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The transport properties of molten alkali halides have been calculated in molecular dynamics “experiments”
based on rigid-ion pair potentials of the Huggins-Mayer form with parameters proposed by Tosi and Fumi.
The coefficients of shear viscosity and electrical conductivity are obtained by computing the response of the
system to a small applied field of the appropriate type, and the extension of the method to the calculation of
current-current correlation functions of acoustic and optic character is also considered. Comparison with
experimental data shows that the electrical conductivities are very well reproduced, but systematic
discrepancies are found for diffusion coefficients and viscosities.

1. INTRODUCTION

A number of papers’~ have now appeared in
which the thermodynamic properties of molten
alkali halides have been studied in computer “ex-
periments, ” but relatively little work on the dy-
namical properties has so far been reported. In
the present paper we describe the results of a
series of molecular dynamics calculations of the
transport coefficients and collective dynamical
modes of a selected group of salts at temperatures
close to the respective triple points: LiF, NaCl,
Nal, KI, RbCl, and Rbl. In all cases we adopt the
rigid-ion potentials proposed by Tosi and Fumi,*
and one of our main objectives is to assess how
far it is possible to describe the transport prop-
erties of such systems without allowing for the
effects of polarization.

No theory exists which makes it possible to re-
late the various features of transport in molten
salts to the different terms in the potential, and
rather little is known about the importance to be
attached to differences in mass and size and to
ionic polarizability. In pure atomic fluids, where
the mass appears as a scaling factor of the time,
the geometrical factor can be accounted for on the
basis of a hard-sphere model,®*® dispersion forces
playing only a minor role. In binary mixtures,
even of simple liquids such as the rare gases, the
problem is more complicated, and here computer
simulation helps in establishing empirical corre-
lations. It has been shown,” for example, that dif-
fusion in mixtures depends on the atomic packing
in much the same way as in pure fluids. In ionic
melts an added difficulty is the presence of the
long -range Coulomb interaction, which contri-
butes most of the potential energy of the system.
Furthermore, the effects of polarization cannot
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be taken into account in any simple way.

From the remarks we have made it is clear that
we do not expect to be able to interpret our results
in terms of the detailed character of the individual
ions. What we are more concerned with is an
examination of the extent to which the transport
properties of molten salts can be described on
the basis of potentials which have been fitted to
experimental equilibrium data, no explicit refer-
ence being made to the question of polarization.

It might be expected that polarization would facil -
itate the process of diffusion because the screening
of the ion which is diffusing can be provided by a
polarization cloud; in a rigid-ion model the main-
tenance of local charge neutrality can be achieved
only by bodily displacement of the ions. Another
phenomenon in which polarization may play a part
is that of correlated motion of ions of opposite
charge. Correlations of this type alter the rela-
tive contributions made to diffusion and electrical
conductivity and are responsible for the observed
deviations from the Nernst-Einstein relation.?

Much is still unknown about the collective dy-
namical properties of molten salts, and computer
experiments have an important role to play here.
Questions such as whether the characteristic
frequencies of transverse and longitudinal modes
of acoustic and optic character are drastically
reduced upon melting, or that of determining the
range of the wave vector in which propagating
modes exist, have so far been answered only par-
tially or not at all. These particular collective
modes are in any case clearly separable only in
the long-wavelength limit, and a topic of consid-
erable interest in itself® is that of constructing a
set of orthogonal dynamical variables which can
be used to describe the dynamical properties of
the melt over the range of wave vectors from the
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hydrodynamic regime to the merging into free-
particle modes.

The computational effort necessary to obtain ac-
curate values for transport coefficients by the
usual means is rather heavy. To overcome this
problem we have exploited the method described
elsewhere,'® in which the response of the system
to a small perturbation is calculated directly. In
this way we have computed the current-current
correlation functions at several wave vectors, and
from these we have evaluated the coefficients of
electrical conductivity and shear viscosity. The
conductivity is obtained from the transverse optic
current autocorrelation function, and the viscosity
is calculated by extrapolation to zero wave vector
of the integral of the transverse acoustic corre-
lation function. We have also obtained some infor-
mation on the small cross-correlations between
acoustic and optic modes. Finally, for each
species o we have evaluated the diffusion coeffi-
cient D, from the usual formula

kT [~
=B~ 1
D afo Z J(t) dt, (1)

where Z ,(#) is the normalized velocity autocor -
relation function

Zo(t) =(Fya(t) * F14(0)) /(¥4 - (2)

II. METHOD OF CALCULATION

A. Molecular dynamics

We have closely followed the methods used in
other®' molecular dynamics “experiments” on
Coulombic systems. All calculations were made
for systems of 216 ions, with periodic boundary
conditions, and the electrostatic energy was eval-
uated by the Ewald method.’?> The potential used
.was of the generalized Huggins-Mayer form pro-
posed by Tosi and Fumi,* which we may write as

: C D
@(r;;) -9, +bc iy expl(a; +a; —7i;) /2]~ =3 —T“ s
74 Yig Vi

(3)
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where @; and Q; are the ionic charges. The terms
on the right-hand side of Eq. (3) represent, suc-
cessively, the Coulombic interaction, overlap re-
pulsion, and dipole-dipole and dipole -quadrupole
dispersion forces. The values used for the various
parameters in the potential (3) are listed in Table
I

The thermodynamic states studied are summa-
rized in Table II, together with some other rele-
vant information; At is the time step in the nu-
merical integration of the equations of motion and
N, is the total number of integration steps. The
temperature is in all cases some 5% higher than
that of the corresponding triple point.

All the molecular dynamics runs were broken up
into what we call “segments,” typically lasting for
60 time steps. The trajectories of the ions in each
segment were computed twice, starting from the
same initial configuration. In one case the calcu-
lation proceeded in the normal way; in the other,
one or more small forces, of order 1 eVem™,
were applied to the ions. The currents induced in
the system by the action of the applied force were
computed as functions of time simply by calcula-
ting the difference in current in the perturbed and
unperturbed trajectories, and were averaged over
all segments making up the run. By a standard
result of linear response theory,’® the mean in-
duced current can be related to the autocorrelation
function of the appropriate dynamical variable.
Specifically, if AB(t) is the change induced in a
variable B by an external potential ¢, which is
conjugate to a variable A, then in the mean we
can write

t
(AB(t) =k‘:—T [ OBy gsmar. (a)

The basis of the method has been discussed else -
where.'® Here we restrict ourselves to a consid-
eration of the particular problems which arise in
the case of molten salts, formal details being
given in the Appendix.

Note that the number of time steps quoted in
Table I refers to the number of independent con-

TABLE I. Parameters in the interionic potentials. 4=3.38 X 10713 erg; ¢,,=1.25
2.0 for LiF), ¢,_=1.0 (1.375 for LiF), and c...=0.75.

Salt a, a_ A C., c.. - D,, D.. D,
(A) (A) (A) 1078 ergcem?) (107" ergem?)
LiF 0.816 1.179 0.299 0.073 14.5 0.8 0.03 17 0.6
NacCl 1.170 1.585 0.317 1.68 116 11.2 0.8 233 13.9
Nal 1.170 1.907 0.386 1.68 392 19.1 0.8 1100 31
KI 1.463 1.907 0.355 24.3 403 82 24 1130 156
RbC1 1.587 1.585 0.318 59.4 130 79 82 260 134
RbI 1.587 1.907 0.337 59.4 428 135 82 1200 280
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TABLE II. Results of molecular dynamics calculations. Values in parentheses are experimental results.

Salt At N, v T D, D_ ly n A S
10" % sec) (109 em®mol™) K) 107% cm?sec™?) (mhoem™) cP)
LiF 0.4 5.0 15.00 1287 13.6 11.3 12.1 1.14 0.16 0.159
9.3)
NaCl 0.8 7.5 39.10 1262 10.6 9.9 4.2 0.87 0.09 0.141
(14.0) (10.1) “.2) 0.83) 0.18)
Nal 1.2 5.0 57.46 1081 9.4 6.8 2.5 1.08 0.14 0.180
(10.5) 5.9) 2.7) (1.01) (0.08)
KI 1.8 8.5 68.97 989 4.5 3.7 1.42 1.06 -0.06 0.107
(1.38) (1.40)
RbCl 1.2 5.0 56.48 1119 5.0 5.2 1.81 0.99 ~0.01 0.104
6.6) (5.8) (1.81) 0.90) 0.15)
RbI 1.6 5.0 75.75 1086 4.3 3.5 1.09 1.12 -0.03 0.102
1.09) 0.96)
figurations. The total number of configurations to the time integral of the autocorrelation function
generated for each system was 2N,, half in the of the electrical current.
perturbed and half in the unperturbed trajectory. The matrix of electrical current correlation
The unperturbed trajectories were all continuous, functions is diagonal in homogeneous systems, and
one segment leading directly onto the next. in the statistical mean only the x component of the
induced current remains. The mechanical re-
B. Electrical conductivity sponse function does not have the same property,

and there will be a random response in directions
orthogonal to the applied force which will depend
on the initial conditions. In Fig. 1(a) we show a
graph of (JJ(t)) as a function of ¢ in the case of
Rbl, obtained by averaging over 60 segments. We
F(Fi, 1) =F.(Q,/e)0()%, (5) also plot the mean current in the orthogonal direc-
tions, which we take as a guide to the statistical
error in the mean response. At short times the
response grows linearly with a slope determined
6(t)=0, t<0, (6) by the ionic masses. It later passes through a
maximum and then attains a constant level. It is

A simple example of the use of the method is the
application to electrical conductivity. In this case
the force acting on an ion ¢ located at »; is taken
to be

where X is a unit vector in the x direction and 6(¢)
is the step function

=1 0.
B> of course essential that the plateau value is reach-
The response which is computed is the induced ed before the noise becomes unacceptably large.
electrical current in the same direction Finally, the specific conductivity is given by
o=e(J2 () /VF 9
Jf(t)=ZQ{v{x(t)' (7) < x( )) X ( )
i where V is the volume of the molecular dynamics
cube.

The electrical conductance can be calculated from
the statistical average of J2(¢) in the limit ¢,
obtained as a difference between perturbed and
unperturbed trajectories. It follows that the seg-
ment must be sufficiently long for J2(t) to attain
a plateau value. Application of Eq. (4) shows that
the response is related to spontaneous fluctuations
in the unperturbed system by

1

t
2= gz fo (J2(0)I(7)) F, dr. 8)

It is obvious from the fact that both the pertur-
bation and the response are independent of position
in space that we are dealing with a current compo-
nent of zero wave vector. In the 2 - 0 limit it is
not possible, a priori, to distinguish between
longitudinal and transverse modes. However, the
zero-k limits of the two optic modes are quite
distinct, their characteristic frequencies differing
by the plasma frequency. For the reasons we re-
call below, the longitudinal-optic mode 2 =0 can-
not be observed in a computer “experiment,” and
In other words, the mean response is proportional the current we compute corresponds to the trans-
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verse mode.

In a transverse-optic mode the charges of op-
posite sign oscillate in opposite phase with a dis-
placement which varies along the direction of
propagation of the wave. No charge accumulation
results as a consequence of this motion and the
restoring force has only a local origin. In a lon-
gitudinal -optic mode, however, the charges oscil -
late in the direction of the wave vector, the mag-
nitude of displacement again varying along the
direction of propagation. This does lead to charge
accumulation, as can be seen by focusing attention
on the nodes of the waves, where the displace-
ments change sign. The nodal planes are accum-
ulation regions for alternately positive and nega-
tive charges, and it is clear that the origin of the
additional restoring force that raises the longi-
tudinal frequency above the transverse one by a
value equal to the plasma frequency is just the
Coulomb interaction between these rather distant
charge distributions. This effect is present, no
matter how long the wavelength, because of the
infinite range of the Coulomb potential. It is then
obvious that in order to take correctly the limit
k-0 it is necessary to work with a system which
contains a full period of the longitudinal oscil -
lation, thereby ensuring that the attraction be-
tween the charge distributions accumulated on
adjacent nodal planes is taken into account. If
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FIG. 1. Computed response in arbitrary units in the
calculation of (a) electrical conductivity, and (b) shear
viscosity of RbI. '

this is not done, it is not to be expected that the
optical oscillation of the system will be speeded
up by the extra restoring force related to the
plasma oscillation. In molecular dynamics, how-
ever, the limit k- 0 is by necessity taken on a
local basis, that is, by monitoring a finite portion
of the system within the infinite wavelength.

A last remark on the calculation of conductivity
has to do with macroscopic polarization. The
forces we apply act directly on the ions; there
are no surfaces on which charges accumulate,
and the electric current flows in the closed toroidal
surface generated by the periodic boundary condi-
tion. Consequently, the number we compute is the
internal or local conductivity.

C. Shear viscosity

The evaluation of the shear viscosity is carried
out by applying a shearing force which is periodic
in space and has by necessity a finite wave vector,

F(%,, 1) =ReF,e T g(1)%. (10)

We assume that the force f, which by construction
is orthogonal to k, is directed along the x axis.
This is the same type of perturbation as that
used by Gosling et al.* in computing the shear
viscosity of argonlike liquids. The response we
compute is the kth Fourier component of the drift
velocity (#,(k, #)). A straightforward hydrodynamic
calculation shows that the limiting value of this
quantity, which turns out to be the same for each
species, is related to the shear viscosity n by

-1 PFy
=50 2@, &, )’ (11)

where p is the number density. The long-wave-
length limit in Eq. (11) is taken by computing the
response to the perturbations having the two small-
est wave vectors which are accessible in our
periodic system, K =(27/L)(0, 0, 1) and K=(2r/L)
(0,1, 1), where L is the length of the cube, and
then extrapolating linearly in k% to £ =0. (The term
in 2 must vanish on grounds of symmetry.) At
short times the slope of the response {#,(K, t)) as
function of ¢ is different for the two species and
depends upon the mass.

As a variation on Eq. (10) we can choose to apply
forces of different intensity to the ions of different
species. A particularly simple choice is one in
which the force is proportional to the mass, in
which case the accelerations are the same. The
limiting drift velocities of the two species again
turn out to be equal to each other and equal to
that attained in the previous case, provided the
magnitude of the forces is adjusted in such a way
as to leave unaltered the total body force acting
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on a given configuration. We interpret this as
implying that there is a unique shear viscosity in
mixtures, regardless of whether the flux is sus-
tained by gravity or by pressure. In the case when
the mass-weighted perturbation is applied, the
mean response is proportional to the integral of
the transverse mass-current autocorrelation
function. The demonstration of this equivalence

is given in detail in the Appendix.

The mean response to a perturbation of the form
of (10) is plotted as a function of ¢ in Fig. 1(b),
again for the case of Rbl. The behavior is very
different from that obtained in the calculation of
conductivity, the plateau value being reached as-
ymptotically. Furthermore, the noise level is
much smaller, even though the average was com-
puted over 30 segments rather than 60. The rea-
son is simply that in a long-wavelength acoustic-
type perturbation the forces on neighboring ions
are nearly in phase, whereas in an optic-type
perturbation such as (5) the forces on neighboring
ions of opposite sign push such ions towards each
other. The random response is therefore greater
in the second case.

D. Current-current autocorrelation functions

It should be clear from the discussion given in
Secs. IIB and II C that the techniques used for the
evaluation of conductivity and shear viscosity are
special cases of the calculation of correlations in
the wave -number ~dependent fluctuations in the
currents of charge and mass. For KI and NaCl we
have used a more general approach to obtain in-
formation on the collective modes for selected
values of the reduced wave number n, where
k=n(2r/L). We apply a force in the x direction,
say, with a magnitude which varies periodically
in space in either the x direction for longitudinal
modes or in the z direction for transverse modes.
At any given point in space the applied force acts
either (a) in the same sense on all ions but with a
magnitude proportional to the mass, or (b) in op-
posite senses on ions of different charge but with
equal magnitude. Case (a) corresponds to acous-
tic-type modes and gives rise to mass currents;
case (b) corresponds to optic-type modes and gives
rise to charge currents. A more detailed discus-
sion is contained in the Appendix.

In these calculations the force was applied only
at ¢t =0, so that the mean response at a later time
is the autocorrelation function of the corresponding
current rather than the integral. Strictly speaking,
this statement is correct only when the force is a
true 6 function in time. In fact, because of the use
of a finite time interval in the numerical integra-
tions, the force actually applied is a finite pulse

AND I. R. MCDONALD 13

of width At, but for practical purposes the distinc-
tion is not important.

In this way we have computed the longitudinal L
and transverse T components of the autocorrela-
tionfunctions of mass M and charge currents. These
functions we denote, in an obvious notation, by
Chuk, 1), Ch,lk,t), Cholk,t), and Cholk,t). Note
that the electrical conductivity is given by the
integral of C{q(0, t) and the shear viscosity by the
integral of C},(0,1). We have also measured the
small cross correlations of longitudinal currents
of mass and charge described by the function
Clo(k, t) by computing the optic response to an
acoustic-type perturbation or vice versa.

The calculations of the current correlation func-
tions were made by simultaneously applying a num-
ber of perturbations. This has the effect of in-
creasing the random response; in order to reduce
the resulting noise level, the statistical averages
were computed over 100 segments.

III. RESULTS AND DISCUSSION

A. Transport coefficients -

The calculated values of the transport coefficients
are listed in Table II together with the experimen-
tal results, where these are available. We esti-
mate the statistical uncertainties in the molecular
dynamics calculations to be approximately 3% in
D, and D_ and 5% in 0 and n. The experimental
data are taken from the work of Young and
O’Connell.'® These authors have presented an
empirical corresponding-states correlation of the
transport coefficients of 1:1 alkali-metal molten
salts. In some cases we have been obliged to make
a small interpolation of their results, but we do
not believe that any significant error has thereby
been introduced.

In Fig. 2 we show some representative velocity
autocorrelation functions. When one ion is sig-
nificantly smaller than its partner, the correspond-
ing autocorrelation function is strongly oscilla-
tory. When the ions are approximately equal in
mass, however, the two autocorrelation functions
not only resemble each other but also are not very
different from that of an argonlike liquid near its
triple point. This second similarity is illustrated
very well by the simplest case when both mass
and size are equal, as in the system studied by
Hansen and McDonald.? The oscillations which
are seen when the ionic sizes are significantly dif-
ferent are considerably more pronounced than
those observed,” say, in mixtures of Lennard-
Jones fluids. Presumably the effect of the Cou-
lombic force is to accentuate those features of
the autocorrelation which originate in differences
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in mass and size. On the other hand, we do not
believe that the behavior we observe is related to
the strong plasma-type oscillation which charac-
terizes'! the velocity autocorrelation function of
the classical one-component plasma (OCP). Os-
cillations occur in the case of the OCP because of
a coupling between the motion of single particles
and the propagating density fluctuations which in
that system coincide with the fluctuations in
charge. The equivalent mechanism in a molten
salt would be a coupling between single -particle
and collective optic-type modes; there is no evi-
dence to suggest that any such effect is present.

Of the six salts for which we have made calcu-
lations, diffusion coefficients are available only
for NaCl, Nal, and RbCl. In all cases except one
(I” in Nal) the computed value is too small, and
the discrepancies are considerably larger for the
metal ions than for the halogens.

It is tempting to look for some systematic effect
of substitution of ions in different salts. Let us
consider the following four systems: NaCl, Nal,
RbCl, and RbI. For these we find values of the
ratio D, /D _ equal to 1.07, 1.38, 0.96, and 1.23,
respectively. If we now take the ratio of the sec-
ond of these numbers to the first and of the fourth
to the third we obtain the ratio of the diffusion
constant of C1~ to that of I” in Na* and Rb* salts.
The two numbers we find are 1.29 and 1.28,
respectively. On the other hand, if we take the
ratio of first to third and second to fourth in the
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FIG. 2. Velocity autocorrelation functions for LiF,
RbCl, and RbI.

MOLTEN ALKALI HALIDES 431

list of values of D, /D _ we obtain the ratio of the
diffusion constant of Na* to Rb* in Cl~ and I~
salts. We now find values of 1.11 and 1.12, re-
spectively. The near equality of the two values
in each case is presumably not accidental, but we
have been unable to relate the numbers to any
microscopic parameters such as mass or ionic
radius.

Experimental data on electrical conductivity are
available for all the salts we have studied. Agree-
ment is remarkably good, except for LiF, for
which there is a discrepancy of more than 20%.
There is also some disagreement in the case of
Nal, but for the other systems the discrepancies
are less than the statistical error in the calcula-
tion. This clearly implies that electrical conduc-
tivity is not a quantity that is sensitive to details
of the potential, and is almost entirely determined
by the masses and diameters of the ions. Further-
more, polarization presumably makes only a very
small contribution. (Polarization is unlikely to
play any significant role in LiF, where the largest
discrepancy is found.)

The electrical conductivity may be related to the
mean diffusion constant through the Nernst- Ein-
stein relation

0=3(Ne?/Ve,T)D, +D_)(1 = A). (12)

If cross-cross correlations of the type (V;(0): ¥,(¢))
(i#j) made no net contribution to the autocorrela-
tion of the electrical current, then the deviation
A would be zero. There is no such contribution
to the interdiffusion current in the case of mixtures
of rare-gas liquids; the mutual diffusion coeffi-
cient is very closely approximated by the appro-
priately weighted mean of the self-diffusion coef-
ficents.” In molten salts there is a strong posi-
tive correlation in the velocities of neighboring
ions of opposite charge, which in turn means that
A is positive. Experimentally, A is of order
0.1-0.2 for the alkali halides and of order 0.3-0.4
for the alkali nitrates. Our results on A, which -
are listed in Table II, are considerably smaller
overall than the experimental results we have
quoted. For the salts with lighter metal ions

(Li* and Na*) the deviation is positive but small;
it is zero within the statistical error for K* and
Rb* salts.

Experimental shear viscosities are available for
all salts studied except LiF. Comparison between
calculation and experiment reveals a broadly con-
sistent pattern. If we exclude KI we see that the
molecular dynamics result is systematically larg-
er than the experimental one, the discrepancy ly-
ing everywhere between 5% and 10%. KI is an
anomalous case; the experimental value is con-
siderably larger than for any other molten salt, a
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fact for which there is no obvious explanation, and
the molecular dynamics result is 24% too small.
There is an additional source of uncertainty in
the calculation of n, namely, the extrapolation to
zero wave number which is required in Eq. (11).
We have explicitly made the extrapolation in &2,
which we described earlier only for NaCl, for
which an increase by a factor of 1.29 was found
between the smallest & value and k =0, and for
Nal, for which the factor was 1.37. For the other
salts we have used the mean of these two numbers,
i.e.,, 1.33. In the case of NaCl we have made a
more detailed study, extending the calculation of
the drift velocity to higher k values, and have
found a rather complicated nonlinear behavior in
k2. This is a point which merits further attention.
Alder et al.*® have shown by molecular dynamics
that the diffusion coefficient and shear viscosity of
the hard-sphere fluid are accurately related
through the Stokes relation, with a constant of
proportionality appropriate to “slipping” boundary
conditions. A similar correlation has also been
shown to exist for the Lennard-Jones fluid.%**
The application of the Stokes relation to molten
salts is of course a dubious procedure. If we adopt

the model uncritically we expect to find the param-
eter S, given by

S=3n(D, +D _Na, +a_)/k,T, (13)

values lying between 1/37 =0.106 (“sticking”) and
1/2m =0.159 (“slipping”). The results we obtain
for S are listed in Table II. We see that S is indeed
almost constant for the three salts in which the

T T T T T T T
.8 —

C(t)

C(o)f NaCl -{
4 k-0.334"' _
o \7/\TL/\’ P\ b

-4 —
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:’ 1 | Il | 1 1 1 1
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t (10" sec)

FIG. 3. Upper curves, longitudinal charge (left~-hand
side) and mass (right-hand side) current-current auto-
correlation functions for NaCl at2=0.33 A ~1. Lower
curves are cross-correlation function C,‘;Q (k,t) plotted

on a vertical scale which has been increased by a factor
of 7.
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ions are most nearly equal in size (RbCl, RbI, and

KI), but it rises rapidly as the size ratio increases
(NaCl- LiF— Nal).

B. Current-current autocorrelation functions

The correlation functions corresponding to lon-
gitudinal optic- and acoustic-type modes for the
smallest accessible wave vector (=1, £ =0.33 A1)
in NaCl are shown in Fig. 3. The function C5q(k,t)
shows a very pronounced oscillation corresponding
to a well -defined propagating charge fluctuation
similar to that previously observed in a simpler
system.® The function Cl,(k, t) shows a much more
strongly damped oscillation. The corresponding
power spectra C5q(k, w) and C} (%, ) are plotted
in Fig. 4. Ineachcase there is aclearly defined peak,

but if we divide w?® in order to obtain the corre-
sponding dynamical structure factors (shown as
dashed lines on different relative scales) the
acoustic peak disappears, whereas the optic peak
suffers only a minor displacement towards lower
frequencies. The peaks in the power spectraare at
w;,=5.2% 10" and w, ,=0.90%x 10'® radsec™'. The
latter values correspond to a longitudinal sound
velocity of 2.7x10° cmsec™, which is larger by
a factor of approximately 1.6 than the ordinary
velocity of sound in NaCl.!” The characteristic
frequencies w;pand w,;, may be compared with the
phonon frequencies for the smallest wave vector
in the rigid-ion solid™® at the melting point
(V=31.37 em®*mol™!, T=1153 K). For the latter
we find w;5=5.1x10"%, w,,=1.2x10" radsec™.
Clearly the effects of melting are much larger for
the acoustic mode than for the optic one. (It must
be remembered that the phonon frequencies cor -

C (W)

L | 1 1 L 1 1 |
6 8
W (10" rad/sec)

FIG. 4. Power spectra (full lines) of the autocorrela-
tion functions shown in Fig. 3. The dashed lines are

the result of dividing by w2. Relative scales are arbi-
trary.
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C(t) K1
C(o) k-0.27A""

0.5 ~/

-0.5
0 2 4 6 8

t (107" sec)

FIG. 5. Longitudinal mass current-current autocorre-
lation function for KI atz=1 (¢=0.27 A ") andn=2
(=0.54 A1),

respond to peaks in the dynamical structure fac-
tors.)

The second moments of the power spectra can be
calculated from the short-time behavior of the
correlation functions, which is particularly well -
suited for study using the perturbation method. We
find for the square roots of the moments 5.23x 10"
radsec™! (optic) and 1.43x 10" radsec™! (acoustic).
Thus the position of the optic peak coincides with
the second moment of the distribution, but the
acoustic peak shows a rather large shift.

In KI the two longitudinal autocorrelation func-
tions forn =1 (¢ =0.27 A™!) behave very much in
the same way as in NaCl. For n =2, however, the
function C} (%, t) still displays a full oscillation,
whereas in NaCl the decay is overdamped. This

-13

t (107 sec)
0 2 4 6 8 0 2 4 6 8
1.0 T T T T T T T
c (i KI
\ ° 2
€ \ k-0.271A"" TN k-0.81A"
\ /
\
0.5 \ / \ -
\ // AN
\ \
‘\ Il \\
\ /! AN
\ b \
0 1 >
\
\ \//\\
\\
L Seey ! ! | !
0 0.5 10 15 05 10 1.5

W (10" rad/sec)

FIG. 6. Transverse mass current-current autocorre-
lation function for Kl at n=1 (¢ =0.27 &™) and # =3
(¢ =0.81 A™!). The dashed lines are the power spectra.

behavior, illustrated in Fig. 5, suggests that a
Brillouin peak may be more easily observed in
KI.

In Fig. 6 we show the transverse acoustic cor-
relation function in KI forn =1 andn =3. At the
lower k value the mode is purely diffusive and the
power spectrum is centred at the origin. Atn=3,
however, there is an oscillatory behavior and a
peak in the power spectrum is clearly visible, in-
dicating the onset of propagating shear waves.

The transverse optic autocorrelation function at
k =0 is shown in Fig. 7, again for KI. The inter-
diffusion correlation function is also plotted; the
discrepancies between the two curves lie within
the limits of statistical error. This figure justifies
our association of the 2 =0 optical mode with the
transverse charge current. For n =3 we find
virtually an identical correlation function, whereas
the longitudinal current correlation function is
very different. We recall that in the solid there is
a related result; the frequency of the transverse
optic phonon is almost independent of k.

We now return our attention to Fig. 3. The small
curves at the foot of the graph are the function
CLo(t), the measured cross correlation between
acoustic and optic currents. This cross correla-
tion is zero at £ =0 and its maximum value is less
than 1.5% of the zero-time value of the autocorre-
lation functions. (The scale of the cross-correla-
tion function has been expanded by a factor of 7.)

In the case shown the noise level is considerably
higher when the cross correlation is measured as
the optic response to an acoustic-type perturbation
rather than vice versa, but we do not know whether
this is true in general.

In Fig. 4 the long oscillation of low amplitude is
the power spectrum C’;,Q(k, w), plotted on an arbi-
trary relative scale. The second moment of this
spectrum is negative, as is obvious from the

1
C(t)
T KI
k: 0
0.5+
0 ey
\//
1 1
0 2 4

t (107" sec)

FIG. 7. Transverse charge current-current autocorre-
lation function for KI at2=0. The dashed line is the
autocorrelation function of the electrical current.
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shape of the corresponding time correlation func-
tion shown in Fig. 3.

The description of the collective modes of a
molten salt in terms of mass and charge currents
is in some respects not the best one. In particu-
lar, these variables are nearly independent only
at long wavelengths. By an appropriate rotation
of axes, however, it is possible to choose two
linear combinations of currents which are more
nearly orthogonal in the sense that the second
moments of the cross-correlation function can be
made to vanish at short times as well as at ¢ =0.°
The hope in choosing such a transformation is
that the corresponding dynamical structure factors
will also be approximately diagonal, making it
easier to describe the collective modes in terms
of separable relaxation processes having different
characteristic times. In practice, the resulting
angle of rotation ¥ turns out to be very small, at
least at small 2. For NaCl we find in the case of
n=1thaty=0.7°. For KI we find larger values,
y=18°forn=1and y =9° for n =2; apparently y
increases rather rapidly with decreasing wave -
length.

IV. CONCLUSIONS

In the work described in this paper we have
shown that the direct method of calculating time
correlation functions can be successfully applied
to a relatively complex system such as a molten
salt, and detailed information on a variety of
transport processes can be obtained with a com-
paratively modest computing effort. Our partic-
ular aim has been to investigate the extent to
which a rigid-ion model can account for the trans-
port coefficients of molten alkali halides. Anom-
alies exist, but the trends are largely systematic:
The diffusion coefficients are underestimated,
particularly that of the positive ion; the shear
viscosity is overestimated, but only to a small
extent; and the electrical conductivity is repro-
duced with remarkable accuracy. We have also
gained some information on the collective modes
of optic and acoustic character.

Some problems remain. In particular, we have
not attempted any calculation of the thermal con-
ductivity, and further development of the pertur-
bation method in this direction is an obvious topic
for future work. Furthermore, the method of
computing the shear viscosity is not entirely sat-
isfactory, because the extrapolation to zero wave
number introduces some numerical uncertainty.

It would be useful to find other quantities which
also converge to the shear viscosity in the zero-k
limit but are less rapidly varying functions of &
at small k. For example, the stress tensor itself

could be measured as a response to an applied
field, and the advantages of studying this quantity
should be investigated.
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APPENDIX

We give here the correlation-function formulas
for the various currents induced in the system by
external perturbations, presented in the general
framework of the theory of the linear response of
a system to an applied mechanical force which may
or may not be derived from a potential. In partic-
ular, we will write the formulas quoted in the text
for the electrical conductivity and the shear vis-
cosity, and will formulate the general results of
Kubo'® and of Jackson and Mazur'® in such a way as
to permit the computation of the linear response
of an observable to any applied longitudinal or
transverse force field.

In essence, what these authors have proved by
use of perturbation theory is that the variation in
the statistical mean of any local dynamical variable
B(t, tT,,...,Ty; Dy,. .., Dy) in Fourier space is
given by

(ABE, @)= 3 Xpu (&, O)FS(, ), (A1)
1

where yz; is a well-defined response function and
Fi"‘is the component of the external applied field in the
direction j. The quantities B(k, w) of interest in
the study of collective motions of many-body sys-
tems include the mass and number density, mo-
mentum and charge currents, microscopic stress
tensor, heat-current density, and so on; there-
fore, we now adapt this result to the case of an
arbitrary local tensorial variable of a two-com-
ponent charged system, assuming that the change
in the variable results from an applied mechanical
force. For this purpose it is convenient to express
any external field acting on a particle 7 of mass
m; as a linear combination of an optic-type and

an acoustic-type field:

F(F,, 1) =0 FOUF;, t) +1, FH(F,, 1), (A2)
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with
f"‘(f,, t) =a,f(f¢, t) (A3)
where

a;=Q,;/e for a=Q (optic case),

J

1

a;=Nm; / i m; for a =M (acoustic case).
-1

It is well known that if T(F, ¢) is any local observ-
able (in the general case a component of a tensor)
such that at equilibrium (T(%, £)) =0, we can write
the linear response of the system as

(TGN =g T ha [Car @ (16,0 3" ek i) -8 B 1), (a9)
ry 0 =1

If we define a current density g as

N .
Ea(—f', t)= Z a"f‘(t)b('f',(t) —-f),

=1
then (A4) may be rewritten as

(TG, 1) kl—T > f “ar [ 45T, 008, )

where we have introduced the vectorial correlation
function

GTE, 0 =(W/kTUT @, 08, ). (A7)

Equation (A6) is the required form of the response
in space-time coordinates.

In our computations we were able to evaluate
directly the quantity (T(%, t)), obtaining in this
way information on the collective modes of the
system. Of course, (A7) is the corresponding
response function from the knowledge of which
(T(¥,t)) can also be calculated by linear response
theory. Because of the convolution which appears
on the right-hand side of (A6), it is useful to carry
out both the analysis and the computations in terms
of spatial Fourier transforms, denoting such a
transform by a caret. We obtain successively

A . N -

gk, )=v"! Z a(-fl(t)e_n:.ri“ ), (A8)
i=1

GT B 1) =V f a5 e~ FITEF 4), (a9)

and

(FE M=V 3 xe f:dT:GT"a(—l?, ) B, t =7).
(A10)
From the translational invariance it follows that
GT e, 1) = (e, TP (=K, 085, 1)), (A1D)
from which, finally, we obtain the result that
14

FE D) =g Tha [ a(TE OB (-E, 1)

CFE ¢ -1). (A12)

(A5)

-FF+3,¢-1), (A6)

r

If, in particular, the applied force is such that
F(k, t) = Fy(0)6 (), (A13)

the limiting mean value of T(E, ¢) is given by
(F(E, )=V Zxaf ar GT (=K, 1)+ F,(k).
0
o

(A14)

It is now very easy, choosing the appropriate
dynamical variable and inserting it in (A12) or
(A14), to find the corresponding formulas for the
currents quoted in the text.

Let us now assume, for simplicity, that the
external field is parallel to the x direction. Then,
because the electrical static conductivity ¢ is sim-
ply the response in the optical longitudinal cur -
rent to a longitudinal optical field, we obtain for
o the expression

0=,lim o, w) =e£(0,)/E,,o(0),  (A15)
or, using (A14),

g=

eV [~ N N
oF J, 47 (&0, 080,7). (A16)

Equation (A15) is equivalent to Eq. (9) of the main
text, and Eq. (A16) is equivalent to Eq. (8).

From the phenomenological theory of shear
viscosity we know that n can be obtained from the
acoustical current response to an acoustical trans-
verse force field. To be more definite, let us
assume that the vector field ¥(T, ) has a compo-
nent only in the x direction and that this compo-
nent is a function only of z. In the linear approx-
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imation the current J% is given by
TR, ) =p0K, 1), @=M,Q, - (A17)

where 1 is the Fourier transform of the hydrody -
namical velocity field. Then we can write'? that

P Frolke) _yi P* Fiolke)
7) %]‘_1,11 2 A M(k oo) %’;{%kz J”(k"oo) (AIB)

We can also express this result in terms of the
appropriate response function of the system. Re-
membering that

AND I. R. MCDONALD Ei_
(P =57 [ dr (@40 OB (—ler, P )
=_£ dTGM¥(<k,, T)F,(k,), (A19)
we obtain
r=lim s izl

i L (BT B
=limy < ) ST dT<gﬂ(kg’0)gM( ke 7))’
(A20)

where the limit w~ 0 has already been taken as a
result of integrating over 7.
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