-
fies greatly; thus Eq. (4.5) gives

Im f 2& —i& ~2 K /k 2/ 2 + ~ ~

S82

This is independent of the average excitation en-
ergy and so is unaffected at large angles by the
insertion of the extra terms contained in Eq. (2.4).
Thus we may write

Imf 2 lm f & Q ~2K /k2+2 + ~ ~ ~
82 SB2 I

Comparing this with Eq. (4.3) for fa~ and with Eq.
(4.10) for Refs2~2 at large angles, we see that con-
trary to what we found in Sec. III for excitation to

(4.15)

(q, lsl Vlk, , ls)
in Eq. (2.4) only the Yukawa part of (1sl Vl1s) and
(2pml Vl2pm} is retained. This is because of the
fact that the 2p» average potential contains a non-
spherically-symmetric part which is computation-
ally cumbersome to include in Eq. (2.4). The Yu-
kawa part is spherically symmetric and poses no
problems. Of course the Yukawa part will domi-
nate at large angles because of the r ' singularity
at the origin.

The difference between the Born and Glauber re-
sults in Fig. 5 for the» =0 amplitude at small an-
gles is in striking contrast with the situation shown
in Fig. 4 for the» =1 amplitude. Clearly the
Glauber choice of trajectory gives a good repre-
sentation of the» =1 second order amplitude but
is much less successful with the» =0 amplitude. '
It should be remembered, however, that in the
small-angle region the first Born amplitude is
very large, and this term is given exactly in the
Qlauber approximation. Finally, we remark that
the results of Figs. 4 and 5 were obtained using a
value of 0.5 a.u. for a, Moderate variations about
this value have only a minor effect on the ampli-
tude.

dg doEBS C k-2g -4
dQ dQ (4.18)

This means that in the large-angle region both the
2s and 2P differential cross sections are of the
same order of magnitude according to the EBS
method, whereas the Glauber method will yield a
2P differential cross section which is a factor of
k, ' smaller than that for 2s excitation. In atomic
hydrogen there is no direct experimental informa. —

tion to clarify this point. However, in helium
where the 2'S and 2 'P states are easily distin-
guished in energy-loss spectra, Suzuki and Taka-
yanagi" have found that for 200 eV electrons the
differential cross sections for the excitation of
these two states are nearly equal in the large-
angle region.

D. Discussion

At this point we can proceed exactly as in Sec.
III to construct the full amplitude by adding ex-
change as in Sec. IIID and using the third-order
Qlauber term to approximate the third Born term
as explained in Sec. IIIE. There are, however,
several difficulties with this approach beyond
those already discussed in Sec. III. First, we have
seen that the second-order Glauber term suffers
serious difficulties at small scattering angles
since it misses a piece of the amplitude propor-
tional to k, , the Qlauber amplitude being propor-
tional to K alone. It seems likely that the third
Qlauber term will suffer from the same difficulty.
Second, at wide angles the second-order Qlauber

as is seen from Eq. (4.13). Thus since K-k, in
the large-angle region, we see that the Born series
differential cross section will be larger than the
Glauber differential cross section by a factor of
k', .

It is interesting to compare this with what we
found for excitation to the 2s state. From Eqs.
(3.8) and (3.10) we see that at large scattering
angles
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term does not give the leading piece of the second
Born term. This occurs because of the fact that
although it is nominally of order 0,. ' whereas the
non-Qlauber piece is nominally of order k, ', it
falls off as K ' for large K, whereas the non-
Qlauber piece falls off on1.y as K '. In third or-
der the same situation may again occur.

However, in order to give the reader a general
picture of the systematics of 2p excitation we have
decided to show the result obtained by following the
procedure of Sec. III. Clearly, these results are
open to question on certain points, but we can indi-
cate several reasons why we feel they are worth-
while. Regarding the large-angle region, if
Imf~2t (see the Appendix), which is of order k,. 'K '
& lnK, gives at least the order of magnitude of
Imf ~3 at large angles in the same manner found
in second order, then Imf~3 is negligible at large
angles compared to Imts2~. Furthermore, even if
Refs2~ is of order k,. 'K ' (i.e., if it has a slower
momentum transfer falloff than Imf~, ) the imagi-
nary part of the second Born term will still domi-
nate the differential cross section. Qf course,
just as for 2s excitation this will give only the
leading term, the first Born term being complete-

ly negligible in the large-angle region. The first
correction term remains inaccessible for reasons
similar to those discussed in Sec. III E. At small
angles, if one expects the Qlauber results to be
satisfactory for the third-order ~ = +1 amplitude,
then the procedure of Sec. III would be expected to
give reliable results for our ~ = + 1 EBS ampli-
tude. Clearly, for reasons mentioned above the
~ =0 Qlauber amplitude in third order must be

viewed with skepticism in the small-angle region,
thereby rendering the ~ =0 EBS amplitude sus-
pect. However, it is important to remember that
at small angles the first Born amplitude is very
strongly dominant due to the K ' behavior of f~2~,

for small K. This means that errors in higher-
order terms are much less serious at small an-
gles in 2p excitation than they would be in, say,
2s excitation.

Figures 6 and 7 show, respectively, the two dif-
ferential cross sections dc'/dQ and dc'/dQ for an

incident energy of 100 eP. Note that as one moves
outside the scattering angle of about 20 the dif-
ference between the Qlauber and EBS results be-
comes very striking. We may remark that the
large differences seen in Figs. 6 and 7 are not re-
flected in the summed, integrated cross section
for excitation to the 2P state. Even at energies as
low as 100 eV the vast bulk of the integrated cross
section falls in the angular range from 0' to 10,

do.sing—
dQ
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FIG. 6. Differential cross section for the excitation
of the 2P+ state of atomic hydrogen by electron bom-
bardment at 100 eV, multiplied by sic@. The solid
curve is the result of this paper, the dotted curve is
the Glauber approximation, and the dashed curve is
the first Born approximation.
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FIG. 7. Same as Fig. 6 but for excitation to the 2PO

state.
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FIG. 8. Differential cross section for the excitation
of the n=2 state of atomic hydrogen by electron born-
bardment at 100 eV. The solid curve is the result of
this paper and the dashed curve is the Glauber approx-
imation. The experimental points are those of Ref. 19.
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FIG. 10. Same as Fig. 8, but at 300 eV.

where the two methods offer only rather small
corrections to the first Born approximation.

When one integrates the results of Figs. 6 and
7 over all angles and sums over magnetic sublev-
els, one finds that the Qlauber results for o'~ is
less than the first Born result by about 10% while
the EBS results falls 13% below the first Born re-
sult. The difference between the EBS and Qlauber
integrated cross sections is thus not experimen-
tally significant. In the region between 100 and
200 eV, the polarization of the light emitted
following excitation to the 2P state by electron
bombardment is passing through zero, and hence
large-percentage differences between Qlauber and
EBS results are found, being of the order of mag-
nitude of 50% at both 100 and 200 eV. However,
the absolute values are small, and the differences
again appear not to be experimentally significant.

IO'—
V. CONCLUSIONS AND COMPARISON WITH

EXPERIM ENT

10

e(dog) ~
I I I

20 40 60 80 IOO I20 I40

FIG. 9. Same as Fig. 8, but at 200 eV.

With the differential cross sections for 1s-2s
and 1s-2p excitation in hand, it is a simple matter
to obtain a differential cross section for the exci-
tation of the n =2 level of atomic hydrogen. Since
the 2s and 2P states appear essentially identical
in energy-loss spectra it is very difficult to mea-
sure these two differential cross sections sepa-
rately. Only by looking in coincidence at the scat-
tered electrons and the Lyman-a photons from the
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2P state ean one disentangle the tmo. At; present
me have available the experimental mork of Wil-
liams and Willis" at various energies up to 680
eV incident energy in an angular range from 20 to
140'. At the energies of interest in this paper (E
~ 100 eV) this corresponds to momentum transfers
greater than 1 a.u. Hence the vast bulk of the inte-
grated cross section comes from angles smaller
than those studied by Williams and Willis. Thus

the integrated-cross-section measurements are,
roughly speaking, complementary to those dis-
cussed here.

Figures 8-10 show the experimental results at
100, 200, and 300 eV, respectively; me compare
these results with the EBS results of this paper
and with the Qlauber results. The values obtained

by using the first Born approximation are not in-
cluded since at the angles of interest here they
bear almost no resemblance to the experiments,
the experimental results being dominated by elas-
tic scattering in intermediate states. Even with

the relatively large error bars on the experimen-
tal points, particularly at the larger angles, one

sees clearly the failure of the Qlauber approxima-
tion in the wide-angle region. Here the 2s and 2P

states contribute roughly equally in the EBS theory,
while in the Qlauber approximation only the 2s
state contributes significantly. As mentioned
above, in helium the results of Suzuki and Taka-
yanagi" already point strongly towards nearly
equal 2 'S and 2 'P excitation differential cross
sections. As experiments of the type shown in

Figs. 8-10 become increasingly refined one will
of course be able to say more meaningful things
about the relationship between experiment and

theory. At present, one may say that the overall
picture given by the EBS method is very satisfac-
tory.

It must be emphasized that in the large-angle
regime the EBS method is basically a leading-or-
der method [somewhat more than this for 2s exci-
tation; see Sec. III E], rather analogous to the first
Born approximation at small angles. With more
refined experimental results one mill be able to
learn something about the leading corrections.
From the theoretical point of view much remains
to be done regarding these corrections, particular-
ly in the case of 2p excitation where the momentum
transfer dependence of the third-order term is not
known mith certainty. Also, the question of higher
exchange effects remains to be studied for 2p exci-
tation. Similar problems, although not so severe,
are present in the case of 2s excitation, as pointed
out in Sec. III.

Finally, let us comment briefly on other theo-
retical approaches. The distorted-wave Born ap-
proximation, "since it is able to treat el.astic scat-

tering in second order exactly, should give a lead-
ing term in the wide-angle region very similar to
what is obtained in the EBS method. Since it treats
elastic scattering to all orders, it mill also, of
course, give an approximation to each order of
perturbation theory, not just the lowest orders.
Whether or not these higher orders are given cor-
rectly is by no means clear, but one may perhaps
be optimistic in light of the importance of the cen-
tral Coulomb singularity. For similar reasons, a
1s-2s-2P full-mave close-coupling calculation mith

exchange included should do mell in the large-an-
gle region. A glance at Fig. 1, however, suggests
that such methods will not offer notable improve-
ments to the first Born approximation for small
momentum transfers.

An approximation which incorporates both sec-
ond-order effects and the close-coupling method
is that of Bransden and Col.eman. " In a full-wave
treatment it should also be expected to do rather
mell at all angles, although suffering somewhat in
the small-angle region from an inadequate treat-
ment of the third Born term. Recently the sug-
gestion of Byron' that for inelastic collisions at
small angles one should not use the Qlauber tra-
jectory but rather a trajectory along the incident
direction has been extended by Qau and Macek"
to investigate scattering at all angles. For small
angles, this expression has some intuitive appeal
on kinematical grounds, as pointed out in Ref. 8.
However, at larger angles, this attractiveness is
by no means obvious; and in fact the dependence
on k,. and K away from the small-angle region is
quite different than that found from an analysis of
the second Born term. In addition this approach
will give a real (imaginary) part of the second-
order term for 2s (2P) excitation which is of or-
der k,. ' for k,. large, also in disagreement with the
second Born prediction.
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APPENDIX

The large-K behavior of the Qlauber amplitude
is readily obtained as follows: The z integration
on the product of the initial- and final-bound-state
wave functions ean be done analytically in terms
of K-Bessel functions, and the integration on the
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2'~'k, . 6fc'= —
Se

' ~0(-'Kl')) Ko(&p) — K—,(@)+K,(Pp)

&& exp —ln(1 —2p cos Q + p'
k;

X P5P3d'PdP QfII) . (A1)

Integrals of products like J,(a x) K(bx)x" can be
done in terms of the ratio of two polynomials. "
One finds in this case

F' 2S
~ c 36g2&&

y (y —7y +4)x dy

xexp —ln(1 —25y cosg+5'y')
k,.

azimuthal coordinate of the incident electron is
also straightforward. Then using p to denote the
ratio of the impact-parameter coordinate of the
bound electron to that of the incident electron one
finds in the case of 2s excitation

we obtain

2s 2 ki 2

"x(x' —7x+4) i
exp —lnx dx. (AS)x+1)'

This integral is readily done by contour integra-
tion, yielding

2"~' (x/k, . )(1 + i/k, . ) 2i z
3'K'k. s' h( /k, ) k,.

' ) '

(A4)

Upon expanding Eq. (A4) in powers of k, ', one ob-
tains the various orders of the Glauber series, be-
ginning with f~2;= —f2"~'/S'K'k, . The nth term in
the Glauber series is clearly of order K 'k,. " "
times a polynomial in lnK. The term f~", is miss-
ing, since it is of order K '.

The procedure outlined above can be used to ob-
tain the large-K form of f ~~ with equal ease. One
finds

(A2)

where 5 =-', K and y = p/5. Expanding when 5 is large
(K large) and making the change of variable x= y', (A5)
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