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The transport properties of molten alkali halides have been calculated in molecular dynamics "experiments"
based on rigid-ion pair potentials of the Huggins-Mayer form with parameters proposed by Tosi and Fumi.
The coefficients of shear viscosity and electrical conductivity are obtained by computing the response of the
system to a small applied field of the appropriate type, and the extension of the method to the calculation of
current-current correlation functions of acoustic and optic character is also considered. Comparison with

experimental data shows that the electrical conductivities are very well reproduced, but systematic
discrepancies are found for diffusion coefficients and viscosities.

I. INTRODUCTION

A number of papers' ' have now appeared in
which the thermodynamic properties of molten
alkali halides have been studied in computer "ex-
periments, " but relatively little work on the dy-
namical properties has so far been reported. In
the present paper we describe the results of a
series of molecular dynamics calculations of the
transport coefficients and collective dynamical
modes of a selected group of salts at temperatures
close to the respective triple points: LiF, NaCl,
NaI, KI, HbC1, and RbI. In all cases we adopt the
rigid-ion potentials proposed by Tosi and Fumi, 4

and one of our main objectives is to assess how
far it is possible to describe the transport prop-
erties of such systems without allowing for the
effects of polarization.

No theory exists which makes it possible to re-
late the various features of transport in molten
salts to the different terms in the potential, and
rather little is known about the importance to be
attached to differences in mass and size and to
ionic polarizability. In pure atomic fluids, where
the mass appears as a scaling factor of the time,
the geometrical factor can be accounted for on the
basis of a hard -sphere model, "dispersion forces
playing only a minor role. In binary mixtures,
even of simple liquids such as the rare gases, the
problem is more complicated, and here computer
simulation helps in establishing empirical corre-
lations. It has been shown, ' for example, that dif-
fusion in mixtures depends on the atomic packing
in much the same way as in pure fluids. In ionic
melts an added difficulty is the presence of the
long-range Coulomb interaction, which contri-
butes most of the potential energy of the system.
Furthermore, the effects of polarization cannot

be taken into account in any simple way.
From the remarks we have made it is clear that

we do not expect to be able to interpret our results
in terms of the detailed character of the individual
ions. What we are more concerned with is an
examination of the extent to which the transport
properties of molten salts can be described on
the basis of potentials which have been fitted to
experimental equilibrium data, no explicit refer-
ence being made to the question of polarization.
It might be expected that polarization would facil-
itate the process of diffusion because the screening
of the ion which is diffusing can be provided by a
polarization cloud; in a rigid-ion model the main-
tenance of local charge neutrality can be achieved
only by bodily displacement of the ions. Another
phenomenon in which polarization may play a part
is that of correlated motion of ions of opposite
charge. Correlations of this type alter the rela-
tive contributions made to diffusion and electrical
conductivity and are responsible for the observed
deviations from the Nernst-Einstein relation.

Much is still unknown about the collective dy-
namical properties of molten salts, and computer
experiments have an important role to play here.
Questions such as whether the characteristic
frequencies of transverse and longitudinal modes
of acoustic and optic character are drastically
reduced upon melting, or that of determining the
range of the wave vector in which propagating
modes exist, have so far been answered only par-
tially or not at all. These particular collective
modes are in any case clearly separable only in
the long-wavelength limit, and a topic of consid-
erable interest in itself is that of constructing a
set of orthogonal dynamical variables which can
be used to describe the dynamical properties of
the melt over the range of wave vectors from the
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hydrodynamic regime to the merging into free-
particle modes.

The computational effort necessary to obtain ac-
curate values for transport coefficients by the
usual means is rather heavy. To overcome this
problem we have exploited the method described
elsewhere, " in which the response of the system
to a small perturbation is calculated directly. In
this way we have computed the current-current
correlation functions at several wave vectors, and
from these we have evaluated the coefficients of
electrical conductivity and shear viscosity. The
conductivity is obtained from the transverse optic
current autocorrelation function, and the viscosity
is calculated by extrapolation to zero wave vector
of the integral of the transverse acoustic corre-
lation function. We have also obtained some infor-
mation on the small cross-correlations between
acoustic and optic modes. Finally, for each
species n we have evaluated thediffusion coeffi-
cient D from the usual formula

D~= ~ Z~t dt,
m cf jp

where Z„(t) is the normalized velocity autocor-
relation function

Z„(t) =(v, (t) v, „(0))I(Iv, I')

II. METHOD OF CALCULATION

A. Molecular dynamics

We have closely followed the methods used in
other' "molecular dynamics "experiments" on
Coulombic systems. All calculations were made
for systems of 216 ions, with periodic boundary
conditions, and the electrostatic energy was eval-
uated by the Ewald method. " The potential used

,was of the generalized Huggins-Mayer form pro-
posed by Tosi and Fumi, ' which we may write as

rp(xq&) = + bc ~& exp[(a» + a~ r;~)/y]-c„o„
K jf

where Q, and Q& are the ionic charges. The terms
on the right-hand side of Ec(. (3) represent, suc-
cessively, the Coulombic interaction, overlap re-
pulsion, and dipole-dipole and dipole -quadrupole
dispersion forces. The values used for the various
parameters in the potential (3) are listed in Table

The thermodynamic states studied are summa-
rized in Table II, together with some other rele-
vant information; 4t is the time step in the nu-
merical integration of the equations of motion and

N, is the total number of integration steps. The
temperature is in all cases some 5% higher than
that of the corresponding triple point.

All the molecular dynamics runs were broken up
into what we call "segments, " typically lasting for
60 time steps. The trajectories of the ions in each
segment were computed twice, starting from the
same initial configuration. In one case the calcu-
lation proceeded in the normal way; in the other,
one or more small forces, of order I eVcm ',
were applied to the ions. The currents induced in
the system by the action of the applied force were
computed as functions of time simply by calcula-
ting the difference in current in the perturbed and
unperturbed trajectories, and were averaged over
all segments making up the run. By a standard
result of linear response theory, "the mean in-
duced current can be related to the autocorrelation
function of the appropriate dynamical variable.
Specifically, if bB(t) is the change induced in a
variable B by an external potential cp& which is
conjugate to a variable A., then in the mean we
can write

~t
(&B(t))=~' (A(0)B(v)) qr„(r) dv.

«ce

The basis of the method has been discussed else-
where. " Here we restrict ourselves to a consid-
eration of the particular problems which arise in
the case of molten salts, formal details being
given in the Appendix.

Note that the number of time steps quoted in
Table I refers to the number of indejendent con-

TABLE I. Parameters in the interionic potentials. b =3.38 x 10 3 erg; &++ =1.25
(2.0 for LiF), &+ =1.0 (1.375 for LiF), and &. =0.75.

Salt a+
&A) (A)

C++ C C+
(10 erg cm )

D++ D— D+-
(10 '6 erg cm')

LiF
NaC1
NaI
KI
RbC1
RbI

0.816
1.170
1.170
1.463
1.587
1.587

1.179
1.585
1.907
1.907
1.585
1.907

0.299
0.317
0.386
0.355
0.318
0.337

0.073
1.68
1.68

24.3
59.4
59.4

14.5
116
392
403
130
428

0.8
11.2
19.1
82
79

135

0.03
0.8
0.8

24
82
82

17 0.6
233 13.9

1100 31
1130 156
260 134

1200 280
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TABLE II. Results of molecular dynamics calculations. Values in parentheses are experimental results.

At
(10 ~ sec) (10 )

V

(cm mol )

D+ D
(10 cm sec ~) (mhocm ~)

rl

(cP)

0 4 5.0 15.00 1287 13.6 11.3 12.1
(9.3)

1.14 0.16 0.159

War

0.8

1.2

1.8

7.5

5.0

8.5

39.10

57.46

68.97

1262

1081

989

10.6 9.9
(14.0) (10.1)

9.4 6.8
(10.5) (5.9)

45

4.2
(4.2)

2.5
(2.7)

1.42
(1.38)

0.87
(0.83)

1.08
(1.01)

1.06
(1.40)

0.09
(0.18)

0 14
(0.08)

-0.06

0,141

0.180

0.107

5.0

5.0

56.48

75.75

1119

1086

5.0
(6.6)

4.3

5.2
(5.8)

3.5

1.81
(1.81)

1.09
(1.09)

0.99
(0.90)

1.12
(0.96)

-0.01
(0.15)

-0.03

0.104

0.102

figurations. The total number of configurations
generated for each system was PJV, , half in the
perturbed and half in the unperturbed trajectory.
The unperturbed trajectories were all continuous,
one segment leading directly onto the next.

8. Electrical conductivity

A simple example of the use of the method is the
application to electrical conductivity. In this case
the force acting on an ioni located at r& is taken
to be

F (r;, t) =F„(Q,/e)e(t)x,

where x is a unit vector in the x direction and e(t)
is the step function

The response which is computed is the induced
electrical current in the same direction

to the time integral of the autocorrelation function
of the electrical current.

The matrix of electrical current correlation
functions is diagonal in homogeneous systems, and
in the statistical mean only the x component of the
induced current remains. The mechanical re-
sponse function does not have the same property,
and there will be a random response in directions
orthogonal to the applied force which will depend
on the initial conditions. In Fig. 1(a) we show a
graph of & J„(t)& as a function of t in the case of
RbI, obtained by averaging over 60 segments. We
also plot the mean current in the orthogonal direc-
tions, which we take as a guide to the statistical
error in the mean response. At short times the
response grows linearly with a slope determined
by the ionic masses. Yt later passes through a
maximum and then attains a constant level. It is
of course essential that the plateau value is reach-
ed before the noise becomes unacceptably large.
Finally, the specific conductivity is given by

The electrical conductance can be calculated from
the statistical average of J„(t) in the limit t- ~,
obtained as a difference between perturbed and
unperturbed trajectories. It follows that the seg-
ment must be sufficiently long for J„(t) to attain
a plateau value. Application of Eq. (4) shows that
the response is related to spontaneous fluctuations
in the unperturbed system by

In other words, the mean response is proportional

where V is the volume of the molecular dynamics
cube.

It is obvious from the fact that both the pertur-
bation and the response are independent of position
in space that we are dealing with a current compo-
nent of zero wave vector. In the k-0 limit it is
not possible, a priori, to distinguish between
longitudinal and transverse modes. However, the
zero-k limits of the two optic modes are quite
distinct, their characteristic frequencies differing
by the plasma frequency. For the reasons we re-
call below, the longitudinal-optic mode k =0 can-
not be observed in a computer "experiment, " and
the current we compute corresponds to the trans-
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FIG. 1. Computed response in arbitrary units in the
calculation of (a) electrical conductivity, and (b) shear
viscosity of RbI.

verse mode.
In a transverse-optic mode the charges of op-

posite sign oscillate in opposite phase with a dis-
placement which varies along the direction of
propagation of the wave. No charge accumulation
results as a consequence of this motion and the
restoring force has only a local origin. In a lon-
gitudinal-optic mode, however, the charges oscil-
late in the direction of the wave vector, the mag-
nitude of displacement again varying along the
direction of propagation. This does lead to charge
accumulation, as can be seen by focusing attention
on the nodes of the waves, where the displace-
ments change sign. The nodal planes are accum-
ulation regions for alternately positive and nega-
tive charges, and it is clear that the origin of the
additional restoring force that raises the longi-
tudinal frequency above the transverse one by a
value equal to the plasma frequency is just the
Coulomb interaction between these rather distant
charge distributions. This effect is present, no
matter how long the wavelength, because of the
infinite range of the Coulomb potential. It is then
obvious that in order to take correctly the limit

lmt - 0 it is necessary to work with a system which
contains a full period of the longitudinal oscil-
lation, thereby ensuring that the attraction be-
tween the charge distributions accumulated on
adjacent nodal planes is taken into account. If

this is not done, it is not to be expected that the
optical oscillation of the system will be speeded
up by the extra restoring force related to the
plasma oscillation. In molecular dynamics, how-
ever, the limit k- 0 is by necessity taken on a
local basis, that is, by monitoring a finite portion
of the system soitkin the infinite wavelength.

A last remark on the calculation of conductivity
has to do with macroscopic polarization. The
forces we apply act directly on the ions; there
are no surfaces on which charges accumulate,
and the electric current flows in the closed toroidal
surface generated by the periodic boundary condi-
tion. Consequently, the number we compute is the
internal or local conductivity.

C. Shear viscosity

The evaluation of the shear viscosity is carried
out by applying a shearing force which is periodic
in space and has by necessity a finite wave vector,

F(r;, t) = Rel, e' ' "6(t)x. (10)

pF„
a'- o k'(u„(%., ~)) '

where p is the number density. The long-wave-
length limit in Eq. (11) is taken by computing the
response to the perturbations having the two small-
est wave vectors which are accessible in our
periodic system, k = (2w/L)(0, 0, 1) and k = (2m/L)

(0, 1, 1), where L is the length of the cube, and
then extrapolating linearly in k' to k =Q. (The term
in k must vanish on grounds of symmetry. ) At
short times the slope of the response (u,(~, f)) as
function of t is different for the two species and
depends upon the mass.

As a variation on Eq. (10)we can choose to apply
forces of different intensity to the ions of different
species. A particularly simple choice is one in
which the force is proportional to the mass, in
which case the accelerations are the same. The
limiting drift velocities of the two species again
turn out to be equal to each other and equal to
that attained in the previous case, provided the
magnitude of the forces is adjusted in such a way
as to leave unaltered the total body force acting

We assume that the force F, which by construction
is orthogonal to%, is directed along the x axis.

This is the same type of perturbation as that
used by Gosling et al. '~ in computing the shear
viscosity of argonlike liquids. The response we

compute is the 9th Fourier component of the drift
velocity (u„(%, t)) . A straightforward hydrodynamic
calculation shows that the limiting value of this
quantity, which turns out to be the same for each
species, is related to the shear viscosity q by
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on a given configuration. We interpret this as
implying that there is a unique shear viscosity in
mixtures, regardless of whether the flux is sus-
tained by gravity or by pressure. In the case when
the mass-weighted perturbation is applied, the
mean response is proportional to the integral of
the transverse mass-current autoeorrelation
function. The demonstration of this equivalence
is given in detail in the Appendix.

The mean response to a perturbation of the form
of (10) is plotted as a function of t in Fig. 1(b),
again for the case of RbI. The behavior is very
different from that obtained in the calculation of
conductivity, the plateau value being reached as-
ymptotically. Furthermore, the noise level is
much smaller, even though the average was com-
puted over 30 segments rather than 60. The rea-
son is simply that in a long-wavelength acoustic-
type perturbation the forces on neighboring ions
are nearly in phase, whereas in an optic-type
perturbation such as (5) the forces on neighboring
ions of opposite sign push such ions towards each
other. The random response is therefore greater
in the second case.

of width 4t, but for practical purposes the distinc-
tion is not important.

In this way we have computed the longitudinal L
and transverse T components of the autocorrela-
tion functions of mass ~ and charge currents. These
functions we denote, in an obvious notation, by
C ~„(k, t), C ~„(k, f), Coo(k, f), and Coo(k, t) N.ote
that the electrical conductivity is given by the
integral of C+e(0, t) and the shear viscosity by the
integral of C„„(0,t). We have also measured the
small cross correlations of longitudinal currents
of mass and charge described by the function
C"„o(k, t) by computing the optic response to an
acoustic-type perturbation or vice versa.

The calculations of the current correlation func-
tions were made by simultaneously applying a num-
ber of perturbations. This has the effect of in-
creasing the random response; in order to reduce
the resulting noise level, the statistical averages
were computed over 100 segments.

III. RESULTS AND DISCUSSION

A. Transport coefficients

D. Current-current autocorrelation functions

It should be clear from the discussion given in
Secs. IIB and II C that the techniques used for the
evaluation of conductivity and shear viscosity are
special cases of the calculation of correlations in
the wave-number -dependent fluctuations in the
currents of charge and mass. For KI and NaC1 we
have used a more general approach to obtain in-
formation on the collective modes for selected
values of the reduced wave number n, where
k =n(2x/L). We apply a force in the x direction,
say, with a magnitude which varies periodically
in space in either the x direction for longitudinal
modes or in the z direction for transverse modes.
At any given point in space the applied force acts
either (a) in the same sense on all ions but with a
magnitude proportional to the mass, or (b) in op-
posite senses on ions of different charge but with

equal magnitude. Case (a) corresponds to acous-
tic-type modes and gives rise to mass currents;
case (b) corresponds to optic-type modes and gives
rise to charge currents. A more detailed discus-
sion is contained in the Appendix.

In these calculations the force was applied only
at t =0, so that the mean response at a later time
is the autocorrelation function of the corresponding
current rather than the integral. Strictly speaking,
this statement is correct only when the force is a
true 5 function in time. In fact, because of the use
of a finite time interval in the numerical integra-
tions, the force actually applied is a finite pulse

The calculated values of the transport coefficients
are listed in Table II together with the experimen-
tal results, where these are available. We esti-
mate the statistical uncertainties in the molecular
dynamics calculations to be approximately 2% in
D, and D and 5% in o and q The expe. rimental
data are taken from the work of Young and
O' Connell. " These authors have presented an
empirical corresponding-states correlation of the
transport coefficients of 1:1alkali-metal molten
salts. In some cases we have been obliged to make
a small interpolation of their results, but we do
not believe that any significant error has thereby
been introduced.

In Fig. 2 we show some representative velocity
autocorrelation functions. When one ion is sig-
nificantly smaller than its partner, the correspond-
ing autocorrelation function is strongly oscilla-
tory. When the ions are approximately equal in
mass, however, the two autocorrelation functions
not only resemble each other but also are not very
different from that of an argonlike liquid near its
triple point. This second similarity is illustrated
very well by the simplest case when both mass
and size are equal, as in the system studied by
Hansen and McDonald. ' The oscillations which
are seen when the ionic sizes are significantly dif-
ferent are considerably more pronounced than
those observed, ' say, in mixtures of Lennard-
Jones fluids. Presumably the effect of the Cou-
lombic force is to accentuate those features of
the autocorrelation which originate in differences
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FIG. 5. Longitudinal mass current-current autocorre-
iation function for KI ate= 1 (0=0.27 A ~) ands=2
y =0 84K-')

respond to peaks in the dynamical structure fac-
tors. }

The second moments of the power spectra can be
calculated from the short-time behavior of the
correlation functions, which is particularly well-
suited for study using the perturbation method. We
find for the square roots of the moments 5.23x10"
radsec ' (optic) and 1.43x10"radsec ' (acoustic).
Thus the position of the optic peak coincides with
the second moment of the distribution, but the
acoustic peak shows a rather large shift.

In KI the two longitudinal autocorrelation func-
tions for n =1 (k =0.27 A '}behave very much in
the same way as in NaC1. For n =2, however, the
function C~s„(k, t) still displays a full oscillation,
whereas in NaC1 the decay is overdamped. This

t ()o"sec)
0 2 4 6 8 0 2 4 6 8

behavior, illustrated in Fig. 5, suggests that a
Brillouin peak may be more easily-observed in
KI.

In Fig. 6 we show the transverse acoustic cor-
relation function in KI for n = 1 and z = 3. At the
lower k value the mode is purely diffusive and the
power spectrum is centred at the origin. At n =-3,

however, there is an oscillatory behavior and a
peak in the power spectrum is clearly visible, in-
dicating the onset of propagating shear waves.

The transverse optic autocorrelation function at
k =0 is shown in Fig. 7, again for KI. The inter-
diffusion correlation function is also plotted; the
discrepancies between the two curves lie within
the limits of statistical error. This figure justifies
our association of the k =0 optical mode with the
transverse charge current. For n = 3 we find
virtually an identical correlation function, whereas
the longitudinal current correlation function is
very different. We recall that in the solid there is
a related result; the frequency of the transverse
optic phonon is almost independent of k.

We now return our attention to Fig. 3. The small
curves at the foot of the graph are the function
C"„q(t), the measured cross correlation between
acoustic and optic currents. This cross correla-
tion is zero at t =0 and its maximum value is less
than 1.5% of the zero-time value of the autocorre-
lation functions. (The scale of the cross-correla-
tion function has been expanded by a factor of V.)
In the case shown the noise level is considerably
higher when the cross correlation is measured as
the optic response to an acoustic-type perturbation
rather than vice versa, but we do not know whether
this is true in general.

In Fig. 4 the long oscillation of low amplitude is
the power spectrum C~so(k, u), plotted on an arbi-
trary relative scale. The second moment of this
spectrum is negative, as is obvious from the

C (t)
C (o)

C(ty
C(o)

0.5 0.5

\

~&~l
0.5 $.0

I

1.5
l

0.5 ~.0 ~.5
4) (10" rad/sec)

2 4
t (so " sec)

FIG. 6. Transverse mass current-current autocorre-
lation function for KI at s =1 (k =0.27 L i) and s =2
(k =0.81 L ~). The dashed lines are the power spectra.

FIG. 7. Transverse charge current-current autocorre-
l.ation function for KI atk =0. The dashed line is the
autocorrelation function of the electrical current.
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shape of the corresponding time correlation func-
tion shown in Fig. 3.

The description of the collective modes of a
molten salt in terms of mass and charge currents
is in some respects not the best one. In particu-
lar, these variables are nearly independent only
at long wavelengths. By an appropriate rotation
of axes, however, it is possible to choose two
linear combinations of currents which are more
nearly orthogonal in the sense that the second
moments of the cross-correlation function ean be
made to vanish at short times as well as at t =0.'
The hope in choosing such a transformation is
that the corresponding dynamical structure factors
will also be approximately diagonal, making it
easier to describe the collective modes in terms
of separable relaxation processes having different
characteristic times. In practice, the resulting
angle of rotation y turns out to be very small, at
least at small k. For NaC1 we find in the case of
n =1 that y =O.V'. For KI we find larger values,
y = 1.8' for n = 1 and y =9' for n = 2; apparently y
increases rather rapidly with decreasing wave-
length.

IV. CONCLUSIONS

In the work described in this paper we have
shown that the direct method of calculating time
correlation functions can be successfully applied
to a relatively complex system such as a moIten
salt, and detailed information on a variety of
transport processes can be obtained with a corn-
paratively modest computing effort. Our partic-
ular aim has been to investigate the extent to
which a rigid-ion model can account for the trans-
port coefficients of molten alkali halides. Anom-
alies exist, but the trends are largely systematic:
The diffusion coefficients are underestimated,
particularly that of the positive ion; the shear
viscosity is overestimated, but only to a small
extent; and the electrical conductivity is repro-
duced with remarkable accuracy. We have also
gained some information on the collective modes
of optic and acoustic character.

Borne problems remain. In particular, we have
not attempted any calculation of the thermal con-
ductivity, and further development of the pertur-
bation method in this direction is an obvious topic
for future work. Furthermore, the method of
computing the shear viscosity is not entirely sat-
isfactory, because the extrapolation to zero wave
number introduces some numerical uncertainty.
It would be useful to find other quantities which
also converge to the shear viscosity in the zero-k
limit but are less rapidly varying functions of k

at small k. For example, the stress tensor itself

could be measured as a response to an applied
field, and the advantages of studying this quantity
should be investigated.
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(A l)

where y» is a well-defined response function and
E&"'is the component of the external applied field in the
direction j. The quantities B(%, (d) of interest in
the study of collective motions of many-body sys-
tems include the mass and number density, mo-
mentum and charge currents, microscopic stress
tensor, heat-current density, and so on; there-
fore, we now adapt this result to the case of an
arbitrary local tensorial variable of a two-com-
ponent charged system, assuming that the change
in the variable results from an applied mechanical
force. For this purpose it is convenient to express
any external field acting on a particle i of mass
nz& as a linear combination of an optic-type and
an acoustic-type field:

F(r&, t) =XoF (r„ t)+X F"(r„t), (A2)

APPENDIX

We give here the correlation-function formulas
for the various currents induced in the system by
external perturbations, presented in the general
framework of the theory of the linear response of
a system to an applied mechanical force which may
or may not be derived from a potential. In partic-
ular, we will write the formulas quoted in the text
for the electrical conductivity and the shear vis-
cosity, and will formulate the general results of
Kubo" and of Jackson and Mazur" in such a way as
to permit the computation of the linear response
of an observable to any applied longitudinal or
transverse force field.

In essence, what these authors have proved by
use of perturbation theory is that the variation in
the statistical mean of any local dynamical variable
B(r, t~r„. . . , r» p„.. . , p„) in Fourier space is
given by
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with

F (r„t)=a(F(r(, t) (A3)

&» =Nmj. m» for n =M acoustic case .

where

o. (=Q, /e for o. =Q (optic case),

It is well known that if T(r, t ) is any local observ-
able (in the general case a component of a tensor)
such that at equilibrium (T(r, t)) =0, we can write
the linear response of the system as

(T(r, t)) =~
B w 0

dr dr' F(r, 0) f atrt(r)ll(rt(r) —r')) F(F', t-t ) (A4)

If we define a current density g as
N

g (r, t) = Q o.(r((t)5(r((t) -r), (A6)

then (A4) may be rewritten as

(T(r, t))=„gX d~ ds(T(0, )g (s, ~)) ~ F(r + s, t —v),
B ~ 0

(A6)

N

g"(k, t) = V ' P o.(r((t) e (A8)

where we have introduced the vectorial correlation
function

G'""(s, t) =(I/&, T)(T(o, o)g"(s, ~)) (A7)

Equation (A6) is the required form of the response
in space -time coordinates.

In our computations we were able to evaluate
directly the quantity (T(r, t)), obtaining in this
way information on the collective modes of the
system. Of course, (AV) is the corresponding
response function from the knowledge of which

(T(r, t)) can also be calculated by linear response
theory. Because of the convolution which appears
on the right-hand side of (A6), it is useful to carry
out both the analysis and the computations in terms
of spatial Fourier transforms, denoting such a
transform by a caret. We obtain successively

If, in particular, the applied force is such that

F(k, f) = Fo(k)8(t))

the limiting mean value of T(k, t) is given by

(A13)

(A14)

It is now very easy, choosing the appropriate
dynamical variable and inserting it in (A12) or
(A14), to find the corresponding formulas for the
currents quoted in the text.

Let us now assume, for simplicity, that the
external field is parallel to the x direction. Then,
because the electrical static conductivity o is sim-
ply the response in the optical longitudinal cur-
rent to a longitudinal optical field, we obtain for
o the expression

G "(tt t)=F 'f d '"'r'"' (tt t)

and

(A9)

o= lim v(f, (u) =eg.(0, )/&„„(0),
0

or, using (A14),

(A16)

(e

(T(k, t)) = V g y
~

dw G (-k, r) F(k, t -~).
(A 10)

From the translational invariance it follows that

G 'd (f, t) = (I/k()T)(T(-f, 0)g~(k, t)), (All)

from which, finally, we obtain the result that

(T(f, t))=„-gX (f7(T(k, o)g"( f, t)).
~ F(f, t -v).

e'V
g = d7 (g„(0,0)g, (0, 7)) .

0

Equation (A15) is equivalent to Eq. (9) of the main
text, and Eq. (A16) is equivalent to Eq. (8).

From the phenomenological theory of shear
viscosity we know that g can be obtained from the
acoustical current response to an acoustical trans-
verse force field. To be more definite, let us
assume that the vector field F(r, t) has a compo-
nent only in the x direction and that this compo-
nent is a function only of z. In the linear approx-
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imation the current X" is given by

S (k, t) = pu (k, t), a =M, Q, (A17)

(J„"(k„t)) =„d~(g,"(k„0)g„"(—k„~))E„(k,)
B 0

where u is the Fourier transform of the hydrody- .

namical velocity field. Then we can write" that we obtain

d T (i„","( k„-T)F„(k«),
0

(A19)

q =1im —,„"'—'= lim —,p ~„,,(k, ) . p' P,..(k.)
«ok'gg"(k„~) «ok' g"(k„~)'

We can also express this result in terms of the
appropriate response function of the system. Re-
membering that

g = llm 2 llm«-o k' ~-o8„","(-k„(u)

1 k I p
«-ok' V 1'"d~ (g,"(k„0)g„"( k„—~)) '

0

(A20)

where the limit co- 0 has already been taken as a
result of integrating over v.
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