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When a plasma is extremely dense or hot, the electrons lose their efficiency for stopping heavy charged
particles. The main process for their slowing down then is the small-angle ion-ion scattering, where the bare
Coulomb cross section becomes infinite as 8 '. The purpose of this paper is to evaluate the collective screening

effects which make the ion Coulomb cross section finite. The calculations are performed in the random-phase

approximation and show that the Coulomb cross section is essentially cut off for energy transfers smaller than

Iso„, where co„ is the plasma frequency of the ions.

I. INTRODUCTION

The interaction of fast charged particles with
matter has been studied for many years and is now

fairly well understood. However, the extremely
high compressions which may soon be available
with lasers or electron beams bring an entirely
new regime for the slowing down of charged parti-
cles and necessitate the revision of some classi-
cal formulas.

The purpose of this work is to compute the rate
of loss of energy, -dE/dx, of a fast ion in a dense
plasma, due to collisions with other ions. Usually,
most of the energy is lost to electrons. However,
when an electron gas becomes very dense or very
hot, it loses its efficiency for stopping heavy
charged particles. ' This occurs when the velocity
of the incident ions falls below the velocity of the
electrons at the Fermi surface (for degenerate
electrons) or below the thermal velocity of the
electrons, if they are nondegenerate.

Under these conditions, energetic ions, such as
those resulting from nuclear reactions, will give
their energy mostly to other ions, by nuclear col-
lisions. They can thus produce showers of fast
ions, some of which may undergo further fusion
reacti. ons. '

An important factor in the behavior of a fast ion
in such a plasma is the small-angle ion-ion scat-
tering, where the bare Coulomb cross section be-
comes infinite as 8 '. Actually, screening effects
due to other particles make it finite. A reliable
estimate of these collective effects is therefore
necessary to compute -dE/dx.

In Sec. II of this paper, we show how to compute
the energy loss of a fast ion in a dense plasma, by
means of the random-phase approximation. A
closed expression is derived, for which various
approximations are obtained in Sec. III, in the
limits of small or of large energy transfer. Some
numerical examples are given in Sec. IV, and

further approximations (of practical importance)
are given in Sec. V.

II. ION SCATTERING IN A DENSE PLASMA

Here, E is a measure of the particle energy,
namely, E = sEr (where E& is the Fermi energy),
at low temperature, and E =AT at high temperature
T.

Our problem is the scattering, by the plasma,
of an "external" ion of mass M, , charge Z,.e, and
initial energy E,=Mtv', /2. In the present work we
discuss only the ion-ion scattering: The electrons
are taken into account indirectly, via their interac-
tion with the Plasma ions, but their direct interac-
tion with the incident ion is not considered here.

For a high-density plasma, the Born approxima-
tion is quite accurate, so that the differential cross
section for ion-ion scattering can be written as

d'o Z' I 2e
d&dq E, h'tI'

where 4 and Sq are the energy and momentum
transferred by the incident ion to the system, and
where

S (co) = dt e'"'( p, (t)p „(0))

is the plasma-ion form factor. Here, p; denotes

Vfe consider a high-density plasma with n elec-
trons per unit volume. The ion charge is Ze and
the ion density rt/Z. For simplicity, we shall first
assume that there is only one kind of ion in the
plasma. At the end of this section, we show how to
generalize the calculation to the case of several
ion species.

By "high density, "we mean that the number of
particles in an electron Thomas-Fermi sphere, or
in a Debye sphere at high temperature, is large:

tt(E/4me'n)s t' » 1 .
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the Fourier transform of the ion density p(r) and
the angular brackets denote the statistical ensemble
average.

The energy lost by an incident ion per unit length
is then given by

dE 1 " do'

dx V& d~'

where V is the volume of the plasma. We are
therefore interested in obtaining an expression. for
the "cross section per unit energy loss"

22
(2 )3 e h g /2MQT

Z 2pMkT

On the other hand, the electron temperature may
be either lower or higher than the electronic Fer-
mi temperature. Therefore we take for electrons
the Fermi distribution

fe-(] y e(E"-v ) /AT )-1

where p,, is the electron chemical potential.
The imaginary part of P;(v} for MMDveilian ions

can be obtained from Eq. (7},
1 do 1 " d'0
Vd& V g d&dq

(4) 'gqZ
imP, (~) = 2, d p(f;.;-f }(-v6(E;:,—E;+@~)],

We shall calculate the plasma-ion form factor
S;((o) in the random-phase approximation, ' which
must be valid at high densities. The density-densi-
ty correlation (p;(t}p ~(0))—the response of the
system to a charge fluctuation (here, the incident
ion)-is intimately connected with the dielectric
function of the system, e;(&o). It is convenient to
write

whence

2~ 3~ ]
Ime, (&u) =4 h'H~ @»

q M co

2JI/IkT 2 Sq
(12)

2@V 1 1
S;(&o) = ~ „»r Im

v 1 —e

where v, =4ve'/q' is the Fourier transform of the
Coulomb interaction.

In the random-phase approximation, the plasma
dielectric function is given by'

(5)

e-((u) = 1 —Q P.'(&), (6)

Here, f„' is the distribution function for particles
of type j (charge Z/e, mass M, , kinetic energy
E~/=h' p'/2M/) We sh.all henceforth use the index
e for electrons, and no index at all for ions. The
imaginary part of e;(&o) is obtained by substituting
w+ig for w and then going to the limit g-0.

To obtain the plasma-ion form factor, we write

where P/(v), the polarization function for particles
a

of type j (ions or electrons), is

(7)

pM oPIme ((u)-—', e """'"
kT 2kTq' (13)

However, in the present work, we shall use the
more general expression in Eq. (12), since we
wish to consider the whole spectrum of energy and
momentum transfers S~ and Sq.

The real part of the ionic P,(~) is readily calcu-
lated as

VqZ ~ fMI fgReP, (&u) = (' ),P d p

2m 3» 1
' h'q' (whee)'/'

(14)

where

uP~
= 4ve'nZ/M

is the square of the plasma frequency for ions of
mass M and charge Ze. (Note that the number of
ions per unit volume is n/Z ).

Equation (12) can be reduced to the high-temper-
ature classical plasma result, by taking formally
the I-0 limit, namely,

1 Ime;(~)
(;(co) I e;(cu) I

' ' XP x- X. x-x (15)

and take into account only the contribution of the
ions to Ime,»(&u). (The electrons still contribute in-
directly by their effect on le, (&u) I' in the denomina-
tor. )

We now turn to the calculation of the "ionic" di-
electric function. Since for practical purposes the
ion temperature T is much higher than the ionic
Fermi temperature, the distribution function for
ions is Maxwellian:

where

2M''T 2 Sq
(16)

However, since ReP, (&u) appears only in the de-
nominator of Eq. (5), which gives the ionic form
factor, we can approximate it by the classical
high-temperature limit (h-0) and write
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ReP, (&u) =—,G

where we have

2kT Sq '

co «g2

G(e)= -' 'P „(x-z) (18) &,(&) =,q, ~~
dxx' exp[- x'(1 —g/2x')'].II'" I) I . (26)

e e
e 2~a "

f1+a f 5ReP;((u
(2 ),P dpEe Ee+ k

(19)

is the well known Maxwellian plasma dispersion
function.

Finally, we turn to the electron contribution to

le, (v) l'. Its only significant part comes from
ReP,'(&u) for S&u much smaller than the electron en-
ergies. This is due to the fact that the electrons
are much faster than the plasma ions: They "fol-
low" the ions almost instantaneously, so that their
screening can be considered as static on an ionic
time scale. We can therefore take the +-0 limit
in

Note that the coefficient of Io in (25) is the bare
two-body Coulomb cross section.

The integration limits in (26) are related to those
of Eg. (23), namely,

lK- K
l
&q &K+K,

where K and K denote the wave vectors of the in-
cident ion before and after the collision, i.e.,

~ jq=K —K.

(2't)

(28)

so that the integration limits in EII. (26) are

Since E, =O'K'/2M, and n. =E, —h'K '/2M„we have

lK+K'
l =K[1+(1—««)'"] (29)

4e2
ReP;((u) =, P'dP f~= ——,',

wq p 8@p q
(20)

As the main contribution comes from small q, we
obtain

where

(M~6/2M )'~2

I +(I 6)'" ' (30)

v', = 6me'n/E~, kT, &&Eq (21)

and for high temperature, we get the Debye result

where v, is the inverse electronic screening length,
which depends on the electron temperature T, and
on the density. For low temperature, we get the
Thomas-Fermi result

6=«EI
is the fraction of energy transferred in the colli-
sion.

Now, Eq. (25) shows that the cross section is
large for small 6 (large II), so that we can effec-
tively take the integration limits as 0 and , and
obtain

II.", = 4me'n/kT„kT, && Ez . (22) Io($) =1+1/$ . (31)
We can now make some physical approximations

to evaluate qualitatively the screening effect. (A
more quantitative, but physically less transparent
treatment, will follow in Sec. BI and IV.)

First, let us assume that !PI„(q)1«1, so that we
can replace le, (&u) I' by 1 in the denominator. (This
approximation will be denoted by an index 0.) We
get

1 do g2, M, e w& 2AT
Vdi E

We thus see that the screening factor tends to 1
whenever $ = «2kT is large.

A less drastic approximation is to neglect the
imaginary part, but ~ot the real part of P&(~) in the
denominator of Eq. (8}. From (17}and (20), we
ha,ve

2 M~2 M 1/2 ~
Res, (&u) =1+ —' +,G — . (32)

For small energy transfers (&u-0} we have G = 1
and we can thus write

I dq 52 M6 q
2

2MkT k„q Mk q

Introducing the notations

$ =4/2kT and II=K(u~/n,

we can write

(24)

Re&,((o) =1+«'/q',

where ~' is the total inverse square screening
length

IP = IP + IPII .
Here,

(33)

(34)

(
1 do ZIMIe2 rp

Vdb o E. k'4

where, with the substitution

(25) KD = 4mZe'n/k T (35)

is the ionic Debye factor.
We thus see that at low momentum transfer, the
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denominator in Eq. (8) diverges as q: This is
just the screening, by electrons and ions, which
cancels the q divergence in the two-body Coulomb
cross section.

On the other hand, for large energy transfer,
the argument of G in Eq. (32) is large, and we have
approximately

can be excited by the incident ion.
Actually, the last term of (37) is important only

if ~& ~~. For larger energy transfer, we see that
the main contribution to the screening is due to the
electrons, and the denominator in Eq. (8) can be
approximated as

i ~,(~) i' = (1+ejq')'. (39)
G = —kTq'/MH

(see Appendix B). We obtain

(36) To conclude, we may also write that denominator
exactly. We obtain

Res, (td) =1+I—') —(—) (37)
1 d«r Z«'M«e'«i I
V d4 E] 45 (40)

i.e., we see that a sound wave with

&= (u q/(««', +q')'i' (38)

where the coefficient of I is the bare two-body
Coulomb cross-section. The screening factor I is
given by

4 Cx2 dg
««'i' I( I . (1+rPx'[3TH(r )/Z+2G(x)]]'+[rPv'i'(1 —e ")$ 'x'C]' ' (41)

where the integration limits are given by Eq. (30)
and where the following notations have been used:

simply have to take the sum of the squares of all
the ionic plasma frequencies.

H(z) =
J dx(1+exp[(x' —p,,)jz]] '

0

is the normalized electron screening factor,

r, =kT,/Er

and

r =kT/Er

are the normalized temperatures, and

C -=exp[- x '(1 —(/2x')'] .

III. EVALUATION OF THE SCREENING FACTOR

Although the integral in Eq. (41) looks formid-
able, it can be solved numerically-with some
care, especially if ( is large. Moreover fairly
good analytic estimates can be obtained for it, for
most values of the parameters (see Appendix A).

Taking Z=1, for simplicity, it is convenient to
define

Finally, we note that if we have in the plasma
several species at the same temperature T, the
above results can be generalized, to a good approx-
imation, by taking

and

n= fi«dg4kT

v = 35«d~H(r, )/4Er .

n Z2
(u', = 4««e'Q (42)

where r«,. is the number of ions of type j (mass M&,
charge Z«e) per unit volume. Indeed, it readily
follows from Eqs. (40) and (41) that, if the denomi-
nator in (41) is set equal to expression (39), i.e.,
depends only on the electrons (we have seen that
usually most of the screening is due to the elec-
trons), then the plasma ions enter in (40) only
through rt, which is proportional to uP&, and we

These expressions do not depend on the incident
ion, but only on the properties of the plasma (den-
sity and temperatures). Note that n can be
large or small, but v is always small. We have

v/n -3kT/Z,

for degenerate electrons, and

v/n-2T/T,

for nondegenerate electrons. It is shown in Appen-
dix A that for g&1, one has approximately

I=([ ( j~y'n)' ' —(«r'/y)' ']m'i'e" erfc(yn) 2+ njy I/rp+2/rp(1 —e '«)[(1 —rp)'+6r}'v/n]'i'+2. 3438/r}, (43)

where

p=2Q+ p.
For very large «} (i.e. , for di «k&u~) the first term
dominates and becomes

ol

I-(7«n/y')'"/2«}' if n«l,

I- 1/r}'y' if n» 1 .

(44a)

(44b)
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We thus see that the screening factor behaves -as

6', so that the effective cross section tends to a
finite limit for b, -0.

On the other hand, for small ~i)
~

(namely,
& 1 if n& 1, or

~
il

~

& o. ' ~' if o.'& 1), we have approx-
imately

and

1+ il/2 o.I
(1 —g), if S&0,

Z=e4-~~ "', if ~&0.1 —gj2n
(1+ vol —rP)'

(45a)

(45b)

IV. NUMERICAL EXAMPLES

We have evaluated the screening factor numeri-
cally and compared the results with the above
estimates, for two extreme cases of DT plasmas.

Ultrahigh-density, hot Plasma. We took n
= 5.1 x 10" cm ' (10' times the solid density) and
kT=1 keV. We then obtain 5~~=40 eV, so that
&=0.01. The electron Fermi energy is E& =10804
eV and we have v=0.0027767. The results of the
numerical integration are given in Fig. 1. We see
that our asymptotic estimates describe fairly well
the behavior of I over the whole range of g.

Solid DT. We took n=5.1&&10"cm ' and AT
=0.00158 eV. This gives Aced&=0. 1264 eV and n
=20. The electron Fermi energy is E&=5.0148 eV
and we have v =0.0189. Under these conditions, we
cannot expect the present theory to be quite accu-
rate, because the actual electron Fermi surface
departs appreciably from a sphere. Moreover,
the ion Fermi energy

Finally, if n&&1, the screening integral behaves
in a rather curious way in the region n ' ' & g & 1,
where it may have three sharp maxima (see below).

~E M~ M,

l

is 0.00114 eV, which is not mgeh smaller than kT.
There is therefore also some ion degeneracy,
which our theory did not take into account.

Nevertheless, our results should be at least
qualitatively correct. The result of the numerical
integration is given in Fig. 2. It is seen that the
asymptotic estimates describe extremely well the
behavior of I for q & 0.1 and g &1. In the region
0.1(ii&0.4, Eq. (45a) gives the correct order of
magnitude, while in the region 0.4&@&0.78, Eq.
(A2) is roughly correct.

On the other hand, the value of I behaves wildly
for 0.78&g&1, as can be seen in Fig. 3. In parti-
cular, there is at g=0.7796 an extremely sharp
peak which cannot be evaluated numerically. ' If
we take seriously Eqs. (A4) and (A5), the height
of the peak is 2.3 && 10 and its width is 1.4 ~ 10 ".
These ridiculous values are of course unphysical:
As they depend on a, the peak will be erased by
any inhomogeneity in n or in k T.
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FIG. 1. Screening factor for kT = 251m&. The broken
lines represent the asymptotic limits.

FIG. 2. Screening factor for S~&=80k'T. The asymp-
totic limits, represented by broken l.ines, essentially
coincide with the results of the numerical integration for
g& 0.1 and g& 1. The region 0.78&q & 1.03 is given with
more detail in Fig. 3.
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V. AVERAGE SLOWING DOWN

We are now ready to evaluate the average fric-
tional force

dE;
i

dv
dx d4 (46)

(48)

where A,„=E,. is the value of 6 for which the in-
tegration limits in Eq. (29) start moving appreci-
ably toward each other. The integral in Eq. (48)
can easily be evaluated' as

ln —+ — +E, (&u) —E,(6),2(1 —s-") 2(1 —e ~)

where

6 —=6,„/kT, and ~—= h&ugkT.

For 4,„&&kT&&Sar~, which is the limit encount-

I)l
100—

50
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10—

5-

I & « i I i i i & I i i & & I i i s i I i s

0.8 0.85 0.9 0.95 1

FIG. 3. This is a detail of Fig. 2, for 0.78&g & 1.03.

where

do mI/J'& Z';e'I
ME)E

We have seen that for 6&&5~~, the screening fac-
tor I behaves as dP, so that do/db, tends to a con-
stant. Its limiting value is not relevant, since its
contribution to Eq. (46) is negligible, as long as
h(d& &&E,

We can therefore simply cut off the integration
range in the interval —Sco~ & 6 & S~~, and use Eqs.
(45a) and (45b). For larger 6, i.e., small q, a
good approximation is simply

I=l+2kT/b if 6&he~

and

I =(1 —2kT/h)e~~'r if « —h(u

Collecting the various terms, we obtain:

dE; mM;Z;e ~m~, ~&&r 2kT dh

ered in practice, this becomes approximately

1.422+ In[ATE /(S&u&)'] —2kT/6 (49)

(ME,/M, k T)' ~' exp(- ME;/M, .k T),
so that, when the temperature is high enough,
-dE, /dx decre. ases and finally becomes negative,
as expected.
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APPENDIX A: ASYMPTOTIC LIMITS OF THE SCREENING

FACTOR

In this Appendix, we sha'1 derive the formulas
which were listed in Sec. III. Let us define

c = (/2 = o./q, z =x'/c,

and

V(cz) = V(x') = —2x'&(x) .
Note that c and z are negative if 6&0, i.e. , if the
incident ion gains energy during the collision. The
properties of the function V are discussed in Ap-
pendix B. With these notations, we can write

dz
z(AE'+8'/A) '

where

A = (v/cz')' ' exp[c(z + z ' —2)],
2 1-4g

E =1+viz —q'V(cz),

and the + sign is the same as that of A.
The integration limits, for 6= n/E, «1 (this is.

the only interesting case, since for large-angle
scattering the screening becomes negligible), are
approximately M6/4M, . and 4M/6M, They can be
taken as 0 and + for practical purposes, because
extremely small or extremely large values of z
make A so large that their contribution to the inte-

which multiplies the coefficient in the right-hand
side of Eq. (48).

Note that this result is valid only under the ap-
proximations mentioned above. If kT/E, is n.ot
negligible, we must introduce a correction related
to the fact that the upper integration limit in Eq.
(A2) is not infinity, but

M6/2M; 4M M

[1—(1 —5) ~2] 6M( 2M)

It can easily be shown that the truncation of (A2)
at the above value of z reduces expression (49) by
terms of the order of
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The integral can be written as'

& "8- ' -'/'dyy[2y1 /2eraerfC(y(y)l/2]
(y+y)

whence the first term of Eq. (43) follows.
When ~ri~ &1 but is not very large, the main con-

tribution to the screening integral comes from the
points where F=0, namely, where

V(cz) =q 2+(v/n)cz. (Al)

It is easily seen from Fig. 4 that there will be two
such points, if ~r/

~

&O.V8. In the vicinity of each

ii

V (x)

't.5

0.5

I

8 x

FIG. 4. Function V(x) fore &8.5. For large x, see Eq.
QX).

gral is negligible.
The asymptotic limits of I when g is very large

or very small can be evaluated as follows:
Small energy transfer. When r/ is very large,

the main contribution to the screening integral
comes from small z, of the order of I/q. We then
have cz = nr/ 2' «1, whence (see Appendix B)
V(cz) = —2cz. Therefore E=1+(v+2n)r/z On the
other hand

A. = r)'[r//o. (qz)']' "e
It follows that AF' »B'/A Le.t us define

y=2Q+ p

and y =1/r/z. We obtain

-ey -1/2 d(~/v)1/2q-2 y y
(y+y)'

(c/v)1/2E 2e2c
)t
-z1/2e cs c/zd-z-
p

(A2)

which can be solved exactly. ' The result is given
by Eqs. (45a) and (45b).

Intermediate case.' & &g&0.78. When a is
very large, there is a range of g where F cannot
vanish and both terms in the denominator are of
the same order of magnitude. Since c is large, the
main contribution comes from g —-1. We write
z =1+x, whence z+z ' —2=x'+O(x'), and

E = (1+ vr/ —rP —3q'/2c) +x(vs+ 3r//2c)+ O(x') .

Unless

Eo= 1+ vr/- q —3'/2c
is very small, we can neglect the other terms in
F and write

dx

F'(r//c)' 'e'"'+ w'q'/4(v/c)' 'e'"' '

2 " dg

1rE,(MP)' '~ d~/R+R/e+ '

where y'=cx' and

R =(~~r/')'"/2E, .
Note that R is large (since nrem is large). We now

write

y = (lnR) + u/2(lnR)

one, we can write F =E (z —z,) and replace all
other z by zp. We obtain for each point

1 dz
Az, „[E'(z—z,)]'+ (B/A)'

'

If B«A ~F z, ~, we have a sharp "resonance, " the
contribution of which to I is r//B ~z,F ~. It can
easily be shown that the second resonance (cz,
&3.826) is always sharp. For large ~r/~, and
therefore large (rzp its contribution can be evalu-
ated as follows: We replace V(cz) by its asymp-
totic value 1+ 3/2cz (see Appendix B), solve Eq.
(Al) for cz, and compute V (cz) = —3/2c'z' at that
point. The result is the second term in Eq. (43).

The first resonance, on the other hand, is sharp
only if ~c~ is large, i.e. , if »& ~1l~. If this condi-
tion holds, its contribution to I behaves as r/

' (for
large ri, it tends to 2.3438/2l4).

Large energy transfer. When r/ is small (i.e.,
h»K&o, but of course 6«E,.) we can neglect
B «AE, unless o. &2i

' (see below). The main con-
tribution to the integral wi11 then come from g =1
(especially if c = o'/r/ is large), so that we can re-
place F by a constant:

F =1+vr/ —r/ V(o/rl) =1+ ir/ —r/' .

We then obtain
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whence

1
2RE', (1/ lnR)' /'

dQ

„exp(u+ u'/4 lnR) + exp(- u —u'/4 lnR)
'

We see that the integrand is minimum when u = 0
or when gg —-—4lnR. Both contributions are equal
and the integral is approximately fdu/coshu = 2/2.
We thus obtain

which is maximum for 8= P/3' '. The square brac-
ket then is [0.6459/P]' '.

Note that when
~

8
~

&& P, the behavior of I is quite
different on both sides of the peak. For 8»P,
we have []' '-8 ' ', while for —8»P, we have

[ ]' ' - P/2
~

8
~

' ' = 0 (the main contribution to I
does not come then from r/- V2' ').

The width of the peak (defined by the values of
8 for which I is one-half of its maximum) is about
6)8. This corresponds to

&/2 1 /2

F', (w c(rp/4E', ) In(w arp/4F2)
(A3)

5q = 3pc('V2/r/= 3.25/ o.".
APPENDIX B: THE FUNCTION V|'x)

(A5)

Singular case: &&&1, 0.&8 &g &&. When 0.78
& @&1, we have a situation similar to the interme-
diate case discussed above, but with some com-
plicating features: (a) There are two points at
which I' vanishes, the contribution of which must
be added to that of the region where AE'+B'/A is
minimum. (b) When 7) is close to 1, then F, itself
may vanish and we must consider the explicit de-
pendence of E on x. (c) One of the zeros of F may
coincide with a minimum of AF'+B'/A. Then I
becomes quite large (see Fig. 3). (d) For 7) =0.78,
both zeros of E coincide and the value of I becomes
exceedingly large.

The last feature is the only one readily amenable
to an analytic treatment. In E = 1+rP[(v/o()cz
—V(cz)], we neglect v/o. 'and write, near the max-
imum of V (see Fig. 4),

V(cz) = V, —V, (cz - x,)'.
The numerical values are V0=1.6452, V, =0.8453,
x0 3 826 Thus

E = +V, (z - z,)'+1- q'V„
where z, =x,/c.

On the other hand, we can write1, dz/z
B - E —iB/A

Bz,o(' V, „~ (z —z,)' —8 —i P
'

where 8=(rpv, —1)(2."V2 and p=2B/Ao('V2. Note
that P is very small, because

A = (2/cz', )'/' exp[c(z, + 1/z, —2)]

is very large, because c/z, = c'/x, is large.
The last integral has two poles at z =z2+(8+i p)'/'

and we obtain

I=, Re(8+i') '/'-
& V2BZ0

We shall now derive the main properties of the
function

V(x') = —2x'G(x),

where
-t2

G( )
— 1/2E

t —xw(O

(sthhhtx)/t=2 f eoshhtede,
0

whence

G(x) =1 —22 '/'xe dy e cosh2ty dt
0 wOO

=1 —2xe ~ eddy,
0

P0
e e dz,

where z =2x(x —y). Thus

~2 x
tt(x) =1 —hx(1 —

)) e 'edt'*dx) .
~ 0

We can now replace the upper limit of the integral
by ~ (the error is of order e '") and expand e'
in power of x '. We obtain

V(x) =1+—+ +, + ~ ~ ~ .3 15 105
(Bl)

=1 —11
' 'xe ~ dte ' (sinh2tx)/t.

a 00

The last expression is obtained by a shift of the
origin and by keeping only the even part of the in-
tegrand. The result of the numerical integration
is given in Fig. 4.

For small x, we have G = 1 and therefore V(x)
= —2x. Further terms of a Taylor series can easi-
ly be obtained by expanding e " and sinh2tx in
powers of x.

For large x, an asymptotic series can be ob-
tained as follows: We note that

8 ~ (82+ PR)1/2 1/2

o' V,Bz, 2(8'+ g) (A4) The ratio of consecutive terms is (2n+1)/2.



PLASMA SCREENING EFFECT IN ION-ION SCATTERING

APPENDIX C: THE DEBYE SCREENING LIMIT

In standard calculations, ' the screened potential
of a fixed charge is

P= Q, exp(- ~sr),

where &f&, is the pure Coulomb potential and where

«, =4««««*(' «
' ).

Note that the electrons are treated as nondegen-

crate. It follows that the scattering amplitude'
becomes proportional to (tI'+ tl'as) ', r'ather than
to q '. For a scatterer initially at zest, we can
write q' = 2M', so that

I= (1 +5' a' /2 Mh) -' = (1 + re) ',
where y=2&+v. For large & or g, we have
I-1/rl y', in agreement with Eq. (44b). However,
the present derivation requires kT « o. (i.e., q» n), while (44b) was obtained under less restric-
tive assumptions.
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