Molecular-dynamics study of the dynamical structure factor of liquid N_2

J. J. Weis and D. Levesque

Laboratoire de Physique Théorique et Hautes Energies,* Université de Paris-Sud, 91405 Orsay, France

(Received 21 July 1975)

The equilibrium and dynamical structure factors of a nitrogenlike system near its triple point are computed by a molecular-dynamics simulation using an "atom-atom" potential. Both structure factors are shown to be almost identical to the structure factors of a system of spherical molecules when the intramolecular contributions have been subtracted and the rotational degrees of freedom taken into account in a trivial way. Thus only very little information on the anisotropic part of the intermolecular interaction can be gained from these two quantities. For the dynamical structure factor, a strong and unexpected disagreement between our computation and the experiment of Carneiro and McTague at small wave numbers probably indicates that the experimental results should be corrected for double-scattering contributions.

I. INTRODUCTION

The dynamics of monatomic liquids are by now fairly well understood, and increasing effort is being spent on systems presenting rotational degrees of freedom. One of the simplest of these systems is the homonuclear diatomic molecule, e.g., N_2 . Liquid nitrogen has been studied very recently by a large variety of experimental techniques such as nuclear spin echo for the self-diffusion constant,¹ nuclear magnetic spin relaxation,² elastic^{3,4} and inelastic^{5,6} neutron scattering, light scattering,^{7,8} far-infrared absorption,⁹ and Raman scattering.¹⁰ For most of these experiments, molecular-dynamics simulations have also been done.^{9,11-14} On the theoretical side, integral equations¹⁵⁻¹⁷ and perturbation theories¹⁸⁻²⁴ have been used to describe the thermodynamic and structural properties of liquid N₂.

Most commonly, the interaction between two molecules is described by a sum of spherical potentials centered at the atom positions ("atom-atom potential"). The atom-atom interaction is generally of a hard-sphere or Lennard-Jones (n, 6) type. As an alternative one can use a quadrupole-quadrupole potential in conjunction (or not) with an "effective" Lennard-Jones (LJ) potential between the molecular centers. A third way is to combine the two methods just described.

Once preference has been given to one or the other potential forms we can adjust the parameters by fitting experimental properties, generally solidstate properties such as equilibrium lattice constants, sublimation heats, the normal mode frequencies (translational and/or librational), etc. But the values of these parameters may be erroneous because the relation between the potential and the experiments is established by approximate theories such as classical harmonic calculations, quantum-mechanical treatments, or, to take account of the large anharmonic contribution selfconsistent phonon techniques. Thorough documentation on this aspect can be found in Refs. 25 and 26. The main conclusion is that, in fact, none of these potentials is entirely satisfactory.

In particular, the dynamical structure factor calculated "exactly" by molecular dynamics²⁷ for the atom-atom potential gives normal mode frequencies in only moderate agreement with the inelastic neutron-scattering results of Kjems and Dolling.²⁶ Also, the pure atom-atom potential considerably underestimates the α - β transition temperature.^{27,28} The long-range anisotropic part of a guadrupolequadrupole interaction seems more appropriate to reproduce this transition, as shown by a recent Monte Carlo calculation of a classical quadrupole solid.²⁹ More generally it appears that a model including the electrostatic interaction between the molecules, in addition to the atom-atom potential, gives the best over-all agreement with experiment (in the solid), at least if an "effective" bond length 20% lower than the true one is used.²⁶

In the liquid phase, where the short-range repulsive part of the potential is dominant, the atomatom potential gives a very satisfactory description of the thermodynamics and structural properties of N_2 .^{11,13} Cheung and Powles,¹³ using an atomatom potential

$$v(r) = 4\epsilon [(\sigma/r)^{12} - (\sigma/r)^{6}]$$
(1)

with a distance 2d between the interaction centers equal to the true bond length of the molecule, determine best parameters ϵ and σ by fitting the pressure and internal energy of their moleculardynamics (MD) calculations to experimental measurements over a large region of the liquid state.

The best parameters they find are

$$\epsilon/k = 37.32 \,^{\circ}\mathrm{K}, \ \sigma = 3.31 \,\,\mathrm{\AA}.$$
 (2)

Moreover, the effect of adding a quadrupole-quad-

13

450

rupole term results in just slightly changing the potential parameters. 13

In this paper we report MD calculations of the dynamic structure factor $S(k, \omega)$ using the atomatom potential (1) for a state which in reduced units is $T^* = kT/\epsilon = 1.61$ and $\rho^* = \rho\sigma^3 = 0.6964$ where ρ is the molecular density. Using the potential parameters of Ref. 11,

 $\sigma = 3.341$ Å, $\epsilon/k = 44^{\circ}$ K

(these parameters will be used for N₂ throughout this paper), this corresponds to $T = 71^{\circ}$ K and ρ = 0.868 g/cm³. Alternatively, the parameters (2) would give T = 60 °K and $\rho = 0.892$ g/cm³, and the thermodynamic state would correspond to a slightly supercooled liquid. The compressibility factor $p/\rho kT$ equals 0.7. As in Ref. 11, the half-distance between interaction centers was taken to be d^* $=d/\sigma=0.1646$, and the interaction was set equal to zero after $r = 3.2\sigma$. The motion of 500 molecules, with periodic boundary conditions, was followed using the algorithm described in Ref. 11 over a period of 6400 time steps of $\Delta t = 5 \times 10^{-15} \text{ sec } [\Delta t]$ =0.01674 τ_0 , where the time unit $\tau_0 = (m\sigma^2/96\epsilon)^{1/2}$ =1.9848 \times 10⁻¹³ sec, where *m* is the molecular mass]. The relevant time-dependent quantities were then averaged over 6-10 runs with different initial conditions. For static properties, 20 times fewer statistics were asked for.

Section II is devoted to the static structure factor, and Sec. III to the dynamic structure factor.

II. STATIC STRUCTURE FACTOR

In this section we present the static structure factors (atomic and center-of-mass) for the thermodynamic state under consideration. Atomic structure factors have been given previously,^{11,13} and the agreement with experiment has been shown to be very satisfactory. However, no comparison has apparently been done with the center-of-mass factor, which, one might hope, could give some information on orientational correlations. We will show that this is in fact not the case.

The atomic static structure factor for a diatomic homonuclear molecule can be defined by

$$S(k) = \frac{1}{4N} \sum_{i,j}^{N} \langle \rho_i(k) \rho_j^*(k) \rangle , \qquad (3)$$

where

$$\rho_i(k) = \sum_{\alpha=1}^2 e^{i\vec{k}\cdot\vec{r}_i\alpha} \,. \tag{4}$$

Here $\vec{r}_{i\alpha}$ denotes the position of atomic nucleus α in the *i*th molecule (with respect to a laboratory fixed reference frame). The summations on *i* and

j in (3) extend over the N molecules of the system, and $\langle \rangle$ means averaging over an appropriate equilibrium ensemble.

If $\vec{\mathbf{R}}_i$ is the center-of-mass coordinate of molecule *i*,

$$\vec{r}_{i\alpha} = \vec{R}_i + \vec{I}_{i\alpha} \,. \tag{5}$$

For a rigid diatomic molecule, $\bar{1}_{i\alpha} = \pm d \bar{u}_i (\bar{u}_i \text{ is the unit vector along the symmetry axis of molecule <math>i$), and consequently

$$\rho_i(k) = 2e^{i\vec{k}\cdot\vec{R}_i}\cos(d\vec{k}\cdot\vec{u}_i).$$
(6)

It is convenient to separate the i=j and $i\neq j$ in terms in (3):

$$S(k) = \frac{1}{4} \langle \left| \rho_1(k) \right|^2 \rangle + \frac{1}{4} \langle N - 1 \rangle \langle \rho_1(k) \rho_2^*(k) \rangle$$
$$\equiv S_{intra}(k) + S_{inter}(k) . \tag{7}$$

The intramolecular contribution is

$$S_{\text{intra}}(k) = \frac{1}{4} \sum_{\alpha, \gamma=1}^{2} \langle e^{i\vec{k} \cdot (\vec{1}_{1} \alpha r \vec{1}_{1} \gamma)} \rangle = \frac{1}{2} [1 + j_{0}(2kd)], \quad (8)$$

where $j_n(x)$ is the spherical Bessel function of order *n* and $j_0(x) = (\sin x)/x$, whereas

$$S_{\text{inter}}(k) = (N-1) \langle e^{i\mathbf{k} \cdot (\mathbf{R}_1 - \mathbf{R}_2)} \cos(d\,\vec{k} \cdot \vec{\mathbf{u}}_1) \cos(d\,\vec{k} \cdot \vec{\mathbf{u}}_2) \rangle .$$
(9)

The intermolecular contribution can be expressed either in terms of an atom-atom radial distribution function $g_a(r)$ or in terms of the molecular pair correlation function $g(R_{12}, \Omega_1, \Omega_2)$. In the former case $g_a(r)$ is proportional to the probability of finding two atomic centers located on different molecules at a distance r, and

$$S_{\text{inter}}(k) = \rho \int \left[g_a(r) - 1 \right] e^{-i\vec{k}\cdot\vec{r}} d\vec{r}$$
(10)

[an unimportant $\delta(k)$ term has been omitted]. Alternatively, if $g(R_{12}, \Omega_1, \Omega_2)$ is proportional to the probability of finding two molecules with their centers separated by a distance R_{12} and orientations Ω_1 and Ω_2 ,

$$S_{\text{inter}}(k) = \frac{\rho}{(4\pi)^2} \int e^{i\vec{k}\cdot(\vec{R}_1 - \vec{R}_2)} \cos(d\vec{k}\cdot\vec{u}_1) \cos(d\vec{k}\cdot\vec{u}_2) \\ \times g(R_{12}, \Omega_1, \Omega_2) d\vec{R}_{12} d\Omega_1 d\Omega_2 .$$
(11)

By expanding the molecular scattering function $\rho_i(k)$ and the pair correlation function g in spherical harmonics, one can show^{20,30,31} that

$$S_{inter}(k) = j_0^2(kd) [S_{cm}(k) - 1] + S_a(k) , \qquad (12)$$

where the center-of-mass structure factor

$$S_{\rm cm}(k) = 1 + \rho \int [g_{\rm cm}(R) - 1] e^{-i\vec{k}\cdot\vec{R}} d\vec{R},$$
 (13)

and

$$g_{\rm cm}(R) = \langle g(R, \Omega_1, \Omega_2) \rangle_{\Omega_1, \Omega_2}$$
(14)

$$=\frac{1}{(4\pi)^2}\int g(R,\Omega_1,\Omega_2)\,d\Omega_1\,d\Omega_2 \tag{15}$$

denotes averaging over the orientations of the two molecules. The anisotropic part $S_a(k)$ would vanish if no anisotropic part was present in the interaction potential.

The "exact" S(k) and $S_{cm}(k)$ are shown in Fig. 1 together with $S_a(k)$. The anisotropic contribution is quite small (but larger than the statistical error on the MD calculations, which is believed to be of the order of 3% and probably somewhat larger at the first peak). Because of the presence of $j_n(kd)$ $(n \neq 0)$ factors, $S_a(k)$ should go to zero at small k and high k. From Fig. 1 we see that this is realized for $k\sigma \sim 20$. At this k value, $S_{cm}(k)$ is practically equal to 1, so that for $k\sigma \geq 20$ only the intramolecular structure is seen.

We also note that the structure factor associated with the center-of-mass motion bears close resemblance to the one of a monatomic liquid. If we assume that a correspondence principle is valid for N₂, our thermodynamic state should correspond approximately to a state near the triple point of a LJ liquid. This can be achieved by choosing LJ parameters equal to $\sigma = 3.562$ Å and $\epsilon/k = 98$ °K. The corresponding LJ state would be $\rho^* = 0.8442$ and $T^* = 0.722$. A comparison of the corresponding LJ structure factor with $S_{cm}(k)$ is made in Fig. 1. The small differences can probably be ascribed to the anisotropy of the potential and to the choice of the corresponding LJ state. Note that the value of σ is considerably smaller than the value obtained from gas data ($\sigma = 3.70$ Å). Table I gives the numerical values of S(k), $S_{cm}(k)$, and the atom-atom radial distribution function $g_{a}(r)$; it is hoped that this might be useful for comparison with perturbation theories.

In conclusion, hardly any information on the anisotropic part of the interaction potential and the orientational motion of N_2 can be gained from the study of the structure factors. This confirms previous analyses by Gubbins *et al.*²⁰ based on perturbation techniques and by Sandler *et al.*,³¹ who use an N_2 model consisting of two overlapping hard spheres treated in the Percus-Yevick approximation.

III. DYNAMICAL STRUCTURE FACTOR

The computer simulation study of Levesque $et \ al.^{32}$ on a liquid argonlike system near its triple point has revealed the existence of sound modes propagating for k vectors much larger than those predicted by linear hydrodynamics. A similar behavior, manifested by a secondary peak at finite

FIG. 1. Structure factor of liquid N₂ at $T^*=1.61$ and $\rho^*=0.6964$. From top to bottom, center-of-mass structure factor $S_{c.m.}(k)$, atomic structure factor S(k), and the anisotropic contribution $S_a(k)$ defined by (12). The dots represent an equivalent LJ structure factor.

frequency in the dynamical structure factor $S(k, \omega)$, has also been shown to exist in liquid N₂.^{5,14} The computer results for the smallest k vector (k = 0.21 Å⁻¹) compatible with the periodic boundary conditions of our system have been given previously.¹⁴ Here we present results for larger k values and compare them with inelastic neutron-scattering experiments.

The dynamical structure factor is defined as the Fourier transform

$$S(k, \omega) = \frac{1}{\pi} \int_0^\infty F(k, t) \cos \omega t \, dt \tag{16}$$

of an intermediate scattering function

$$F(k,t) = \frac{1}{4N} \sum_{i,j}^{N} \left\langle \rho_i(k,t) \rho_j^*(k,0) \right\rangle, \qquad (17)$$

where

$$\rho_i(k,t) = 2e^{i\vec{\mathbf{k}}\cdot\vec{\mathbf{R}}_i(t)}\cos[d\vec{\mathbf{k}}\cdot\vec{\mathbf{u}}_i(t)]$$
(18)

is the time-dependent analog of (6).

The static structure factor S(k) defined in (3) is the zeroth moment of $S(k, \omega)$, i.e.,

$$S(k) = \int_{-\infty}^{+\infty} S(k, \omega) \, d\omega \,. \tag{19}$$

Again the angular part in (16) can be expanded on a basis set of spherical harmonics and F(k,t) separated into an isotropic and an anisotropic term

$$F(k,t) = j_0^2(kd)F_{\rm cm}(k,t) + F_{\rm aniso}(k,t) , \qquad (20)$$

where

$$F_{\rm cm}(k,t) = \frac{1}{N} \sum_{i,j}^{N} \langle e^{i\vec{k}\cdot\vec{R}_{i}(t)} e^{-i\vec{k}\cdot\vec{R}_{j}(0)} \rangle .$$
(21)

452

453

TABLE I. Center-of-mass structure factor $S_{c.m.}(k)$, atomic structure factor S(k), and atom-atom radial distribution function $g_a(r)$ for liquid N₂ at $T^*=1.61$ and $\rho^*=0.6964$.

kσ	$S_{c.m.}(k)$	S (k)	r/o	g _a (r)	kσ	S _{c.m.} (k)	S (k)	r/o	$g_{a}(r)$
0.8303	0.0216	0.0216	0.8400	0.0000	9.7710	0.8225	0.3298	2.2000	1.2180
1.0876	0.0196	0.0193	0.8800	0.0530	10.0867	0.9478	0.3842	2.2400	1.2030
1.3449	0.0237	0.0231	0.9200	0.1120	10.4025	1.0522	0.3993	2.2800	1.1760
1.6022	0.0249	0.0239	0.9600	0.5380	10.7183	1.1791	0.4316	2.3200	1.1420
1.8595	0.0270	0.0251	1.0000	1.1750	11.0340	1.2381	0.4814	2.3600	1.1040
2.1168	0.0267	0.0244	1.0400	1.6540	11.3498	1.2659	0.4831	2.4000	1.0630
2.3740	0.0284	0.0255	1.0800	1.8530	11 0055	1 0007	0 1000	0.4400	1 0100
2.6313	0.0350	0.0301	1.1200	1.8660	11.6655	1.2297	0.4906	2.4400	1.0180
2.8886	0.0386	0.0320	1.1600	1.8000	11.9813	1.1887	0.4943	2.4800	0.9740
3.1459	0.0479	0.0380	1.2000	1.7280	12.2970	1.1638	0.4761	2.5200	0.9370
0 4000	0.0500	0.0450	1 9 4 9 9	1 0000	12.6128	1.0973	0.4798	2.5600	0.9020
3.4032	0.0589	0.0453	1.2400	1.6680	12.9286	1.0301	0.4699	2.6000	0.8780
3.6605	0.0769	0.0575	1.2800	1.6070	13.2443	0.9454	0.4436	2.6400	0.8630
3.9177	0.0955	0.0682	1.3200	1.4960	13.5601	0.9173	0.4255	2.6800	0.8550
4.1750	0.1186	0.0838	1.3600	1.3360	13.8758	0.8579	0.3967	2.7200	0.8600
4.4323	0.1618	0.1139	1.4000	1.1620	14.7154	0.8299	0.3502	2.7600	0.8720
4.6896	0.2306	0.1583	1.4400	1.0030	15.4371	0.9117	0.3716	2.8000	0.8930
4.9469	0.3385	0.2306	1.4800	0.8740	16,1588	1.0499	0.3865	2.8400	0 9200
5.2042	0.4959	0.3354	1.5200	0.7750	16.8806	1.0949	0.4319	2 8800	0.9500
5.4615	0.8000	0.5492	1.5600	0.7020	17 6023	1 0412	0 4427	2 9200	0.9810
5.7187	1.2985	0.8928	1.6000	0.6520	18 3240	1 0041	0.4898	2.9200	1 0110
5.9760	2.1178	1.4795	1.6400	0.6220	19 0458	0.9799	0.5301	3 0000	1 0380
6 2333	2.8280	2.0132	1 6800	0.6170	19 7675	0.9539	0.5361	3.0400	1.0000
6 4906	2.7903	2.0082	1 7200	0.6320	20 4892	0.9609	0.5356	3 0800	1.0010
6 7479	2.2154	1.6193	1 7600	0.6680	21 2110	0.9981	0.5350	3 1200	1 0840
7 0052	1.4085	1 0449	1 8000	0.7270	21 9327	1 0292	0.5358	3 1600	1 0890
7 2624	0.9807	0.7182	1.8400	0.7950	22 6544	1.0375	0.5330	5.1000	1.0050
7 5197	0.7646	0.5523	1.8800	0.8690	22.0014	1.0515	0.0400		
7 7770	0 6661	0.4664	1 9200	0.9450	23.3762	1.0020	0.5486		
8 03/3	0.5763	0.3873	1.9200	1.0170	24.0979	1.0092	0.5710		
0.0040	0.5628	0.3674	2 0000	1.0170	24.8196	0.9990	0.5712		
0.1944	0.3028	0.3014	2.0000	1.0030	25.5414	0.9958	0.5675		
8.5079	0.5342	0.3136	2.0400	1.1390	26.2631	0.9909	0.5488		
8.8237	0.5470	0.2844	2.0800	1.1820	26.9848	1.0075	0.5293		
9.1395	0.6202	0.3160	2.1200	1.2100	27.7066	0.9871	0.5068		
9.4552	0.6805	0.3131	2.1600	1.2200					

FIG. 2. Dynamical structure factor $S(k, \omega)$ (normalized to unity) for the k vectors $k\sigma = 0.992$, 1.565, 2.126, and 2.530.

FIG. 3. Dynamical structure factor $S(k, \omega)$ (normalized to unity) for the k vectors $k\sigma=3.508$, 4.707, 5.344, 6.354, and 36.5. The circles represent the inelastic neutron scattering results of Carneiro and McTague (Ref. 5). The triangles represent the dynamical structure factor of an equivalent LJ fluid. For $k\sigma=36.5$, the dotted line represents the dynamical structure factor $S_{\rm c.m.}(k, \omega)$ for the center-of-mass motion.

In Figs. 2 and 3 we show $S(k, \omega)$ (normalized to unity) for $k\sigma = 0.99-6.35$ and for one higher k value, $k\sigma = 36.5$. $S(k, \omega)$ for $k\sigma = 1.565$ is the average of the three $S(k, \omega)$ functions corresponding to $k\sigma$ = 1.403, 1.569, and 1.719; $S(k, \omega)$ for $k\sigma = 2.13$ is the average of the $S(k, \omega)$ for $k\sigma = 1.985$, 2.105, and 2.219. The value $k\sigma = 6.35$ corresponds to the main peak in the static structure factor. In Table II we list the values for $S(k, \omega = 0)$.

Up to $k\sigma = 6.35$ no difference in shape could be detected between F(k,t) and $F_{\rm cm}(k,t)$ (within statistical errors). On the contrary, at $k\sigma = 36.5$ the decrease of $F_{\rm cm}(k,t)$ is noticeably slower in time and anisotropic terms seem no longer negligible (cf. Fig. 3).

The results for the intermediate scattering functions F(k, t) are given in Tables III-V. The corre-

	kσ	$S(k, \omega = 0)$
<u>-</u>	0 709	0.059
	0.992	0.026
	1.565	0.016
	2.126	0.017
	2.530	0.016
	3.508	0.023 (0.30)
	4.707	0.104
	5.344	0.436 (0.63)
	6.354	6.61 (4.25)
	36.46	0.032

TABLE III. Intermediate scattering functions F(k, t) for $k\sigma = 0.99$, 1.57, 2.13, and 2.53. The time t (column 1) is in intervals of $2 \times 10^{-14} \Delta t$ sec.

kσ	0.99	1.57	2.13	2.53	kσ	0.99	1.57	2.13	2.53
Δt	4	2	2	2	Δt	4	2	2	2
0	0.0443	0.0466	0.0502	0.0573	30	0.0045	0.0095	0.0068	0.0072
1	0.0432	0.0459	0.0488	0.0555	31	0.0045	0.0090	0.0067	0.0069
2	0.0400	0.0437	0.0451	0.0504	32	0.0046	0.0086	0.0066	0.0065
3	0.0352	0.0404	0.0397	0.0433	33	0.0049	0.0081	0.0065	0.0062
4	0.0295	0.0363	0.0334	0.0353	34	0.0051	0.0078	0.0063	0.0059
5	0.0236	0.0316	0.0270	0.0279	35	0.0054	0.0075	0.0062	0.0056
6	0.0180	0.0269	0.0213	0.0219	36	0.0056	0.0073	0.0060	0.0053
7	0.0132	0.0224	0.0168	0.0177	37	0.0056	0.0071	0.0059	0.0051
8	0.0095	0.0184	0.0136	0.0154	38	0.0056	0.0069	0.0057	0.0049
9	0.0071	0.0149	0.0117	0.0145	39	0.0053	0.0068	0.0055	0.0048
10	0.0060	0.0122	0.0110	0.0147	40	0.0050	0.0067	0.0054	0.0047
11	0.0060	0.0103	0.0110	0.0153	41	0.0045	0.0065	0.0053	0.0046
12	0.0069	0.0091	0.0121	0.0159	42	0.0040	0.0064	0.0051	0.0045
13	0.0083	0.0086	0.0125	0.0162	43	0.0035	0.0063	0.0050	0.0043
14	0.0100	0.0086	0.0128	0.0161	44	0.0030	0.0062	0.0049	0.0042
15	0.0118	0.0089	0.0127	0.0155	45	0.0026	0.0061	0.0048	0.0041
16	0.0132	0.0095	0.0131	0.0147	46	0.0023	0.0059	0.0047	0.0039
17	0.0143	0.0103	0.0132	0.0136	47	0.0022	0.0058	0.0046	0.0038
18	0.0148	0.0111	0.0125	0.0125	48	0.0022	0.0056	0.0045	0.0036
19	0.0148	0.0117	0.0117	0.0116	49	0.0023	0.0053	0.0044	0.0034
20	0.0143	0.0123	0.0109	0.0107	50	0.0025	0.0051	0.0043	0.0033
21	0.0133	0.0126	0.0100	0.0101	51	0.0027	0.0048	0.0042	0.0031
22	0.0121	0.0128	0.0093	0.0096	52	0.0029	0.0046	0.0041	0.0030
23	0.0107	0.0128	0.0086	0.0092	53	0.0030	0.0043	0.0040	0.0028
24	0.0092	0.0126	0.0081	0.0089	54	0.0031	0.0040	0.0040	0.0027
25	0.0079	0.0122	0.0077	0.0087	55	0.0031	0.0038	0.0039	0.0025
26	0.0067	0.0118	0.0074	0.0084	56	0.0030	0.0036	0.0039	0.0024
27	0.0057	0.0112	0.0072	0.0082	57	0.0029	0.0035	0.0039	0.0024
28	0.0050	0.0107	0.0070	0.0079	58	0.0026	0.0033	0.0038	0.0024
29	0.0046	0.0101	0.0069	0.0076	59	0.0023	0.0032	0.0038	0.0023

TABLE II. Values $S(k, \omega = 0)$ of the dynamical structure factor (in units of τ_0). In brackets are the experimental values of Ref. 5.

<u>13</u>

2	A	B	L	Е	III	(Continued)	
---	---	---	---	---	-----	-------------	--

	e de la composition d			TABLE I	II (Contini	led)			ja se stratin
kσ	0.99	1.57	2.13	2.53	kσ	0.99	1.57	2.13	2.53
Δt	4	2	2	2	Δt	4	2	2	2
60	0.0021	0.0031	0.0037	0.0023	105	a that a s	a de la composición d	0.0017	
61	0.0018	0.0031	0.0036	0.0023	106			0.0016	
62	0.0015	0.0030	0.0036	0.0022	107			0.0015	
63	0.0014	0.0030	0.0035	0.0022	108			0.0014	
64	0.0013	0.0030	0.0034	0.0021	109			0.0013	
65	0.0012	0.0030	0.0033	0.0021	110			0 0013	
66	0.0013	0.0029	0.0032	0.0021	111			0.0013	
67	0.0013	0.0029	0.0031	0.0021	112			0.0013	
68	0.0014	0.0029	0.0030	0.0022	113			0.0013	
69	0.0016	0.0028	0.0029	0.0022	114			0.0013	
70	0.0017	0 0097	0 0029	0 0022	115			0.0013	
71	0.0019	0.0021	0.0028	0.0022	116			0.0012	
72	0.0019	0.0020	0.0028	0.0022	117			0.0012	
73	0.0010	0.0024	0.0020	0.0021	118			0.0011	
74	0.0020	0.0021	0.0027	0.0020	119			0.0011	
75	0.0020	0.0019	0.0026	0.0020				0.0011	
76		0.0017	0.0026	0.0019	120			0.0011	
77		0.0015	0.0025	0.0018	121			0.0010	
78		0.0014	0.0025	0.0018	122			0.0010	
79		0.0013	0.0025	0.0017	123			0.0010	
					124			0.0010	
80		0.0011	0.0025	0.0016	125			0.0010	
81		0.0011	0.0025	0.0015	126			0.0011	
82		0.0010	0.0025	0.0014	127			0.0011	
83			0.0025	0.0013	128			0.0011	
84			0.0025	0.0012	129			0.0011	
85			0.0025	0.0011	130			0.0011	
86			0.0024	0.0010	131			0.0012	
87			0.0024	0.0008	132			0.0012	
88			0.0024	0.0007	133			0.0012	
89			0.0023	0.0006	134			0.0012	
90			0.0023	0.0005	135			0.0013	
91			0.0023	0.0004	136			0.0013	
92			0.0022	0.0004	137			0.0013	
93			0.0022	0.0004	138			0.0012	
94			0.0022	0.0004	139			0.0012	
95			0.0021	0.0004	140			0 0012	
96			0.0021	0.0004	140			0.0012	
97			0.0020	0.0004	142			0.0011	
98			0.0020	0.0004	143			0.0010	
99			0.0021	0.0004	144			0.0010	
100			0.0022	0.0003	145			0.0007	
101			0.0022	0.0003	146			0.0006	
102			0.0020	0.0000	147			0.0005	
103			0.0019		148			0.0005	
104			0.0018		149			0.0004	
					<u></u>				

sponding dynamical structure factors $S(k, \omega)$ are then obtained by (16).

As for the static case, we can compare the dynamical structure factors of the center-of-mass motion of $N_{\rm 2}$ and of an LJ liquid. This is done in Fig. 3 for $k\sigma = 3.51$, using the LJ parameters determined in Sec. II. The agreement is almost perfect except for large ω ($\omega \tau_0 > 3.5$) where the LJ $S(k, \omega)$ seems to decrease more rapidly (which indicates different small-time behaviors). No precise comparison could be made for other k values (because the k values do not correspond), but it is apparent that for lower k values also both structure factors look very similar. For $N_{\rm 2}$ the seconTABLE IV. Intermediate scattering functions F(k, t) for $k\sigma = 3.51$, 4.71, 5.34, and 6.35. The time t (column 1) is in intervals of $2 \times 10^{-14} \Delta t$ sec.

kσ	3.51	4.71	5.34	6.35	kσ	3.51	4.71	5.34	6.35
Δt	4	4	8	8	Δt	4	4	8	8 .
0	0.0950	0.3120	0.8120	4.3300	35	0.0020	0.0138	0.0518	0.8100
1	0.0824	0.2900	0.7200	4.1900	36	0.0019	0.0131	0.0432	0.7880
2	0.0567	0.2410	0.5790	3.9400	37		0.0119	0.0310	0.7660
3	0.0368	0.1930	0.4670	3.6800	38		0.0102	0.0187	0.7460
4	0.0285	0.1570	0.3800	3.4400	39		0.0084	0.0080	0.7250
5	0.0263	0.1310	0.3160	3.2200	10		0.0000		0 5000
6	0.0241	0.1120	0.2660	3.0300	40		0.0068		0.7060
7	0.0205	0.0952	0.2270	2.8700	41		0.0055		0.6870
8	0.0170	0.0819	0.1960	2.7200	42		0.0046		0.6680
9	0.0147	0.0716	0.1700	2.5900	43		0.0040		0.6500
10	0.0104	0.0000	0 1 4 5 0	0.4000	44		0.0036		0.6330
10	0.0136	0.0639	0.1450	2.4600	45				0.6190
10	0.0129	0.0584	0.1250	2.3400	46				0.6050
12	0.0124	0.0544	0.1090	2.2200	47				0.5910
13	0.0120	0.0514	0.0969	2.1000	48				0.5740
14	0.0114	0.0489	0.0876	2.0000	49				0.5570
15	0.0105	0.0464	0.0791	1.9100	50				0.5430
16	0.0095	0.0438	0.0734	1.8300	51				0.5300
17	0.0086	0.0413	0.0718	1.7500	52				0.5170
18	0.0080	0.0389	0.0723	1.6700	53				0.5050
19	0.0074	0.0367	0.0706	1.5900	54				0.4920
20	0.0069	0.0345	0.0664	1.5100	55				0.4780
21	0.0063	0.0322	0.0636	1.4400	56				0.4590
22	0.005 9	0.0301	0.0628	1.3700	57				0.4390
23	0.0053	0.0285	0.0645	1.3000	58				0.4180
24	0.0047	0.0272	0.0668	1.2500	59				0.3960
25	0.0043	0.0258	0.0659	1.2000					
26	0.0040	0.0238	0.0627	1.1600	60				0.3760
27	0.0039	0.0216	0.0609	1.1100	61				0.3540
28	0.0038	0.0195	0.0614	1.0700	62				0.3220
29	0.0038	0.0178	0.0635	1.0200	63				0.2760
30	0.0035	0.0165	0.0654	0.9760	65				0.1660
31	0.0030	0.0156	0.0657	0.9300	66				0.1130
32	0.0024	0.0150	0.0663	0.8900	67				0.0699
33	0.0021	0.0146	0.0636	0.8580	68				0.0392
34	0.0021	0.0143	0.0578	0.8320					

ary peak, which seems to be slightly more pronounced than in the LJ system, disappears at $k\sigma \sim 1.2$, somewhat later than for the LJ system $k\sigma = 1$).

Finally, in Fig. 3 we compare our MD results with inelastic neutron-scattering measurements⁵ for $k\sigma$ =3.5, 5.34, and 6.35. Good agreement is obtained between the normalized structure factors for the two highest k vectors, although the absolute values differ by about 30% (cf. Table II). However, for $k\sigma$ =3.51 the disagreement is complete both for the shape and absolute value of $S(k, \omega)$. In this k region, incoherent scattering S_{inc} contributes significantly to the scattering cross section. In the analysis of their experimental results Carneiro and McTague⁵ use a simple diffusion expression for $S_{\rm inc}$. The reliability of the coherent-scattering results may depend on the adequacy of this model $S_{\rm inc}$. More seriously, the lack of correction of the experimental results for multiple scattering may entail large errors on $S(k, \omega)$.

IV. CONCLUSION

The main result of this work is that it is very difficult to obtain information on the effect of the

TABLE V. Intermediate scattering functions F(k,t)(column 2) and $F_{c.m.}(k,t)$ (column 3) for $k\sigma = 36.5$. The time t (column 1) is in intervals of $2 \times 10^{-14} \Delta t$ sec.

kσ	36.5	36.5
Δt	1	1
0	0.9550	0.7420
1	0.8760	0.7060
2	0.6780	0.6080
3	0.4470	0.4770
4	0.2530	0.3440
5	0.1240	0.2290
6	0.0527	0.1420
7	0.0195	0.0821
8	0.0068	0.0427
9	0.0032	0.0180
10	0.0027	0.0029
11	0.0028	
12	0.0027	
13	0.0023	
14	0.0020	
15	0.0018	
16	0.0014	
17	0.0008	
18	0.0002	

- *Laboratoire associé au Centre National de la Recherche Scientifique.
- ¹K. Krynicki, E. J. Rahkamaa, and J. G. Powles, Mol. Phys. <u>28</u>, 853 (1974).
- ²K. Krynicki, E. J. Rahkamaa, and J. G. Powles, Mol. Phys. <u>29</u>, 539 (1975).
- ³J. C. Dore, G. Walford, and D. I. Page, Mol. Phys. <u>29</u>, 565 (1975).
- ⁴J. H. Clarke, J. C. Dore, and R. N. Sinclair, Mol. Phys. 29, 581 (1975).
- ⁵K. Carneiro and J. P. McTague, Phys. Rev. A <u>11</u>, 1744 (1975).
- ⁶R. N. Sinclair, J. H. Clarke, and J. C. Dore, J. Phys. C <u>8</u>, L41 (1975).
- ⁷P. E. Schoen, P. S. Y. Cheung, D. A. Jackson, and
- J. G. Powles, Mol. Phys. 29, 1197 (1975).
- ⁸P. Van Konynenburg and W. A. Steele, J. Chem. Phys. 62, 2301 (1975).
- ⁹U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis, J. Chem. Phys. 63, 2570 (1975).
- ¹⁰W. D. Ellenson and J. P. McTague (unpublished), quoted from Ref. 5.
- ¹¹J. Barojas, D. Levesque, and B. Quentrec, Phys. Rev. A 7, 1092 (1973).
- ¹²B. Quentrec and C. Brot, Phys. Rev. A <u>12</u>, 272 (1975).
- ¹³P. S. Y. Cheung and J. G. Powles, Mol. Phys. <u>30</u>, 921 (1975).
- ¹⁴D. Levesque and J. J. Weis, Phys. Rev. A <u>12</u>, 2584 (1975).
- ¹⁵Y. D. Chen and W. A. Steele, J. Chem. Phys. <u>54</u>, 703 (1971).
- ¹⁶P. F. Morrison, Ph.D. thesis (California Institute of

nonspherical symmetry of the molecules like N₂ from neutron-diffraction experiments because the precision must be greater than 3% for $k < 3 \text{ Å}^{-1}$. All of the experimental results can be reproduced by using a model system of spherical molecules. This means that S(k) and $S(k, \omega)$ are very insensitive to the anisotropy of the interaction for diatomic molecules, and this also explains the success of the perturbation theories in reproducing $g_{\rm cm}(r)$ and $g_a(r)$. However, the equation of state, namely, the pressure, is much more sensitive to the details of the interaction and seems to be the relevant quantity to be studied to check perturbation theories and molecular potential forms.

For $S(k, \omega)$, the disagreement for $k\sigma < 3$ between our computation and experiment is very large. This result is unexpected because the agreement at higher $k\sigma$ values is quite good and the molecular-dynamics results are easily reproduced by a model system of spherical molecules. Correction of the experimental results for double scattering would probably reduce this disagreement.

Technology, 1972) (unpublished).

- ¹⁷L. J. Löwden and D. Chandler, J. Chem. Phys. <u>59</u>, 6587 (1973); 62, 4246 (1975).
- ¹⁸S. Sung and D. Chandler, J. Chem. Phys. <u>56</u>, 4989 (1972).
- ¹⁹W. A. Steele and S. I. Sandler, J. Chem. Phys. <u>61</u>, 1315 (1974).
- ²⁰K. E. Gubbins, C. G. Gray, P. A. Egelstaff, and M. S. Ananth, Mol. Phys. <u>25</u>, 1353 (1973).
- ²¹M. S. Ananth, K. E. Gubbins, and C. G. Gray, Mol. Phys. <u>28</u>, 1005 (1974).
- ²²S. I. Sandler, Mol. Phys. <u>28</u>, 1207 (1974).
- ²³J. C. Rasaiah, B. Larsen, and G. Stell, J. Chem. Phys. <u>63</u>, 722 (1975).
- ²⁴K. C. Mo and K. E. Gubbins, Chem. Phys. Lett. <u>27</u>, 144 (1974); J. Chem. Phys. <u>63</u>, 1490 (1975).
- ²⁵J. C. Raich, N. S. Gillis, and A. B. Anderson, J. Chem. Phys. <u>61</u>, 1399 (1974).
- ²⁶J. K. Kjems and G. Dolling, Phys. Rev. B <u>11</u>, 1639 (1975).
- ²⁷J. J. Weis and M. L. Klein, J. Chem. Phys. <u>63</u>, 2869 (1975).
- ²⁸B. Quentrec, Phys. Rev. A <u>12</u>, 282 (1975).
- ²⁹M. J. Mandell, J. Chem. Phys. <u>60</u>, 1432 (1974); <u>60</u>, 4880 (1974).
- ³⁰V. F. Sears, Can. J. Phys. <u>44</u>, 1279 (1966); <u>44</u>, 1299 (1966).
- ³¹S. I. Sandler, A. Das Gupta, and W. A. Steele, J. Chem. Phys. <u>61</u>, 1326 (1974).
- ³²D. Levesque, L. Verlet, and J. Kürkijarvi, Phys. Rev. A <u>7</u>, 1690 (1973).