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Energy transfer between slowly moving atoms —the case of no crossing point*

M. G. Payne and M. H. Nayfeh~
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

(Received 11 August 1975)

The classical path treatment of a collision between an excited atom and another atom with a nearly resonant

energy level leads to coupled differential equations which have been discussed previously by many workers.
Here we present an elementary procedure for solving this system of equations in the case of no crossing point
and in the limit where hEv~o &,with hE being the energy discrepancy and 7 = bio being a measure of the
time of collision. Even though the method is designed to take advantage of the slowness of the collision„ it is
also shown to be exact if b, E = 0. The form of the solution is very similar to that of Vainshtein et al. , but the
present derivation avoids several of their approximations which individually are not as accurate as their final
result. It is also pointed out that the coupled equations which arise for the energy-transfer problem also arise
in connection with the interaction of laser pulses with atoms. Hence, the method has application to a wide
class of multistate problems. A simple laser-interaction problem is discussed as a second example of the
method.

In many situations where transitions are induced
by nearly resonant time-dependent perturbations,
a two-state model of the problem predicts much
of the essential physics. ' ' In such a case the
amplitude ao(t) for remaining in the initial state
and the amplitude a, (t) for making a transition to
the second state usually satisfy the following pair
of equations [for proper choice of Vo(t), V(t),
V, (t), and &u]:

i S = V,(t)a, + V(t)e '"'a, ,
dQp

in = V, (t)a, + V*(t)e'"'a, .de

We will now review for the reader two situations
where Eqs. (1}apply before proceeding to an ap-
proximate solution of the system.

Consider first a collision between an excited
atom of type 1 (in state

~
el)) and a ground-state

atom (i.e. , in state ~02)) of type 2. If the energy
of excitation of the type-1 atom is nearly equal
to that required to excite a particular state (say
state ~e2)) of atom 2 and if the atoms 1 and 2 have
dipole-allowed transitions to the ground state
from ~el) and e2), respectively, energy transfer
can occur at large internuclear separations due to
dipole-dipole coupling. ' Assuming that the rela-
tive velocity of collision v and the impact parame-
ter b are sufficiently large, we can use a classical
path treatment of the nuclear motion and a multi-
pole expansion of the long-range atom-atom inter-
action and write

= (b'+v't )'i' is the internuclear separation eval-
uated along the classical path. A straight-line
orbit has been assumed and only the dipole-dipole
interaction has been retained. If the ground states
are S states and the excited states P, there will
actually be three states of the isolated excited
atom with equal energies. However, this situation
can be simplified by following Bates' in assuming
that the transition dipole moments align them-
selves along the line joining the nuclei (i.e. , the
rotating atom approxima, tion} and retain this con-
figuration during the collision. Thus, with this ap-
proximation

H = H, +H, —2e'z, z, /R'(t), (3)

where the electronic wave functions are expressed
in terms of the coordinates of the rotating frame
with the z axis being along the line joing the nu-
clei. In this approximation only the m, =0 mag-
netic substate is populated, and if at t= —~ the
composite state is

~
el)„,~02), the state at t = ~

will be a linear combination of
~

el) ~ ~

02) a.nd

~e2), ~01). Thus, the rotating atom approxima-
tion has the effect of reducing the complicated
multistate problem to a two-state problem with
state vector (we suppress the m, =0 subscript}

P(t)) =a, (t)e ""&"" 0~2e1) ~02)

+& (t)e ' "ox'"e2' ~01) ~e2), (4)

where H, (01)=S&uo, ~01), H, ~el) =8~„(el),H, ~02)
=Scoo2(02), and H, e2)=See„e2). Since iSS[g)/St
=H ~P), we find

H = H, +H, + [e /R'(t)](x, x, + y,yz —2z,z2), (2)

where H, and H, are Hamiltonians for the isolated
atoms 1 and 2, respectively; xi x2 fir $2r zi and

z, are sums of electronic coordinates for atoms
1 and 2 (relative to the center of mass); and R(t)

dao 2,zi(0-e)z, (e —0)
R'(t)

da, -2e'z, (e —0)z,(0- e)
dt R'(t)

(5)
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p) =a,(t)e '"0' 0)+a, (t)e '"e' ~e), (6}

where 0) is the ground-state vector, ~e) is the
state vector of the nearly resonant excited state,
and if Ho is the Hamiltonian for the isolated atom,
H, j0}=K~,~O) and H, ~e) =h~, ~e). We treat the
electromagnetic field classically so that the Ham-
iltonian become s'

where co= spy+ M 2 COg (JL)p2 and @co=-4E is some-
times called the energy discrepancy for energy
transfer. Equations (5) are o'oviously a special
case of the system in Eq. (1}. When u is small,
the predicted energy transfer cross section can be
very large compared with gas kinetic cross sec-
tions so that errors due to a breakdown of the di-
pole-dipole expansion and the assumption of
straight-line orbits at small impact parameters
are negligible compared with the very large con-
tributions that arise from large b where all of the
assumptions (except for the rotating atom approxi-
mation which in some situations gives 30% er-
rors') are very accurate.

We choose as a second example a ground-state
atom located at (x„y„z,) and having velocity
(v„,v, , v,) at t = 0 interacting with a laser beam
whose frequency at line center matches very well
with that emitted by the atom in question in a di-
pole allowed transition from an excited to the
ground state. Assume further that the laser fre-
quency is not resonant for transitions from the
latter excited state to any state other than the
ground state or for any two-photon absorption
processes. In such a situation the atom state
vector should be approximately of the form

stroying most of our arguments which will follow.
We write more simply

E(z, f) =F(f) cos(&u't —n), (9)

ih =[e 4 F(f)/2]e ' 8 o " "aP
dt 1 Og&

where F(t) is defined through Eq. (8). Equation (9)
represents a beam whose line width would be zero
save for the finite pulse length. Using Eqs. (6},
(7), and (9) with P„=(O~P,~e), we find from the
time- dependent Schrodinger equation

ih '=F(t)e ""8"o"cos(~'t —n) a PdQO

dt 1 Oe&

(10)

ih =F(f}e""e""' cos(~'t —n) a P* .dQl

dt 0 Og'

Following Rabi' and others, we note that cosx
=z(e'"+e '"}. Thus, the right-hand side of each
equations of Eqs. (10) is made up of the sum of
two terms, one oscillating slowly (i.e. , with angu-
lar frequency ~, —ur, —&u') and one oscilla. ting very
rapidly (i.e. , with angular frequency w, —no+ w'}.
The rapidly oscillating term produces little time-
integrated effect, and further, since it is not
resonant it would be in a sense inconsistent with
the two-state approximation to keep it [i.e. , only
states which resonant for single-photon processes
have been retained in Eq. (6)]. Thus, we make
the rotating wave approximation and keep only the
part of cos(u't —n) which gives rise to the slowly
varying term. We have

H = Ho —PP (z, f), (7)
ih '=[e'~F(t)/2]e""8 "o "'"a P*.

dt 0 Oe

where P„is the x component of the electric dipole
operator for the atom and the laser beam is as-
sumed to be a pulse propagating in the z direction,
peaking at the position of the atom at time t =0 and
having its polarization in the x direction. In Eq.
(7) the electric field is evaluated at the z coordi-
nate of the atom whose motion is treated in the
classical path approximation. Thus, z =zo+v, t.
We take the electric field intensity E as

EoE(z, t) =~I [( & )/b], ]„cos(&ut —kz)

=E,(I + [(c —v,}/b]'t') "cos((u'f n), (8)

where ~' = u(1 —v,/c), n=kz„n is a postive in-
teger, and b is a parameter with units of length
such that h/c determines the length of the pulse.
Equation (8) specifies the type of laser pulse we
are talking about, but the amplitude could vary
with z and t in a more general way without de-

We have assumed further that the natural lifetime
of

~
e) is long compared with the length of the pulse

(i.e. , h/c) Equation. s (11) are again a special
case of Eqs. (1). If spontaneous emission from

~
e) had been included phenomenologically by in-

serting isa, (t)/2 o-n the right-hand side of the
second equation, we would have found V, (f) to also
be nonzero. Thus, as stated before, many physi-
cal situations are described approximately by way
of Eqs. (1).

Much of the remainder of the paper will focus on
the problem of collisional energy transfer as dis-
cussed first by Stuckelberg' and more recently
by Vainshtein et al." However. , the results are
equally applicable to the problem of calculating
the probability of leaving an excited atom behind
after the passage of a nearly resonant laser pulse
through a low-density gas or vapor. In the latter
problem the averaging over the velocity distribu-
tion and over the initial positions of the atoms in
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order to predict a total population has been dis-
cussed elsewhere' for constant F(t) and will not
be considered here.

In order to solve Eqs. (1), we let U(t) =V(t)/5,
U, (t)=V,(t)/a, U, (t)=V, (t)/a, a d

,(t) d(t)P=, XP( 'f P-(t')dt').

From Eqs. (1)

d'Al . d
dt' dt

i&o+ —lnU+i(U —U) + U'A =0.

Equation (13) could be solved immediately if we
find

+gl t +g2 t Al 0

Obviously, g, (t) and g, (t) must satisfy

g, +g, = i&e ———lnU —i(U, —U,),

dg2

The easiest case for finding g, and g, occurs when
U, U„and U0 vary slowly with time (i.e. , for en-
ergy transfer the relative velocity in the collision
is very small). In the latter situation we note that

g, a,nd g, can be written as

gl g10 ~l & g2 g20 ~2

where

g10+g20=-i( + 1- 0},

dropped because integrals of g, and g, over time
determine the solution to Eq. (3), and consequen-
tially these terms are not negligible for noncon-
stant U, U„and U, even as the rate of change of
these functions becomes arbitrarily small. Fur-
ther corrections do approach zero, however, for
sufficiently slow variations providing a is never
zero.

Let h, (t) = f,'g,.(t')dt', i =1,2. If Z=dA, /dt
+g0(t)A„we find Z(t) =Z(-~) exp[-h, (t)+h, (-~)].
Thus,

d, (t) xd ='d( '=)f-"xxP[ h, (t )t-d. (t'') —l,(!))dt'.

(16)

In Eq. (16) it is important to interpret Z(-~)
&&exp[h, (-~)] as a limit of Z(t) exp[h, (t)] as t ——~.

To understand better the nature of the solution,
we let U, = U, =0 as in the dipole-dipole energy
transfer case discussed earlier where the excited
state in each atom has an allowed electric dipole
transition to the ground state so that the R ' di-
pole-dipole interaction dominates at large R. We
flJld

t
n(t) f,, (t=)dt'-:~", ").0,

where C is chosen so that h, (0) =0. Further,
t

h, (t) = g,0(t') dt' ——,'in[1+ u/2J]+C',
0

and C' is chosen so as to make h, (0}=0. After
a bit of algebra„we find

glOg20

~d Ie, l«lg, .l, I"1«lg-I i«he "«Eq. (»
times the time over which U„U„orU is of sub-
stantial amplitude is much greater than unity, and
w+ U, —U0c0. We have

d (J+n) d
g, = —i(n+ J')+ ——(n- J}—2J dt 2J dt

—lnU,

g, =-—i(n —J) ———(n+ J)+ —lnU,
1 d (n-J) d

2J dt 2J dt

~here n= —,'(~+U, —U0) and J=(U'+&')'~'. The
above expressions for g, and g, are accurate if
the ~ in Eqs. (1) times the time over which U(t)
remains appreciable is very large compared with
unity or if one has exact resonance. Higher-order
corrections involve higher-order derivatives of
&, J, and U as well as higher powers of the de-
rivatives. It should be noted that the first-order
derivative corrections to gl0 and g20 can never be

-U(tl) cos[2f 'J(tdd)dttt]dtt 0

1+ (u/2J(t')

In the case of energy transfer, expression (17) re-
duces to the result of Vainshtein et af.' if —,'~» U(t)
for all t. Further, this relation is an exact solu-
tion at resonance (re=0), or when U(t) = constant
and when U„U0, and U are sufficiently small, it
reduces to the Born approximation. The quantity
being interpreted in Eq. (17}is always within a
factor of 4 of the result given by Vainshtein et al.'
with the largest differences occurring when our re-
sult is valid, but U(0) &0up. Thus, we conclude
that despite some of the crude approximations
made by the latter authors, there are (as they
claimed) compensating errors which make their
results reasonably accurate for very slow colli-
sions.

The simple technique applied here has also been
used by the present authors to solve several other
two- or three-state problems related to the inter-
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action of laser pulses with gases. In the case of
the laser pulse interaction problem described
here, Eq. (I'I) gives the probability of the atom
remaining in the excited state just after the laser
pulse has passed, providing

~
&o, —&uo

—&u' ~b/c»1.
In the latter case, evaluation of A, (t) at finite
times can be made in order to predict the proba-
bility of being in the excited state at various times
during the pulse. At times when the pulse is pres-
ent, the integrals in the expression for A, (t) can
be evaluated by integrating by parts and neglecting
the remaining integral which can be shown to be

small. At larger times when the amplitude of the
laser pulse becomes small, the integration-by-
parts technique fails because the neglected inte-
gral becomes comparable to or larger than the
part that has been retained. At times when the
laser pulse is present, the results described here
reduce to a special case of those derived from a
multiple- time- scale perturbation theory treatment
of a related problem by Nayfeh and Nayfeh. How-

ever, the latter treatment which is accurate while
the pulse is present fails at sufficiently large
times.
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