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Following a method analogous to one pointed out earlier, a simplified expression for the expansion of a
general function about a point displaced from its center is described. Utilizing this, a general and closed
expression useful for multicenter integrals in quantum mechanics is derived for the coefficients in the
expansion of a general Slater-type orbital (including special cases). The derived expre" sion for the Slater
orbital contains terms only of the form r" 'exp(+ gr) (where k is an integer &~0; l is the order of the
coefficient and g is the exponent in the Slater orbital) —very convenient and useful for the analytical
evaluation of multicenter integrals. The expression is equivalent to the ones obtained by Silverstone and by
Rakauskas and Bolotin but based on a completely different approach. The asymptotic forms for small as well

as large values of r are also presented. The importance of the expression is demonstrated by undertaking an

example of overlap matrix elements involving Slater orbitals and deriving easily a simple and closed form

applicable for all quantum numbers concerned. The ease with which one can write readily the overlap
formulas in various cases starting from the general formula is indicated, and some numerical examples are
given to support the usefulness of the expressions. The advantages associated with the expression (for the
expansion coefficients) for large-scale calculations of multicenter integrals are discussed.

I. INTRODUCTION

It has been recognized in recent years that an
efficient and accurate method of evaluating the
multicenter integrals is very essential for extract-
ing meaningful conclusions on the electronic struc-
ture and physical properties of systems of atoms,
molecules, and solids from detailed calculations
using accurate available functions. Several meth-
ods have been reported in the literature for this
purpose. ' " Usually one employs for the calcu-
lations [even for self-consistent field (SCF) cal-
culations] a linear combination of either Slater-
type orbitals (STO's) or Gaussian-type orbitals.
The Gaussian-type orbitals, though computation-
ally convenient, do not really offer advantage
because of their poor radial dependence. ' For the
STO's the method based on the transformation of
integrands into a prolate-spheroidal coordinate
system as developed by Roothan, Ruedenberg,
Jaunzemis, Wahl, Cade, and others' may be used,
but it is applicable only to two-center integrals.
For the multicenter integrals the method involving
the "classical expansion" of orbitals in spherical
harmonics —first employed by Coolidge' and later
extended by Landshoff, ' Lowdin, "Barnett and
Coulson, ' Harris and Michels, ' and others' —is
helpful. This method, however, requires various
recurrence relations for the zeta functions, '
r„,(g, r, a), V„"z,(7p', ga) functions, ' or the numer-
ical integrations. " Here q is in the exponent
in the function R" 'exp(-qR) Yz(0, 4) centered at

a point 8 with A, 8, 4 being the coordinates in a
system" with origin at J3; ~ is the radial coordi-
nate with respect to a system" with origin at A
displaced from I3 by the distance a.

Another independent approach for the evaluation
of multicenter integrals is given by Silverstone
and co-workers" employing Fourier-transform
convolution technique. Their approach is quite
general for the STO's and requires differentiation
operations on the products of spherical Bessel
functions. By performing the operations system-
atically they have been able to obtain elegant
formulas for different kinds of multicenter inte-
grals.

The aim of this paper is to present a simple
general and closed formula for the coefficients
in the expansion of a general STO which incor-
porates all y, (q, r, a), ' 4, (t), r, a), ' and'
V» 1,(qr, rla) functions. This eliminates the use
of various recursion relations and makes the
computations easily accessible and efficient for
multicenter integrals. The formula contains terms
only of the form r 'exp(ag&) (k is a positive inte-
ger or zero, l is the order of the coefficients, and
g i s the exponent in the STO) and is equivalent
to the ones given by Silverstone" and by Rakaus-
kas and Bolotin" obtained by different approaches.

In Sec. II A we describe details for the derivation
of a simplified expression for the coefficients in
the expansion of a general orbital of which a form-
al solution was given by Lowdin and a general
expression was first presented in Ref. 8. In
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Sec. HB a general and closed expression for the
coefficients in the expansion of an STO about a
point displaced from the orbitals's center is
developed. In Sec. IG we write the asymptotic
forms of the coefficients in the expansion of an
STO for the cases r-0 and r-~. In order to
show the use of the expression derived in Sec. GB,
we tackle the problem of evaluation of a general
overlap matrix in Sec. IV A and obtain a simple
and general expression for the overlap integrals.
In Sec. IV 8 some specific cases of overlap inte-
grals involving various + and P orbitals are treat-
ed along with some numerical examples to prove
the validity of the derived expressions. Our re-
sults are discussed in Sec. V and a conclusion is
given in Sec. VI.

II. EXPANSION OF A FUNCTION

A. General treatment

Consider that a function (f~z, (R)/R) Ys~(e, 4)
[f„~(R) may also depend on Mj is centered at a
point B with A, 6, 4 as the coordinates in the axes
system" with B as its origin. Expanding it in
terms of spherical harmonics about a point A dis-
placed from B by a distance a, one writes"'

-& cos 8+r cos ~ = a,
A sine =r sin 8,

(2b)

(2d)

(1/2) a, (III.M
~ o, 2.)

Y"(e,e) Y", *(8,g) stn8d8 dq
(R)

The complexity of the right-hand side of Eq. (1)
precluded the possibility' of finding a simple
closed expression for the coefficients &,(NLM

~ a,r)
in the expansion of a STO. However, using stan-
dard mathematical relations and tedious algebraic
simplifications we show (in Sec. H 8) that for a STD
it is possible to obtain a simplified, closed, and
general expression for the coefficients applicable
for all quantum numbers involved. Expressions
similar to ours have also been derived by Silver-
stone and by Rakauskas and Bolotin, though they
followed different methods.

In the following we first present a simplified
expression for the expansion of a gene«~ orbital
about a point displaced from its center.

From Eq. (1}one writes

Y,"(8,4) = P (1/2 ) ~, (XI.M
~ &, r) Y", (8, q ),

82= a'+r2 —2m cos 8, (2a)

where r, O, fop are the radial coordinates and &,
(NI M ~a, 2') are the radial functions in the new axes
system" at A. The relations connecting the co-
ordinates in the two axes systems are

Now, in general,

) i 1/2

4v 1+m !

(4)

Equation (4) substituted appropriately for both of
the YP in Eq. (3) yields

(2f+1) (2I.+l)(L-M) !(f-M) !
~,(mM

~ s, ~) =—
20

t -. t

f2&(R)Pf(cose)P", (cos8) dR,

where in arriving at Eq. (5) the integration over y
has been performed and the integration variable ~

has been transformed into R with the help of Eq.
(2a.).

Using (for simplicity of notation')

Z, = —(a'+& -r') /2eR=cose,

Z, = (a2+r' —R2) /2ar = cos 8,

and the standard relations

(7a)

dl+N
22+(Z )

—( I
(1 Z2)N/2 (Z2 ] )1

g 2 2g ) t 2 dg)+g 2
2

one obtains

„(X+M) ! 1 1 —Z',
Pc(Z2)P, (Z2) = (-1) (I +M} t (2i+cf ~)L t 1 Z2

di-u
X ~ „(Z', —1}~ g,„(Z22 —1) .

1 2

Also from Eqs. (2),

(9)

Furthermore, by direct expansion and differentia-
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tion,

d' ", ),
[ ' I, !(2L,-2p)!(-1}P

P I (f. -P) f(f. +M-2P) I

P ~O

g gL+4 Qp
1

where [-,'x] stands for the integral part of —,x, and

I. ( - )/ ] l f(2l 2p ) f( 1)P'

p'!(l-p')! (l-M- 2p')!„„Z', —1)' =

-1 P ffl ! ftp, (y2aR, q! (m- q)!

and similarly, from Eq. (6b),

(2ar) + q'!(m —q') !

(12)

(13)

g gl -Af -3.p'
2

From Eq. (6a) (for a general power m), " Substituting Eq. (6) into Eq. (5) and utilizing Eqs.
(9)-(13), we have

(21.~ ))()(~ ))(t.+I I() I)()!)'-* ), { )' {))(f.—M) !(l +M) !
[[I+If)/&1(2f 2p) f ( 1)P22P I+if 2P (1 r&/p)I+)I 2P (( [(-f ff-)/2] (2l 2p!) f ( 1)P' r 2P'

(''P 0)' g -r!(r.+I &) —rl' + l')()-(')I r

' " "'(-!)'(! */8)' " " '' )'*' )(
fsi &)q'! (l-M-2p'- q')! !, „! "~ a

@=0

Though the above equation is equivalent" to
Eqs. (lib) and (12a} derived in Ref. 8, it is a
much simplified one. An expression similar to
Eq. (14) has been given by Duff" on simplifying
the relevant expressions of Ref. 8. However, it
must be remembered that the expressionof Ref. 16
involves negative powers of & inside the summa-
tions, which gives rise to inaccuracies in numeri-
cal evaluations particularly for small values of &,
whereas in expression (14) no negative powers of
& appear inside the summations. It must be re-
marked that Eq. (14) as well as the expression in

s=p+g+g (15)

and eliminate q to obtain from Eq. (14)

Ref. 16 suffers from the drawback that severe
cancellation errors occur in calculations for
large values of r, particularly when l, I., and M
are high. It is therefore imperative to transform
Eq. (14) to such a form that the cancellation errors
are reduced to a minimum.

To this end we introduce first a new summation
variable s defined by

fr()rue(rr)= {-)—P ()„,„(rr)J f,())) {—) dR,
S =Q , e-r I

where

(16a)

1)I [(I )f)lf(] rP-
q.„„(a,r) =

PI ~O P=0

with, in general,

~P
max

(-1)' yf, s(P', q')
t P

min

y' 2 l - 1]I-2p/'-q' L+ N-p-8+y I

xx, „((,*-(—r'l{) ~ —, 1-— (16b)

(2l, +1)(l -m )! '/' (2l —2p )!2'[Pl 'I (-1)PI
(ll+m, )! p, !(l, —p, )!q, !(l, —m, —2p, —q, )! (16c)

Pm!!)( mtn(mrs) r qm(r!
——maX(0 P+ s —f —M) r q —Inill(S P l M 2P )
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The symbol min(s, m) [or max(n, m)] attains the
value n if n &m (or n -m) or the value m if m -n
(or m~n) .It must be noted that the results of the
q' summation in Eq. (16b}vanishes if q', „&q';„.

In arriving at Eqs. (16}a rearrangement of the
summations has been made and the limits for the
summations have been put appropriately so that
the total number of terms in the summation be-
comes minimum without changing the value of the

expression. An alternative rearrangement of the
summations is also possible in Eq. (16b). The re-
sulting alternate form for Q»l, „(a,r) has been
given in the Appendix. It must be noted that
y, , „(P„q,) in Eq. (16b) are required to be eval-
uated only for 0 &p, & [~(l, -m, )] and 0 & q,
&(l, -m, -2P,}. Now, expanding the factors
(1+r'/a')' S"'~ ' and (1-r2/a'}z+" "' in
power series of r'/a', one simplifies Eq. (16b) to

i+I a y 2v

(1'7a)

with
pl

max a a max Wax

b, (slLM) = g p (-1)' g ( 1) P-a ~(p, q', e- q-p') g P, , „(p&-p- q', q),
P'~O a'~e' P~O

min min

(17b)

where, in general,

(2l+1)(l-m)! ' '
(2l —2p)! 2 ' (-1)~

P, .(P, q, k)=
(l+m)! P! ( l —P)!q!k! (l -m —2P —q —k) ! (17c)

In Eq. (17b) the various limits are

P' =min(l, v), q'. =max(0, s —L —M),
(17d)

q =max(0, p'+q'+v-l+M), q =min(v-p', L+M- s+q'), p,„=min(s —q', L+M- s+q'- q) .

Though Eq. (16a) along with Eq. (16b) may be
employed for the numerical evaluation of the &

functions (in case one resorts to numerical inte-
grations of the integrals which arise in the pro-
cess of reducing a multicenter integral into a set
of single-center integrals), Eq. (16a), along with
Eqs. (17), is more appropriate since the cancella-
tion errors are significantly reduced owing to the
fact that the coefficients b, (slLM) do not involve

a and & and can be accurately calculated. In the
given form [Eqs. (16a) and (1'l)] the expression is
further important since b„(&lLM) are only a few
in number and can be easily calculated once for all
for even big calculations involving high LM values.

The functions Q„I„(a,r) of Eq. (17a) and b„
(slLM) of Eq. (17b) are related to the parameters
Q„(NLM~ a,r) and C„(NLM ~

l&) defined by Lowdin. '
Explicitly,

and

Q (NLM ( r) = 2 +a+ i a (a+a-a ) (L+!)f)!(I-M) !
(2L+1)(2l+1) (L-M)! (l+M)! (18)

1 (L+M)! (l-M)!
(2L+1) (21+1) (L-M) l (l+M)! (19)

These relations are important since they provide
simple and general expressions for Lowdin's
formal parameters Q„(NLM ~ a,r) and C„(NLM

~
ls)

which were not known previously except for an
unsimplified expression for Q„(NLM ) a r) given in
Ref. 8. The relations (18) and (19) when analyzed
in light of Eqs. (17a) and (17b) reveal the fact that

Lowdin's parameters Q„(NLM ( ar) and C„(NLM ( ls)
really do not depend on the quantum number N.
Also, in the process of checking the relations (18)
and (19) against the values given by Lowdin for
these parameters, we find that the Lowdin's tabu-
lated values for C„(NLM (! ls) agree with ours only
when our axes systems" at points A and B are the



EXPANSIQN OF A FUNCTIQN ABQUT A DISPLACED. . .

same as those of Lowdin. As in fact Lowdin's
axes system at point B is different than ours, we
conclude that Lowdin's parameters C, (NLM l /s)
[and hence Q„(NLM l a, &)] should be corrected
for a phase factor (-1)~'"if one uses his axes
systems.

It is interesting to note that Eq. (16a) with

Q,«„(a,r) as given by Eqs. (17) is very general
and not restricted to a STO or any specific form
of f„z,(R), but is applicable to any well-behaved
function. Thus it is useful even for expanding
operators" in a matrix element from one center
onto the other in some cases where, by expanding

the operators instead of the wave function, it is
possible to significantly diminish the labor in
evaluation of multicenter integrals. Also, for
real f»(R) one notes from Eq. (1) that
~,(N~ l s, ~) = ~,(NL(-M} ln, ~}

B. Case of a Slater-type orbital

An unnormalized STQ is given by

[f„,(R) lR] I,(e, e) =R" 'e-""-I',"(e,C ) . (20)

Changing the notation slightly in n-for the purposes
of distinction, wehavefrom Eqs. (1), (16a), and (1'/a)

'«p(-&)(',"(ee(= P (
—„)& (¹IIM]aI]r,"(8 (), (21a)

where

l ] l+I /+L -a
~, (NnLMla, ~)= -" -g g &„(s/LM)—

8 Q
(211 )

with b„(s/LM) as given by Eq. (17b).
By straightforward evaluation and simplification [of the integral in Eq. (21b)] we have

!
]!

g+W
R2(( L xe+-(]B d// «(

I~-~l

& max

-e-" Z
/=0

&max
0+1 ~ (2s L+ N) ]+0 s2((-l +E (( ](~--

q g, k'!(2s —L+ N k —k')!-
(22)

qr Q 1 + P (2s —L+N} ld a +
[e- ]a ((-1)g L jl ]( 7)((] )

r/ (, —, k'!(2s —L+ N- k —k')!

where

k,„=2s—I+X and k',„=2s—I.+N-A.

Substitution of integral (22) in Eq. (21b) gives with subsequent simplification

g+p &e &
x

~
&+

—a"e "'g — [e ""—(-1) e""]g — F~. , (N/LM), r ~a,
n, (ELM la,r) =(

g+g gr g
&max

0+1
—a"e "'I ( ) I [e "'-(-l] '» "e"'](—) (, ( (l((M), ,

a=o QQ

In the above

k,„=23+I.+N- k'

(23a)

(23 )

ma~
b„(s/LM)(2s —L + N)!

, , ~, (k'-2v)!(2s —L+N k —k'+2v)! '-

where v,„=min(/+ L s, [vk']) an-d b„ is given by
Eq. (17b).

The similarity between the two forms of
e, (ELM la, r) in Eq. (23) for r ~a and r ~ a must
be noted. For x= a the two forms become the

same, as expected, because of the fact that
l+g

g (-1) F». ~ (N/LM) = 0
0'=o

if I + N- 0 is not an even integer. This condition
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directly implies that the two forms in Eq. (22) co-
incide as r tends to a.

The upper limit of k' in Eq. (23) has been fixed
as l+ N, since one finds by direct evaluation that

Fqe q (NLLM ) = 0 if k & f + N

This limits the highest power of x to N and con-
sequently from expression (23}for r ~a one has

a, (eLM~a, r)~r"e "' as r-~.
In absence of a mathematical proof for the valid-

ity of the above limiting form we attempt to justify
it by a physical argument. To a point at r = ~,
both the centers" A and B of the axes systems ap-
pear almost coincident with the result that the be-
havior of a function (r times) measured from A and
B at infinity looks alike, namely, r"e "" in case
of a Slater orbital.

The expressions (23) have been verified by nu-

merical evaluations of a(ELM ~a,r) for various
values of the parameters involved against the re-
sults one obtains by numerical integrations using
Eqs. (17) of Ref. 8 [which are equivalent to Eqs.
(16a) and (17) of the present text].

The various factors and the summations in for-
mula (23) have been so arranged that the cancel-
lation errors in the calcula. tions reduce to a min-
imum. Though it appears that many summations
are involved for the evaluation of n, (ELM ~a,r),
the total number of terms arising from all of the
summations is small because of the limits on var-
ious summations. Also, we have checked the cor-
rectness of this expression for various cases
against the results one obtains for g„, (q,r,a), and

V„ I, (qr, qa) using recurrence relations" .
The above expression a, (NqlM ~a,r) is a general

and closed expression and also yields explicit and
closed expressions for the t„,(q,r, a) [and
y, (q,r,a)] functions of Barnett and Coulson' and

V„z ~(qr, qa) functions of Harris and Michels. '
Explicitly,

[ (2 l + 1)r/a] 'i'y, (r!r,a) = a, (&F00 ( a r), (24)

[(2l+1)r/a]' 'gi„, , (q,r, )a=a, (Nq00~a, r), (25)

o., (0@00
~ a,r) and a, (F00 (a,r) are obtained from

Eqs. (23) by substituting N= L =M = 0 and L =M = 0,
respectively. Equations (24)-(26), besides fur-
nishing explicit expressions [particularly for
f„,(q,r,a) and V», (re,qa)], are helpful for pur-
poses of checking Eqs. (23) which we mentioned
above.

Two points regarding the importance of the ex-
pression in Eq. (23) are worth mentioning. First,
for the evaluation of c4(Nr!LM ~a,r) one needs the
quantities F,i, (Nl LM) which are independent of

g, a and x and therefore may be calculated once
and for all, thereby making the equation applicable
to large systems economica. lly. Second, the ex-
pression for a, (ELM ~a,r) involves the r-depen-

0'-ls only of the form ~
— e~ and r

with k' & 0. These forms are very advantageous for
the evaluation of matrix elements, since r ' usual-
ly gets cancelled (fully or partially) in taking its
product with the other functions present in the ma-
trix elements, and the remaining factors combine
to yield terms of the form r"e ""and x"e~', which
make the matrix elements subject to either their
analytical evaluation or to the treatments well
developed for single centers (atomic cases) using
STO's for their evaluation. This point will be
cleared up further in Sec. IV A where a simple and

general expression for overlap integrals between
two STO's has been obtained easily with the help
of expression (23).

An expansion of a STO has also been obtained in
an operator form by Silverstone" using the method
of Fourier-transform convolution theorem. The
expression contains differential operators acting
on the products of spherical Bessel functions.
Because of its operator form it appears difficult
to compare with our expression (23). However, if
one evaluates the derivatives systematically ac-
cording to the method of Todd, Kay, and Silver-
stone" and uses the well-known formulas for the
spherical Bessel functions, it is easy to obtain,
alternatively, an expression similar to Eq. (23).
Rakauskas and Bolotin" have also written an ex-
pression for the expansion of STO which is much
closer to ours.

(2L+ 1) (L —M)! (l+M)!
(2L+1) (L+M)! (l —M)!

&(- 1)' ~rV"„~,(re, ga)= n, (ELM!Ia,r), (26)

where u, (Nr!LM!a,r} is given by Eqs. (23) and

III. ASYMPTOTIC FORMS OF uI(ELM la, r)

To obtain an expression for n, (ELM ~ a,r) for
small values of r one needs to expand the r-depen-
dent exponentials in Eq. (23a) in power series of

After simplification one obtains

f t
ax max

( 1 k

a, (Nr!LM (a,r) ~'2a"e "' — g — g ('ga)' . F. .. , (N&LM),r, , a .. . , , (2i+1 —k). (27a)
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with

a~,„=2l+ L+ N (27b)

k max
y k+I.

dt«, = —a"e "' g — F«. «(NILM), (29c)
k=0

0,„=min(2i+ 1, l + N, kd), (27c)
II« = - (- I)' &«

Ckl Ak & + Dk &
y

(29d)

(29e)
where the symbol min(x. y, z) takes the value x, y,
or z, whichever is minimum.

As for the limiting case r- ~ it is clear from
expression (23a) for r& a that k max k+1

Fk. k(NILM).

D ( I)l+ «&- «+la)deR R

(29f)

a, (Nt}LM
~ a,r) "~'r"e (29)

This behavior has already been discussed in Sec.
II A.

IV. OVERLAP INTEGRALS FOR STO's

A. General expression

Before applying the expression given by Eqs.
(21a) and (23) it is helpful to write it in an elegant
form,

In the preceding equations k .,„and F,. «(NILM)
are the same as in Eqs. (23b) and (23c), respec-
tively.

A two-center overlap integral between STO's is
defined by

(N'I'Ml) (NIMR)'= f d d„q,„,d( )d„„(R),
(30)

where

If" 'e "XYe(8, 4 ) = p — o, (NqLM)ar) Y, (e, q),
1

1

(29a)

with

and

4~,„,„.(r) =r"' 'e "'Yf (e, (p)

)II~„R(R)=R" 'e "
Yi, (6, 4))

(31)

(32)

n, (Nt}LM ~ar)

J+N k'-1 k'-r
e ""+Bk. — e"", r &a,

k =0I--

3+n k'-l
C« — e "", (r&a),

k'= 0

(29b)

where Ak, B„, and C, a.re independent of r and

are given by

denote the (unnormalized) STO's centered" at d4

and B, respectively, and where N'&L' and N&L.
Substituting Eq. (29a) for )Il~„„ Idefined in Eq.

(32)] and (31) for 4&„&„.„one has immediately

(N'L'M q'~NLMq)

r" e R "c&z (NqLM~ar) dr, (33)
0

where we have used the orthogonality of the spher-
ical harmonics to integrate over the angular co-
ordinates, which also destroys the summation
over l, giving a contribution only from l=L'.
Making use of the expression (29b) in Eq. (33), we
have

N+L'
y k ' -L' «)

&N ™n(NI MR)
'= &),.d 'g — d, .

k'=0 0

a d)O

+ Bk dr r++" e ~~ ')'~" +D, dr rN'+k'-I' e-& n+n')~

0 0

It must be noted that the emonential integrals in Eq. (34) are extremely simple because the p~er
of r involved there is N'+ k' —L' ~ ].

The evaluation of the integrals in Eq. (34) yields

(34)



524 R. R. SHARMA

N+L'
yl f kftla:c k+ 1

(N'L'M'n'INLMt)) = 5e~)f a"'""'p e "' —,"'
„+,+(- I)"g„[a(t}'—q)) — F~i, (NL'LM)

=0 k =

kmav k+1
—e " '(-1) '" 'h„[a(g'+rt)] P —— F, ,(NL'LM}

k=0

(35a)

where

n =N' —I,'+k',

with h,„,, and F, i ~(NLLM) defined in Eqs. (23b)
and (23c},

(35c)

and

g„(x) n!/=x"' ' —e *h„(x). (35d)

g. (x)=
1/(n+ 1) if x = 0,

(-x)'
t!(n+ t+1}'

t =0

(36)

which one obtains directly from Eq. (35d) by ex-
panding the exponential and taking the appropriate
limits.

Equations (35) constitute a simple and general
formula for the overlap integrals and is suited
even for the "desk" calculations. For large scale
calculations F„~(NILM) may be stored once and

The functions h„(x) and g„(x) have appeared on

performing the integrations. When x is zero or
very small, it is more accurate to use the limiting
forms

B. Particular cases with numerical examples

To prove the usefulness of the overlap formula
Eqs. (35) [and hence of Eqs. (23)], we treat vari-
ous cases involving Ns, Np, and Np, orbitals ex-
plicitly in the following and give some numerical
examples for c. = 4.0364 using normalized STO's.

Case I: (Isq'~ls». In this case (N'L'M'TI')
= (100)7') and (NLMrt) = (100». The only nonzero
F», ~(NL'LM)parameters in this case are

Fo 0(1000) = Fo,(1000}= F, o(1000) = 2;

therefore from Eq. (35a)

(37)

for all to reduce the calculation time appreciably.
Also, Eqs. (35) are applicable without any dif-
ficulty even to the case when g' =g or when the
exponent )I' is extremely small or zero (when q
is zero or small, the roles of g' and g can be
interchanged).

The formula (35) derived here contains exponen-
tial functions. A general overlap formula has also
been derived by Todd, Kay, and Silverstone" in

terms of spherical Bessel functions. If one re-
places the spherical Bessel functions by the equiv-
alent expressions in terms of exponential func-
tions one transforms their formula into the form
equivalent to ours.

a3 ). — (I +he)! 1-))' I ll+ 1

(»n'i»» = —Q e " —,'.a +(-I)'g|.a [a(&'-»] Q
1 k ] k+1

e "'(- 1)' "h„,, [a(q'+ g) ]
k

This is a simple expression to evaluate for any
values of g, g', and a. The values given in Eq.
(37) are also sufficient to express the integrals
(N'sq'~ls7!) in a simple form

The numerical evaluations give, as for instance,

( ls, 0.811 mls, 12.22) = 0.005 198,

(2s, 4.46' 1s, 0.811)=0.042 352,

(3s, 1.03' ls, 0.811)=0.443 924.

For this specific case the overlap formula of
Todd, Kay, and Silverstone" has been written by
Silverstone" in terms of spherical Bessel func-
tions of order zero and unity. If one replaces the
Bessel functions by the expressions in terms of
the exponential functions, one obtains a form
equiva. lent to Eq. (38).
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Case II: (N'sri'12srt) . For this one needs

Fo 0(2000) = FR 0(2000) = 2,

FO «(2000) = Fo, (2000}= F, 0(2000}= E, ,(2000}= l.

It is now straightforward to obtain the expres-
sion similar to the one given in Eq. (38). However,
because of the lack of space we do not intend to
present the expression here. As a numerical ex-
ample, we give

(3s, 1.4912s, 0.8 11)= 0.462 499.

Case III: (t}'srt12p q) —= (N'00'}'1210t}). In this
case

Fo 0(2010) = E, o(2010) = F «, (2010) = —«««3,

EO, (2010) = E, 0(2010) = —v 3,
Fo «(2010) = Fo, (2010) = F, ,(2010)

=F, «(2010) = —~«««3,

and, as numerical examples,

(ls, 12.2212po 0 705) = -0 018 278,

(2s, 4.4612p„0.705) = —0.138 828.

Case IV: (N'p, q' 12p, q) —= (N'10'}' 1210rt) . For this

F 0,(211 0)=F, , O(2110) = F, 0(2110)= «,

Eo «(2110) =F, ,(2110)='-',

E, ,(2110)= F, ,(2110) ='-,',

Eo 4(2110) = F0 «(2110) = F, «(2110)
= E, ,(2110}= 45,

F, (2110)=F («2110) =F«, (2110)=3,

F, ,(2110)=9,

E««(2110) =E««(2110) =18,

and

( 2p „0.705 12p o 2.82) = —0 83

(2p„0 705 12p„5.12) = 0.022525.

Case V: (N'p, ri'12p, q) . Here (NL'LM) —= (211+ 1),

Fo,(211p 1) = E, ,(211+ 1)= E, ,(211+ 1)

=F, «(211+1)=—zy

Fo «(211 a 1) = F, ,(211+ 1) = F, «(211+1)

=E, «(211+1)= —9,

Fo 4(211+1) = EO, (211+ 1) = F, ,(211+1)

=E, 4(211+ 1)= ——,',

F,(211y 1) = —3,

and

(2p„0.705 12p„2.82) = 0.053 187.

The intent of listing the values of F««(NlLM) in
various cases is twofold. Firstly, they are
readily available for use in case one wishes to
write a particular overlap formula directly from
the general formula for calculations. Secondly,
since the expression (23) is very important for
evaluating the multicenter integrals and involves
the quantities F«, «(NlLM) it is of interest to know
their magnitudes at least in a few cases. The
numerical examples have been cited simply to
show that the derived expressions can be employed
for calculations and to let a reader check the ac-
curacy of our results.

V. DiSrUSSioN

The expansion of a general function [f„i(It)/It]
&& Yi(8, &') about an arbitrary point derived by
means of standard mathematical relations has
been given in Eqs. (1), (16a), and (17). The ex-
pansion coefficients are the same as used formally
by L5wdin, expressed in a general and closed
form first in Ref. 8. The derived expression is
a simplified one and is useful for (i) the computa-
tion of multicenter integrals, particularly when a
numerical integration scheme is adopted, (ii) ex-
panding, in appropriate cases, any well-behaved
function, and (iii) expanding in some cases an
operator" appearing in a multicenter matrix ele-
ment instead of expanding the wave functions to
reduce the work involved in computations.

Employing the general expression [Eqs. (1),
(16a), and (17)] the expansion of a STO [defined in
Eq. (20)] about an arbitrary point displaced from
its center has been expressed in Eqs. (21a) and

(23} [or Eqs. (29)]. This expansion contains terms
only of the form r« 'e'"" (}t' ) 0), very convenient
for analytic evaluation of the multicenter integrals.
The expansion contains quantities F, «(NLLM)
(independent of a, t}, and r) which can be calcu-
lated once and for all, thereby making the evalua-
tion of multicenter integrals amenable to large-
scale calculations economically.

The expansion coefficients [Eqs. (23)] are equiv-
alent to the ones given by Silverstone" and by
Rakauskas and Bolotin. However, the basic ap-
proach used here is quite different and leads to a
different formulation of the expansion problem.
Thus the present approach may be considered as
a new one to obtain the old formulas.

The convenience and importance of using the
expansion given in Eqs. (21a) and (23) have been
shown by obtaining readily a closed formula, Eq.
(35), for a general overlap integral between two
STO. This formula is applicable for any value
of q, t}', and a (even for g =q'). The simplicity
of it has been indicated in Sec. IV B, in which
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some particular examples have been treated ex-
plicitly. The overlap formula, Eq. (35), may be
compared specifically with the one obtained by
Todd, Kay, and Silverstone" by employing the
Fourier -transform convolution theorem. Their
formula is equivalent to ours but contains spheri-
cal Bessel functions of various orders instead of
the exponentials. It is possible to transform their
formula into the form of Eq. (35) if one uses stan-
dard formulas for the spherical Bessel functions
in terms of the exponentials and simplifies. Thus
our method effectively recasts old formulas of
Silverstone and co-workers" in new ways.

The expansion coefficients [Eqs. (23)] for a STO
derived here are simple, closed, and general and
therefore eliminate the use of recursion relations
of Harris and Michels' for the evaluation of multi-
center integrals. Also, the Gaussian functions,
which are disadvantageous because of their poor
radial dependence, are not really needed.

An important question arises as to the time one
would take for computing the multicenter integrals
if one used expression (23) for analytic evaluation
of the integrals. Since the author is inexperienced
in efficient programming, it is difficult to arrive
at the correct time estimate. It is, however,
possible to present a comparative study. Silver-
stone and co-workers" find that their method
compares favorably with the scheme of Silver
and Ruedenberg~ and also with the numerical inte-
gration scheme of Harris and Michels. ' Since
we propose to eliminate the use of recursion re-
lations and calculate the quantities F». »(NlLM),
being independent of a, g, and r once and for all,
we believe we could have, if equivalent talent is
used in programming, a comparable (or faster}
program for multicenter calculations.

As for the convergence of expression (21a) over
l, there is usually some problem depending on the
matrix element to be evaluated. For the two-
center matrix elements the convergence problem
does not arise, since the orthogonality of the
spherical harmonics usually demands contribution

only from a particular term in the summation
over l. However, for three- and four-center mat-
rix elements the convergence may be slow, de-
pending on the type of the matrix element. In this

paper we have given attention only to the conveni-
ence of evaluation of the coefficients in the expan-
sion (21a}; much further research is required to
be done as regards the convergence problems. In

certain three-center problems one may sometimes
expand the operator" rather than the wave func-
tions to get rid of the convergence problem. How-

ever, this may not work in all cases. Work is in

progress in our group to apply the expression
given by (21a) and (23) to investigate the conver-
gence problem for evaluation of various three-
and four-center integrals.

VI. CONCLUSION

First, a simplified general expression is pre-
sented in Eqs. (1), (16a), and (17}for the expan-
sion of a general orbital about an arbitrary point.
An expression [Eqs. (21a) and (23) or Eqs. (29)]
has then been derived for the expansion of a STO
about an arbitrary point. This expression is found

to be similar to those given by Silverstone" and

by Rakauskas and Bolotin, " obtained by employing
different approaches to the expansion problem.
The derived expression contains terms only of the
form r 'e'"" and hence very convenient for the
analytic evaluation of multicenter integrals. This
has been demonstrated by applying the expression
to the evaluation of overlap matrix elements. The
similarity of the resulting overlap formula with

that derived by Todd, Kay, and Silverstone" has
been pointed out. The expression presented here
for the expansion seems important since it is
easily adaptable to the evaluation of multicenter
integrals for large-scale quantum-mechanical
calculations economically.
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APPENDIX

An alternate form for Q„~s(a, r) of Eq. (16b) is given by

( 1)z, [o s) /2j r»-' »'max

Q„~„(a,r)= g —, 'P (-1)' y, „(P',q') 1+—,
2

p
I 0 I 1=

&min

p max 2 1.+N -p-s+ q'

x Q y, „(p,s-p —q') 1-—",

where y, „(p,q) are defined by Eq. (16c) and where

q',. =max(0, s —L —M), q',„=min(s, l M 2p'), p,„=—min(-s —q', L+M —s+q').
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