Energy levels of singly ionized cesium (CsII)

Joseph Reader National Bureau of Standards, Washington, D.C. 20234 (Received 8 September 1975)

The system of observed energy levels of CsII of Wheatley and Sawyer has been reinterpreted through the use of Hartree-Fock calculations and published Zeeman effect and hyperfine-structure measurements. Of the 80 known levels, 30 have been rejected as being not real. A revised list of 54 observed levels of CsII is presented that includes the 5p ${}^{5}5d$ ${}^{1}P_{1}$ level recently found by Reader and Epstein and three levels of the 5p ${}^{5}6d$ configuration that were located with the aid of Sommer's line list. Percentage compositions and Slater parameters are given for the 5p ${}^{5}(5d+6s)$, 6p, and (6d+7s) configurations. Severe configuration mixing is found for levels of the 5p ${}^{5}(5d+6s)$ group. The measured g values of the 5p ${}^{5}(5d+6s)$ levels provide evidence of a strong term dependence for the parameter $G^{1}(5p5d)$. By taking into account displacements of the 5p ${}^{5}ns$ levels due to configuration interaction, the ionization energy is revised to be $186\ 600\pm150\ \mathrm{cm}^{-1}\ (23.14\pm0.02\ \mathrm{eV})$.

The singly ionized cesium atom Cs II is isoelectronic with XeI and thus has a rare-gas-like energy-level structure. Its ground state is $5p^{6} {}^{1}S_{0}$ and its excited configurations are all of the type $5p^{5}nl$. The early work on the analysis of Cs II was due to Sommer,¹ Laporte, Miller, and Sawyer,² and Olthoff and Sawyer.³

The list of energy levels for Cs II given by Moore⁴ in the *Atomic Energy Levels* (AEL) compilation was obtained from Wheatley and Sawyer.⁵ In their paper, as well as in its predecessors, no effort was made to give term assignments to the excited levels. Rather, the levels were assigned J values, numbered serially, and separated according to general configuration groups. For the AEL compilation, Moore⁴ assigned tentative J_1l term names to levels of the $5p^55d$, 6s, 6p, 6d, 7s, and 7p configurations by analogy with Xe I. A number of these term names have been changed in the present work.

The present work is based primarily on two sets of observations for Cs II that were made since AEL. was published. In 1966, Zelikina and Semenov⁶ measured the Zeeman splittings for 45 lines of Cs II, from which they derived g values for 32 excited levels. More recently, this author and Epstein⁷ made new observations of the resonance lines of Cs II, and in so doing found a new J=1level belonging to the $5p^{55d}$ configuration. On the basis of our isoelectronic comparisons, Epstein and I gave new term designations to most of the known J=1 levels. We also derived a value for the ionization energy that was some $15\,000$ cm⁻¹ lower than the previous value.⁸

By combining the above results with earlier hyperfine-structure measurements^{8,9} and *ab initio*

level-structure calculations, I have now revised and reinterpreted a large portion of the energylevel system of CsII. On the basis of these revisions, 30 of the 80 presently known levels have been rejected as being not real. Three new levels of $5p^{5}6d$ have been located with the aid of Sommer's line list. Including the new $5p^{5}5d^{1}P_{1}$ level of Ref. 7, this brings the total number of levels for CsII to 54. Seven of these levels are considered to be questionable. These results should be of use in interpreting the absorption spectrum of CsI in the vacuum ultraviolet,¹⁰ in understanding the ionization of neutral Cs by electron impact,^{11,12} and in observing metastable excited core states of CsI in atomic beams.¹³

The revised list of energy levels for Cs II is given in Table I, which also contains the measured g values and magnetic hyperfine-splitting constants a. The level values are those of Wheatley and Sawyer,⁵ increased by 8.91 cm⁻¹ to put them on an energy scale relative to the ground state indicated by the measurements of Ref. 7.

CONFIGURATIONS

$5p^{5}(5d+6s)$ configurations

The structure of the $5p^5(5d+6s)$ group of levels is shown in Fig. 1. The $5p^55d$ levels are drawn as solid bold lines, the $5p^56s$ levels as dashed lines, and the predicted positions of unknown levels of $5p^55d$ as thin lines. The interpretation of these levels was carried out in the following way.

First, *ab initio* values for the Slater parameters were calculated with the Hartree-Fock (HF) program of C. Froese Fischer.¹⁴ These values were then scaled by factors taken from a least-squares

13

Copyright © 1976 by The American Physical Society.

507

c nyperine	e-splitting constan	ts a are given
(cm ⁻¹)	g value	<i>a</i> value
0.0		
401.24	1.49 ± 0.03	0.0544
954.09	1.24 ± 0.02	0.0095
374.42		
874.94	1.12 ± 0.02	0.168
572.05		
913.92	1.37 ± 0.02	~0
803.99		

TABLE I. Energy levels of Cs II. The magnetic hyperfine-splitting constants a are given in cm⁻¹.

Configuration	Term	J	$E (\mathrm{cm}^{-1})$	g value	a value
	1 _S	0	0.0		
$5t^{5}6s$	$\frac{3}{2}[\frac{3}{2}]$	2	107401.24	1.49 ± 0.03	0 0544
-1	$\frac{3}{2}[\frac{3}{2}]$	1	110 954.09	1.24 ± 0.02	0.0095
	$\frac{1}{2} \left[\frac{1}{2} \right]$	0	122374.42		
	$\frac{1}{2} \left[\frac{1}{2} \right]$	1	122874.94	1.12 ± 0.02	0.168
$5t^{5}5d$	3 _P	0	107 572 05		
op ou	3 _P	1	107 913 92	1.37 ± 0.02	~0
	3 _P	2	112 803 99	1.01 - 0.02	v
	3 _F	4	112 245 44		
	^{3}F	3	113725 52		
	3D	1	123 645 35	0.70 ± 0.02	0 0117
		1	1392490^{a}	0.10-0.02	0.0111
		1	100 1 10.0		
5p° 6p	$\frac{3}{2} \left[\frac{1}{2} \right]$	1	126527.45	1.87 ± 0.03	0.0285
	$\frac{3}{2}[\frac{5}{2}]$	2	128098.74	1.10 ± 0.02	0.0321
	$\frac{3}{2} \left[\frac{5}{2} \right]$	3	129116.56	1.33 ± 0.02	0.0195
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	129998.63	1.02 ± 0.02	0.0265
	$\frac{3}{2} \left[\frac{3}{2} \right]$	2	130774.91	1.34 ± 0.02	
	$\frac{3}{2} \left[\frac{1}{2} \right]$	0	133162.45		
	$\frac{1}{2} \left[\frac{3}{2} \right]$	1	141564.50	0.68 ± 0.01	0.137
	$\frac{1}{2} \left[\frac{1}{2} \right]$	1	143361.03	1.44 ± 0.03	-0.049
	$\frac{1}{2} \left[\frac{3}{2} \right]$	2	143403.10	1.12 ± 0.03	0.064
	$\frac{1}{2} \left[\frac{1}{2} \right]$	0	144532.36		
$5p^{5}7s$	$\frac{3}{2} \left[\frac{3}{2} \right]$	2	149221.16	1.50 ± 0.03	
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	149614.24	1.18 ± 0.02	
	$\frac{1}{2} \left[\frac{1}{2} \right]$	0	163033.71		
	$\frac{1}{2} \left[\frac{1}{2} \right]$	1	163189.11	$\boldsymbol{1.38 \pm 0.02}$	0.144
$5p^5 6d$	$\frac{3}{2} \left[\frac{1}{2} \right]$	0	151682.30^{b}	0.00 ± 0.04 ^c	
	$\frac{3}{2} \left[\frac{1}{2} \right]$	1	152181.02	1.24 ± 0.02	
	$\frac{3}{2} \left[\frac{7}{2} \right]$	4	152558.43^{b}	1.27 ± 0.04 ^d	
	$\frac{3}{2} \left[\frac{3}{2} \right]$	2	152800.40	1.33 ± 0.02	
	$\frac{3}{2} \left[\frac{7}{2} \right]$	3	152845.23^{b}	1.07 ± 0.03^{e}	
	$\frac{3}{2} \left[\frac{5}{2} \right]$	2	153311.18	0.97 ± 0.02	
	$\frac{3}{2} \left[\frac{5}{2} \right]$	3	153687.08	1.20 ± 0.02	
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	156408.22	0.89 ± 0.07	
	$\frac{1}{2} \left[\frac{5}{2} \right]$	2	166696.00		
	$\frac{1}{2} \left[\frac{3}{2} \right]$	2	166970.48	1.30 ± 0.03	
	$\frac{1}{2} \left[\frac{5}{2} \right]$	3	167024.88	1.10 ± 0.02	
	$\frac{1}{2} \left[\frac{3}{2} \right]$	1	169192.31		

509

Configuration	Term	J	$E ({\rm cm}^{-1})$	g value	a value
5p ⁵ 7p	$\frac{3}{2}[\frac{1}{2}]$	1	155974.36?		
	$\frac{3}{2} \left[\frac{5}{2} \right]$	2	156124.09?		
	$\frac{3}{2} \left[\frac{5}{2} \right]$	3	156522.07?		
	$\frac{3}{2} \left[\frac{3}{2} \right]$	2	156766.21?		
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	157071.37?		
	$\frac{3}{2} \left[\frac{1}{2} \right]$	0	157752.19?		
$5p^{5}8s$	$\frac{3}{2}[\frac{3}{2}]$	2	164453.79		
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	164 665.68	1.20 ± 0.02	
$5p^57d$	$\frac{3}{2} \left[\frac{1}{2} \right]$	1	165822.61		
	$\frac{3}{2} \left[\frac{3}{2} \right]$	2	165898.99		
	$\frac{3}{2} \left[\frac{7}{2} \right]$	3	166126.63	1.08 ± 0.02	
	$\frac{3}{2} \left[\frac{5}{2} \right]$	2	166140.02	0.93 ± 0.02	
	$\frac{3}{2} \left[\frac{5}{2} \right]$	3	166609.65		
	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	167443.82?		
	$\frac{1}{2} \left[\frac{3}{2} \right]$	1	177252.41		
$5p^5 8d$	$\frac{3}{2} \left[\frac{3}{2} \right]$	1	173 816 ^a		

TABLE I (Continued)

^a Determined by resonance line of Reader and Epstein, Ref. 7.

^b New level.

 $^{\rm c}$ Derived from Zeeman splitting of line at 3974.329 Å.

^d Derived from Zeeman splitting of line at 4264.675 Å.

 e Derived from Zeeman splitting of line at 4039.841 Å.

fit of the $5p^{5}(5d+6s)$ configuration¹⁵ of LaIV and used to diagonalize the energy matrix, configuration interaction not being included. The calculated level positions and g values are shown in Fig. 2. In this figure the absolute energies of the $5p^{5}5d$ and $5p^{5}6s$ configurations have been chosen so as to obtain approximate agreement with the experimental energies of the J=1 levels given in Ref. 7. By comparing these results with the experimental level data, a set of 11 levels was extracted from the 16 published levels of this group as being valid. The absolute heights of the calculated $5p^{5}d$ and $5p^{5}6s$ configurations were then adjusted to make the level in each configuration least likely to be perturbed by configuration interaction, $6s\frac{1}{2}\left[\frac{1}{2}\right]_{0}$ and $5d {}^{3}F_{3}$, agree with its experimental position, and the configuration-interaction parameters introduced into the calculation at 90% of their HF values. The new calculated level positions and gvalues are shown in Fig. 3. As can be seen the level positions and g values in general agree well with the observed levels, thus verifying our initial selection of levels and over-all interpretation.

The main exception to the good agreement be-

tween the calculated and observed $5p^{5}(5d+6s)$ levels occurs for $5p^{5}5d^{1}P_{1}$, where the difference between the calculated and observed positions is nearly 5000 cm⁻¹. Since this discrepancy is closely related to the value of the parameter $G^{1}(5p5d)$. a new calculation was carried out with a value of $G^{1}(5p5d)$ reduced to 18 600 cm⁻¹ from its initial scaled HF value of $22\,000$ cm⁻¹. The results are shown in Fig. 4, where by comparison with Fig. 1 the agreement between calculated and observed energies is seen to be very good. However, the agreement between the calculated and observed gvalues of the $6s\frac{1}{2}\left[\frac{1}{2}\right]_1$ and $5d^3D_1$ levels is now rather poor. Clearly the degree of configuration mixing for these levels indicated by the calculated g values considerably exceeds that indicated by the measured g values.

It might seem that the degree of configuration mixing between $6s\frac{1}{2}[\frac{1}{2}]_1$ and $5d^{3}D_1$ could be reduced by varying the configuration-interaction parameters $R^1(5p5d, 6s5p)$ and $R^2(5p5d, 5p6s)$. However, since the configuration interaction between the $6s\frac{3}{2}[\frac{3}{2}]_1$ and $5d^{3}P_1$ levels and also between the $6s\frac{3}{2}[\frac{3}{2}]_2$ and $5d^{3}P_2$ levels depends almost exclusive-

=

FIG. 1. Experimental energies and g values for levels of the $5p^{5}5d$ and $5p^{5}6s$ configurations. Levels of $5p^{5}5d$, indicated as full lines, are designated in the *LS*-coupling scheme. Levels of $5p^{5}6s$, indicated as dashed lines, are designated in the $J_{1}l$ -coupling scheme. Predicted positions of the five unknown levels of $5p^{5}5d$ are shown as thin lines.

FIG. 2. Calculated level positions and g values of the $5p^{5}5d$ and $5p^{5}6s$ configurations without configuration interaction. Levels of $5p^{5}6s$ are shown as dashed lines. Parameters (in cm⁻¹) used for calculation: $F^{2}(5p5d) = 23558$, $G^{1}(5p5d) = 22000$, $G^{3}(5p5d) = 16630$, $\xi_{5p}(5p^{5}5d) = 8784$, $\xi_{5d} = 314$; $G^{1}(5p6s) = 3416$, $\xi_{5p}(5p^{5}6s) = 9033$.

FIG. 3. Calculated level positions and g values of the $5p^{5}5a$ and $5p^{5}6s$ configurations with configuration interaction. Configuration interaction parameters (in cm⁻¹): $R^{2}(5p\,5d, 5p\,6s) = -8198$; $R^{1}(5p\,5d, 6s5p) = -2235$.

ly on R^2 , and since these levels are already very well described by the calculation, the value of R^2 cannot be changed significantly. This leaves only R^1 available for variation. However, in order to

FIG. 4. Calculated level positions and g values of the $5p^{5}5d$ and $5p^{5}6s$ configurations with configuration interaction and a value of $G^{1}(5p5d)$ reduced to $18\,6000$ cm⁻¹ in order to fit the $5d^{1}P_{1}$ level.

Configuration Parameter		HF	Fitted	Fitted/HF
$5p^55d$	$\boldsymbol{E}_{\mathrm{av}}$	117654	120 017	
	$F^{2}(5p5d)$	30 957	23 558	
	$G^1(5p5d)$	34 000	24 750	
	$G^{3}(5p5d)$	20839	16630	
	ζ ₅ ρ	7 540	8 784	
	5 _{5d}	293	314	
5 p ⁵ 6s	E_{av}	115296	113 493	
	$G^{1}(5p6s)$	3416(0.41) ^a	3 1 3 6	
	ζ ₅ μ	7 753	9 033	
Configuration	$R^{2}(5 \neq 5 d, 5 \neq 6 s)$	-9102(-0.55)	-8 198	
interaction	$R^{1}(5p5d, 6s5p)$	-2 482 (- 0.15)	-2 235	
5 <i>p</i> ⁵ 6 <i>p</i>	$E_{\rm av}$	129683	133810 ± 5	
	$F^{2}(5p6p)$	9015	8318 ± 51	0.923 ± 0.006
	$G^{0}(5p6p)$	1448(0.20)	1409± 4	0.973 ± 0.003
	$G^{2}(5p6p)$	1 998 (0.62)	1976± 68	0.989 ± 0.034
	ζ ₅ μ	7824	9084 ± 7	1.161 ± 0.001
	560	608	1054 ± 8	1.735 ± 0.013
5 p ⁵ 6d	$\boldsymbol{E}_{\mathrm{av}}$	152496	157 749± 15	
	$F^{2}(5p 6 d)$	6 0 4 0	4527± 82	0.750 ± 0.014
	$G^1(5p6d)$	5200	5125 ± 40	0.986 ± 0.008
	$G^3(5p6d)$	3355	2873 ± 159	0.856 ± 0.047
	5 ₅ p	7802	9 0 7 0 ^b	
	ζ ₆₀	61	69± 8	1.12 ± 0.13
5 p ⁵ 7s	$oldsymbol{E}_{\mathrm{av}}$	150 821	$154\ 011 \pm 14$	
	$G^1(5p7s)$	956(0.39)	792 ± 59	0.83 ± 0.06
	5 ₅ p	7823	9094 ± 24	1.162 ± 0.003
Configuration	$R^{2}(5p6d, 5p7s)$	1 887(0.48)	-2.668 ± 2.75	1.41 ± 0.15
interaction	$R^{1}(5p6d, 7s5p)$	-260(-0.07)	-367 ^c	

TABLE II. Energy parameters in cm⁻¹ for Cs II. For $5p^55d$ and 6s, the fitted values represent HF values scaled according to La IV. The values of $E_{av}(5p^55d)$ and $E_{av}(5p^56s)$ were varied to produce a good energy fit. The value of $G^1(5p5d)$ was varied to produce a good fit for g values. $R^2(5p5d, 5p6s)$ and $R^1(5p5d, 6s5p)$ were scaled at 90% of their HF values.

^aValues in parentheses are the ratio of the calculated parameter to a value calculated by using the absolute value of each wave function.

^b Fixed at HF ratio to ζ_{5p} (5 $p^{5}7s$).

^c Fixed at HF ratio to $R^{\overline{2}}(5p6d, 5p7s)$.

obtain good agreement for the g values by varying R^1 , R^1 must be increased to nearly three times its scaled HF value. (It might be noted that R^1 and R^2 enter into the energy matrix with opposite signs, which explains the necessity of having to increase the value of R^1 in order to reduce the configuration interaction.) As there is no reason to believe that the HF calculation can be in error to this extent, both as to the value of R^1 and as to the ratio of R^1 to R^2 , we conclude that it is not possible to reduce the configuration interaction between $6s\frac{1}{2}[\frac{1}{2}]_1$ and $5d \ ^3D_1$ by making reasonable variations of R^1 and R^2 .

Of course, to a first approximation the two levels involved here do not mix at all, because the $5p^{5}6s$ level has a completely pure *P* character and the 5d ${}^{3}D_{1}$ level a nearly pure *D* character. Thus these two levels interact only to the extent that the level designated as 5d ${}^{3}D_{1}$ contains some admixture of 5p ${}^{5}5d$ ${}^{3}P_{1}$ or ${}^{1}P_{1}$. Thus the $6s\frac{1}{2}[\frac{1}{2}]_{1}$ level of CsII acts as an internal probe of the *P* character of the $5p {}^{5}5d$ ${}^{3}D_{1}$ level.

As may be inferred from the calculations already described, the admixture of *P* type states of $5p^{5}5d$ into the $5p^{5}5d^{3}D_{1}$ level is very sensitive to the variation of $G^{1}(5p5d)$. It is also true that this admixture is rather insensitive to the variation of the other parameters. Thus the presence of the $6s\frac{1}{2}[\frac{1}{2}]_{1}$ level in effect serves to measure the value of $G^{1}(5p5d)$ applicable to this part of the $5p^{5}5d$ configuration. This may be contrasted with the situation found in most $np^{5}nd$ configurations,

	E (sha)	E(z = 1z)		(-1)	(1-)	Devee to 11	
J 	L (ODS)	L (calc)	obs – cale	g (obs)	g (cale)	Percent J ₁ l	Percentage composition
0	107572	107 703	-131			97% $\frac{3}{2}[\frac{1}{2}]$	97% ³ P; 3% $\frac{1}{2} \left[\frac{1}{2}\right]^*$
	122 374	122380	-6			$97\% \ \frac{1}{2} [\frac{1}{2}]^*$	97% $\frac{1}{2}[\frac{1}{2}]^*$; 3% ³ P
1	107 914	108 027	-113	1.37	1.378	$39\% \ \frac{3}{2} [\frac{1}{2}]$	56% ${}^{3}P$; 39% $\frac{3}{2}[\frac{3}{2}]^{*}$; 3% ${}^{3}D$
	110954	110 917	37	1.24	1.258	$61\% \ \frac{3}{2} [\frac{3}{2}]^*$	$61\% \ \frac{3}{2} [\frac{3}{2}]^*; \ 36\% \ ^3P; \ 3\% \ ^3D$
	122875	122798	77	1.12	1.154	$81\% \frac{1}{2} [\frac{1}{2}]*$	$81\% \ \frac{1}{2} [\frac{1}{2}]^*; \ 18\% \ ^3D; \ 1\% \ ^1P$
	123 645	123962	-317	0.70	0.733	$39\% \frac{3}{2} [\frac{3}{2}]$	$71\% \ {}^{3}D; \ 17\% \ {}^{1}2[\frac{1}{2}]^{*}; \ 7\% \ {}^{3}P$
	139 249	147467	-8218		0.978	$58\% \ \frac{1}{2} \left[\frac{3}{2}\right]$	94% ¹ P; 5% ³ D; 1% ³ P
2	107 401	107454	-53	1.49	1.492	$82\% \frac{3}{2} [\frac{3}{2}]^*$	$82\% \ \frac{3}{2} [\frac{3}{2}]^*; \ 15\% \ ^3P; \ 2\% \ ^3D$
	112804	112869	-65		1.424	$76\% \ \frac{3}{2} [\frac{3}{2}]$	$63\% {}^{3}P; 17\% \frac{3}{2}[\frac{3}{2}]^{*}; 15\% {}^{3}D$
		115688			0.889	94% $\frac{3}{2} \left[\frac{5}{2} \right]$	44% ${}^{3}F$; 35% ${}^{1}D$; 20% ${}^{3}D$
		126604			0.839	94% $\frac{1}{2} \left[\frac{5}{2} \right]$	55% ${}^{3}F$; 31% ${}^{1}D$; 14% ${}^{3}D$
		128291			1.192	$91\% \ \frac{1}{2} [\frac{3}{2}]$	50% ^{3}D ; 28% ^{1}D ; 21% ^{3}P
3	113 726	113576	150		1.092	77% $\frac{3}{2} [\frac{7}{2}]$	74% ${}^{3}F$; 17% ${}^{1}F$; 9% ${}^{3}D$
		118281			1.205	$80\% \ \frac{3}{2} [\frac{5}{2}]$	61% ^{3}D ; 39% ^{1}F
		129390			1.121	$96\% \frac{1}{2} [\frac{5}{2}]$	44% ¹ F; 30% ³ D; 26% ³ F
4	112245	112230	15		1.251	$100\% \ \frac{3}{2} [\frac{7}{2}]$	100% ^{3}F

TABLE III. Calculated energy-level values in cm⁻¹, g values, and percentage compositions for the $5p^{5}(5d+6s)$ configurations of Cs II. Percentages for $5p^{5}5d$ are given in LS coupling; percentages for $5p^{5}6s$ are in $J_{1}l$ coupling. States of $5p^{5}6s$ are denoted by an asterisk. Calculation is described in text.

where the value of $G^1(npnd)$ is determined entirely by the position of the high-lying 1P_1 level.

The incompatibility of the value of $G^{1}(5p5d)$ needed to fit $5d \, {}^{1}P_{1}$ (~17800 cm⁻¹) with the value needed to obtain good g values for the $6s \, {}^{1}2[\frac{1}{2}]_{1}$ and $5d \, {}^{3}D_{1}$ levels (~24800 cm⁻¹) implies a sizable term dependence of $G^{1}(5p5d)$ in the $5p^{5}5d$ configuration of Cs II. Hansen¹⁶ has discussed the possibility of a term dependence of $G^{1}(pd)$ for $np^{5}nd$ configurations from the point of view of the discrepancies between fitted and HF values of $G^{1}(pd)$.¹⁷ The energy levels of Cs II provide an example of such a term dependence from an almost purely experimental point of view.¹⁸

For our final calculation of the $5p^5(5d + 6s)$ levels, the value of $G^1(5p5d)$ was chosen to obtain a reasonably good fit for the g values of $6s\frac{1}{2}[\frac{1}{2}]_1$ and $5d^{3}D_1$, without changing the other parameters. The average energies of the two configurations were chosen to obtain a reasonably good over-all fit for the energies, the resultant average absolute difference between the observed and calculated level values being 96 cm⁻¹, not including $5d^{1}P_1$. A better fit could probably be obtained by varying the other parameters, but until the 5d configuration is completed, further adjustment of the parameters would be unwarranted.

The values of the parameters used for the final calculation of $5p^5(5d + 6s)$ and the HF values are given in Table II.¹⁹ The calculated level values, gvalues, and percentage compositions are given in Table III. It should be noted that even though this calculation is somewhat preliminary, the percentage compositions are relatively insensitive to changes in the parameters and thus represent fairly accurately (~ $\pm 2\%$) the mixing of states for these levels. A more accurate measurement of the g values would be of considerable importance for the further theoretical interpretation of the (5d + 6s) group, because the sum of the experimental g values for the four lower J=1 levels. 4.43, does not agree extremely well with the theoretical sum of 4.531. Further work might also be done to account quantitatively for the observed hyperfine-splitting constants in terms of the calculated eigenvectors, but this is beyond the scope of this paper.

5p⁵6p configuration

All of the $5p^56p$ levels appear to be valid. The configuration is thus complete. Zelikina and Semenov have measured g values for all ten of its lev-

FIG. 5. Structure of the $5p^56p$ configuration. The levels are designated in the J_1l -coupling scheme.

els, and their measured values are in good agreement with the calculated values. The hyperfinesplitting constants^{8,9} have relative values that are similar to those measured for the analogous levels

FIG. 6. Structure of the $5p^{5}6d$, 7d, 7s, and 8s configurations. All levels are designated in J_1l coupling. Predicted positions of the $7d\frac{3}{2}[\frac{1}{2}]_0$ and $7d\frac{3}{2}[\frac{1}{2}]_4$ levels are indicated by thin lines.

of $4p^{5}5p$ of Rb II by Kopfermann, Steudel, and Trier.²⁰ The structure of the $5p^{5}6p$ configuration of Cs II is shown in Fig. 5.

The results of fitting the energy parameters to

TABLE IV. Calculated energy-level values in cm⁻¹, g values, and percentage compositions for the $5p^56p$ configuration of Cs II. Negative eigenvector components are preceded by a minus sign. Mean error of level fit=15 cm⁻¹.

J	E (obs)	E (calc)	obs – calc	g (obs)	g (calc)	Percent $J_1 l$	Percentage composition-LS
0	133162	133161	1			$98\% \frac{3}{2} [\frac{1}{2}]$	-52% ¹ S+48% ³ P
	144532	144 531	1			$98\% \frac{1}{2} [\frac{1}{2}]$	$52\% {\ }^{3}P + 48\% {\ }^{1}S$
1	126 527	126 538	-11	1.87	1.862	93% $\frac{3}{2}[\frac{1}{2}]$	$75\% \ {}^{3}S + 23\% \ {}^{3}P$
	129 999	130 013	-14	1.02	1.028	$94\% \ \frac{3}{2} [\frac{3}{2}]$	$57\% {}^{1}P - 21\% {}^{3}D - 18\% {}^{3}P$
	141 564	141 557	7	0.68	0.656	$92\% \ \frac{1}{2} [\frac{3}{2}]$	$72\% {}^{3}D + 26\% {}^{1}P - 1\% {}^{3}S$
	143361	143363	-2	1.44	1.454	$91\% \frac{1}{2} [\frac{1}{2}]$	-59% ³ P + 19% ³ S - 16% ¹ P
2	128 099	128 094	5	1.10	1.130	$89\% \ \frac{3}{2} [\frac{5}{2}]$	$53\% \ {}^{3}D - 39\% \ {}^{1}D + 8\% \ {}^{3}P$
	130775	130 775	0	1.34	1.360	$89\% \ \frac{3}{2} [\frac{3}{2}]$	$72\% {}^{3}P + 27\% {}^{1}D + 1\% {}^{3}D$
	143403	143 409	-6	1.12	1.177	$100\% \ \frac{1}{2} [\frac{3}{2}]$	-46% $^{3}D - 34\%$ $^{1}D + 20\%$ ^{3}P
3	129117	129 096	21	1.33	1.333	$100\% \frac{3}{2}[\frac{5}{2}]$	100% ³ D

TABLE V. Lines used to establish the $5p^5 6d\frac{3}{2}[\frac{1}{2}]_0, \frac{3}{2}[\frac{7}{2}]_3$, and $\frac{3}{2}[\frac{7}{2}]_4$ levels. Wave-lengths, intensities, and wave numbers taken from Sommer, Ref. 1; Zeeman data taken from Zelikina and Semenov, Ref. 6; components are given as displacements from center of pattern in Lorentz units.

λ (Å)	Ι	σ (cm ⁻¹)	Classification	Zeeman pattern
3974.239	6	25154.96	$5p^{5}6p\frac{3}{2}[\frac{1}{2}]_{1}-5p^{5}6d\frac{3}{2}[\frac{1}{2}]_{0}$	(0)1.86±0.03
4610.505	2	21 683.55	$\frac{3}{2} \left[\frac{3}{2} \right]_1 - \frac{3}{2} \left[\frac{1}{2} \right]_0$	
4039.841	9	24 746.49	$5p^{5}6p\frac{3}{2}[\frac{5}{2}]_{2}-5p^{5}6d\frac{3}{2}[\frac{7}{2}]_{3}$	$(0)1.02 \pm 0.02$
4213.129 ^a	6	23 728.67	$\frac{3}{2} \begin{bmatrix} \frac{5}{2} \end{bmatrix}_3 - \frac{3}{2} \begin{bmatrix} \frac{7}{2} \end{bmatrix}_3$	
4264.675	10	23441.87	$5p^{5}6p \ \frac{3}{2}[\frac{5}{2}]_{3} - 5p^{5}6d \ \frac{3}{2}[\frac{7}{2}]_{4}$	(0)1.09±0.03

^a Previously classified as a transition to level 11_2^o at 119665.41 cm⁻¹, which has now been rejected.

the observed levels by a least-squares calculation are given in Tables II and IV. As shown in Table IV, the coupling is approximately J_1l .

514

$5p^{5}(6d+7s)$ and higher odd configurations

These levels were interpreted by a procedure similar to that used for the $5p^{5}(5d + 6s)$ levels, although configuration interaction was relatively unimportant for the (6d + 7s) group. The $5p^{5}(6d + 7s)$ levels are plotted in Fig. 6, along with levels of the $5p^{5}7d$ and 8s configurations. The 7s and 8s levels are shown as dashed lines. The predicted positions of the $7d\frac{3}{2}\left[\frac{1}{2}\right]_0$ and $7d\frac{3}{2}\left[\frac{7}{2}\right]_4$ levels are shown as thin lines.

The $5p^{5}6d \frac{3}{2} [\frac{1}{2}]_{0}, \frac{3}{2} [\frac{7}{2}]_{3}$, and $\frac{3}{2} [\frac{7}{2}]_{4}$ levels were newly found here by using Sommer's line list and the Zeeman data of Zelikina and Semenov. The lines

TABLE VI. Calculated energy-level values in cm⁻¹, g values, and percentage compositions for the $5p^{5}(6d+7s)$ configurations of Cs II. Negative eigenvector components are preceded by a minus sign. States of $5p^57s$ are denoted by an asterisk. Mean error of level fit = 20 cm^{-1} .

J	E (obs)	E (calc)	obs – calc	g (obs)	g (calc)	Percent J_1l	Percentage composition-LS
0	151 682	151 690	-8			$99\% \frac{3}{2} [\frac{1}{2}]$	99% ${}^{3}P - 1\% {}^{3}P^{*}$
	163034	163023	11			99% $\frac{3}{2}[\frac{1}{2}]*$	$99\% \ {}^{3}P^{*} + 1\% \ {}^{3}P$
1	149614	149610	4	1.18	1.183	$98\% \frac{3}{2} [\frac{3}{2}]^*$	$63\% \ ^1P^* + 35\% \ ^3P^* - 2\% \ ^3P$
	152181	152159	22	1.24	1.334	$60\% \frac{3}{2} [\frac{1}{2}]$	$82\% {}^{3}P - 15\% {}^{3}D + 2\% {}^{1}P^{*}$
	156408	156408	0	0.89	0.792	$60\% \frac{3}{2} [\frac{3}{2}]$	-48% ³ D + 46% ¹ P - 6% ³ P
	163189	163198	-9	1.38	1.326	$99\% \frac{1}{2} [\frac{1}{2}]^*$	$65\% \ ^{3}P^{*} - 35\% \ ^{1}P^{*}$
	169192 ^a	169101	91 ^a		0.866	$96\% \frac{1}{2} [\frac{3}{2}]$	$54\% {}^{1}P + 36\% {}^{3}D + 10\% {}^{3}P$
2	149221	149226	-5	1.50	1.498	$97\% \ \frac{3}{2} [\frac{3}{2}]*$	97% ${}^{3}P^{*} - 2\% {}^{3}P$
	152800	$152\ 815$	-15	1.33	1,335	96% $\frac{3}{2} \left[\frac{3}{2} \right]$	$54\% {}^{3}P - 33\% {}^{3}D + 11\% {}^{1}D$
	153311	153310	1	0.97	0.959	$98\% \frac{3}{2} [\frac{5}{2}]$	$51\% \ ^1D - 25\% \ ^3F + 23\% \ ^3D$
	166 696 ^a	166271	425 ^a		0.770	$98\% \frac{1}{2} [\frac{5}{2}]$	-73% ${}^{3}F - 21\%$ ${}^{1}D - 5\%$ ${}^{3}D$
	166 970 ^a	166496	474 ^a	1.30	1.273	$97\% \frac{1}{2} [\frac{3}{2}]$	$43\% {}^{3}P + 39\% {}^{3}D - 17\% {}^{1}D$
3	152845	152855	-10	1.07	1.087	$84\% \frac{3}{2} [\frac{7}{2}]$	$59\% \ {}^3F + 30\% \ {}^1F - 11\% \ {}^3D$
	153687	153679	8	1.20	1.216	$84\% \frac{3}{2} [\frac{5}{2}]$	$65\% \ ^3D + 35\% \ ^1F$
	167 025 ^a	166797	228 ^a	1.10	1.114	$100\% \frac{1}{2} [\frac{5}{2}]$	$41\% \ {}^3F - 35\% \ {}^1F + 24\% \ {}^3D$
4	152 558	152 560	-2	1.27	1.251	$100\% \ \frac{3}{2} [\frac{7}{2}]$	$100\% \ ^3F$

^a Not included in least-squares fit.

515

TABLE VII. Calculated displacements of Cs II levels due to configuration interaction. A negative displacement indicates that the level has been displaced to lower energy.

Level (cm ⁻¹)	Designation	Displacement (cm ⁻¹)
107 572	$5 d^{3}P_{0}$	-376
107401	$6s \frac{3}{2} \left[\frac{3}{2} \right]_2$	-1000
107914	$5 d {}^{3}P_{1}$	-1377
110 954	$6s \frac{3}{2} \left[\frac{3}{2} \right]_1$	1144
112804	$5 d^{3}P_{2}$	939
122 374	$6s \frac{1}{2} \left[\frac{1}{2} \right]_0$	376
122874	$6s \frac{1}{2} \left[\frac{1}{2} \right]_1$	22
123645	$5 d^{3}D_{1}$	208
149221	$7s \frac{3}{2} [\frac{3}{2}]_2$	-106
149614	$7s\frac{3}{2}[\frac{3}{2}]_1$	-70
163 034	$7s\frac{1}{2}[\frac{1}{2}]_0$	50
163189	$7s\frac{1}{2}[\frac{1}{2}]_{1}$	44

used to establish these three levels are listed in Table V.

As shown in Fig. 6 the low part of the $5p^57d$ configuration lies just below the high part of the $5p^56d$ configuration. This causes the high part of the $5p^56d$ configuration to be displaced to higher energies by several hundred cm⁻¹. Because of these perturbations, the $5p^5(^2P_{1/2})6d$ levels were omitted from the least-squares fit for the $5p^5(6d + 7s)$ levels given in Tables II and VI.

The high-lying experimental levels of odd parity that have been rejected all fall in regions where no levels are to be expected. For example, the levels listed in AEL at about 170 000 cm⁻¹ are too low to belong to either the high part of $5p^{5}7d$ or to the low part of $5p^{5}8d$, expected at about 172 500 cm⁻¹. The levels 47^{o}_{3} and 48^{o}_{3} might possibly be part of $5p^{5}8d$, but they do not appear to be well established and have not been retained.

$5p^{5}7p$ and *nf* configurations

Several of the levels Wheatley and Sawyer designated as $5p^{5}7p$ have been included in Table I, although confirmation of their reality is definitely needed. The levels in AEL designated as $5p^{5}nf$ all lie above the ionization limit and have been dropped. The $5p^{5}(^{2}P_{3/2})4f$ levels are expected to lie at about 152 000 cm⁻¹, the $5p^{5}(^{2}P_{1/2})4f$ levels at about 166 000 cm⁻¹.

IONIZATION ENERGY

The revised value of Ref. 7 for the ionization energy of Cs II, 186 900 cm⁻¹, was obtained by calculating the limit of the series of J = 1 levels, $5p^{5}({}^{2}P_{3/2})ns$, n = 6, 7, 8, and the limit of the series of J = 1 levels, $5p^{5}({}^{2}P_{1/2})ns$, n = 6, 7, assuming that $\Delta n^*(7s - 6s) = 1.050 \pm 0.005$. The uncertainty of ± 300 cm⁻¹ was intended to allow for possible displacements of the $5p^{5}6s$ levels owing to interaction with levels of $5p^{5}5d$.

The present calculations show that these displacements are indeed significant, and that the ionization energy should be further revised downward. The calculated displacements of the relevant levels owing to configuration interaction are listed in Table VII. The effect of these calculated displacements on the series limits is shown in Table VIII. According to these results we adopt a value for the ionization energy of Cs II of 186 600 ± 150 cm⁻¹ (23.14 ± 0.02 eV).

TABLE VIII. Limits of $5p^{5}ns$ series of Cs II calculated with configuration interaction taken into account. Limits for series based on ${}^{2}P_{1/2}$ core calculated assuming $\Delta n^{*}(7s-6s) = 1.050 \pm 0.005$.

Series	Limit using observed levels (cm ⁻¹)	Limit with configuration interaction taken into account (cm ⁻¹)
$5p^5ns \frac{3}{2}[\frac{3}{2}]_1$ $n = 6-8$	186 937	186 684
$\frac{3}{2} \left[\frac{3}{2}\right]_2$ 6-8	186 571	186 535
$\frac{3}{2} \left[\frac{3}{2} \right]_{1,2} - c.g. 6-8$	186 699	186 590
$\frac{1}{2} \left[\frac{1}{2} \right]_1$ $n = 6, 7$	186 720	186 662
$\frac{1}{2} \left[\frac{1}{2} \right]_0$ 6, 7	186 732	186 846
$\frac{1}{2} \left[\frac{1}{2} \right]_{0,1} - c.g.$ 6, 7	186 723	186 708

The early phases of this work were carried out with the aid of theoretical calculations provided by Dr. Jørgen Hansen, to whom my thanks are due. I would also like to thank Dr. Robert Cowan for sending me an extensive list of *ab initio* energy parameters for CsII and Dr. Jack Sugar and Dr. W. C. Martin for their critical comments on the manuscript.

- ¹L. A. Sommer, Ann. Phys. (Leipz.) <u>75</u>, 163 (1924).
- ²O. Laporte, G. R. Miller, and R. A. Sawyer, Phys. Rev. 39, 458 (1932).
- ³J. Olthoff and R. A. Sawyer, Phys. Rev. 42, 766 (1932).
- ⁴C. E. Moore, Atomic Energy Levels, Vol. III, U.S. Natl. Bur. Stand. Circular No. 467 (U.S. GPO, Washing-
- ton, D.C., 1958).
- ⁵M. A. Wheatley and R. A. Sawyer, Phys. Rev. <u>61</u>, 591 (1942).
- ⁶G. Ya. Zelikina and R. I. Semenov, Opt. Specktrosk <u>21</u>, 777 (1966) [Opt. Spectrosc. 21, 427 (1966)].
- ⁷J. Reader and G. L. Epstein, J. Opt. Soc. Am. <u>65</u>, 638 (1975).
- ⁸R. A. Boyd and R. A. Sawyer, Phys. Rev. <u>61</u>, 601 (1942).
- ⁹H. Kopferman, Z. Phys. <u>73</u>, 437 (1931).
- ¹⁰J. P. Connerade, Astrophys. J. <u>159</u>, 685 (1970).
- ¹¹K. J. Nygaard and Y. B. Hahn, Phys. Rev. A <u>8</u>, 151 (1973).
- ¹²K. J. Nygaard and Y. B. Hahn, Physica (Utr.) <u>75</u>, 333 (1974).
- ¹³P. Feldman and R. Novick, Phys. Rev. <u>160</u>, 143 (1967).
- ¹⁴C. Froese, Can. J. Phys. <u>41</u>, 1895 (1963); C. Froese Fischer and M. Wilson, Argonne National Laboratory Report No. 7404 (unpublished).
- ¹⁵G. L. Epstein and J. Reader, Law analysis (unpublished).
- ¹⁶J. E. Hansen, J. Phys. B 5, 1083 (1972).
- ¹⁷These discrepancies were first noticed by R. D. Cowan [J. Opt. Soc. Am. 58, 924 (1968)], who treated them theoretically from the standpoint of perturbations of $np^5nd^4P_1$ by higher-lying $np^5n'd^4P_1$ states.
- ¹⁸The use of Zeeman data to help establish the term de-

pendence of Slater parameters is not new; G. W. King and J. H. Van Vleck [Phys. Rev. <u>56</u>, 464 (1939)] used term-dependent radial wave functions to account for relative intensities of ns^2-nsnp transitions in several spectra, and their treatment has been much used to interpret *sp* levels, including Landé *g* values. For more complex configurations see, for example, the work on As II by H. Li and K. L. Andrew, J. Opt. Soc. Am. <u>62</u>, 255 (1972) and the work on PII by H. Li, J. Opt. Soc. Am. <u>62</u>, 1476 (1972).

- ¹⁹Note added in proof. In addition to the HF calculation for the $5p^{5}5d$ configuration as a whole, given in Table II, HF calculations have been carried out specifically for the 5d ${}^{1}P$ and ${}^{3}P$ terms. The results are similar to those given for Rb II by Hansen, Ref. 16. For Cs II the mean radius of the 5d electron is 5.45 a.u. when the atom is in a ${}^{1}P$ state compared to 3.17 a.u. when in a ^{3}P state. The mean radius of the 5p electron is approximately 2.05 a.u. The overlap between the 5dand 5p wave functions thus differs greatly for the ${}^{1}P$ and ${}^{3}\!P$ terms, leading to the need for term-dependent parameters. The ${}^{1}P - {}^{3}P$ energy difference given by the difference between the total atom energies in the term-dependent calculations is 29200 cm⁻¹ compared to a difference of 47700 cm⁻¹ found by diagonalizing the energy matrix with the average-energy HF parameters of Table II. The observed difference is 28700 cm⁻¹, after displacements due to configuration interaction are taken into account.
- ²⁰H. Kopfermann, A. Steudel, and J. O. Trier, Z. Phys. 144, 9 (1956).