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Model for Raman and IE1uorescent scattering by molecules embedded in small particles*
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A model for Raman and fluorescent scattering by molecules embedded in small particles is described. This
takes into account the effect of the particle's geometrical and optical properties upon the unshifted field which
excites the molecular transitions within the particle, and upon the shifted field. Formulas are given which
relate the angular distribution of the scattered radiation to the nature of the molecular scatterers and to the
size and refractive index of the particle. These results are relevant for current problems in cell biology and
atmospheric physics.

I. INTRODUCTION

Many problems of practical importance involve
fluorescent and Haman scattering by molecules
embedded in a dielectric particle whose dimen-
sions are comparable to the wavelength, yet much
larger than molecular dimensions, or by such
particles consisting entirely of scattering mole-
cules. For example, the dielectric particle may
be a biological cell which has been tagged with
fluorescent molecules that attach to the DNA, the
cytoplasm, or the cell membrane. The fluores-
cence can be used to monitor specific cell func-
tions, or in cell identification and sorting sys-
tems. ' As another example, the particle may be
part of the atmospheric aerosol. This case is of
considerable interest in studies employing LIDAR
(light detecting and ranging) for remote sensing
of both molecular and particulate constituents of
the atmosphere. '

In a quantitative treatment of the scattering prob-
lem the geometrical and optical properties of the
particle must be taken into account, but to the best
of our knowledge this paper represents the first
attempt to do so. These properties strongly influ-
ence both the loca, l field which excites the molecu-
lar transitions and the angular distribution and po-
larization of the emitted field. The angular distri-
bution and the polarization of the emitted fluores-
cence and Raman radiation will be shown to be dif-
ferent from that of elastically scattered light and
from the corresponding distributions for the in-
elastic scattering by free molecules. In addition,
measurement of this inelastically scattered radia-
tion may provide useful information regarding the
size, shape, and refractive index of the particle
and also regarding the distribution of the inelasti-
cally scattering molecules within the particle. We
develop in this paper a formalism that can be used
to express the experimentally observed quantities
in terms of the concentration and distribution of

the relevant molecules in a particle of arbitrary
shape and refractive index. Explicit results are
derived for spherical particles.

The point of view here is classical. The particle
affects the local exciting field and the angular dis-
tribution of the emitted radiation but not the mo-
lecular transitions. The model is described in
Sec. II. The induced field due to a single dipole at
an arbitrary position within the particle is ex-
panded in vector spherical harmonics in Appendix
A. The unshifted transmitted field is given in Ap-
pendix B. In Sec. III the scattered field and the in-
ternal field are similarly expanded, and the ex-
pansion coefficients of the scattered field are de-
termined by the boundary conditions for the case
of a dielectric sphere. The more general case of
an arbitrary distribution of dipoles inside the par-
ticle can be obtained by superposition. Extension
to any other shape for which the boundary value
problem can be solved is straightforward in prin-
ciple, but involves much labor. The limiting case
for small radius is considered in Sec. IV.

II. MODEL

If an electromagnetic wave of angular frequency
~, is incident on a dielectric particle, the scattered
radiation will consist of an elastic part (at angular
frequency cu, ) and an inelastic part at other frequen-
cies. We consider here only inelastic scattering
which arises from molecular transitions and omit
consideration of quasielastic Brillouin scattering.
The electromagnetic field inside the particle like-
wise consists of a transmitted part (at frequency
u, ) and secondary fields at other frequencies. For
a particular frequency ~, we represent the sec-
ondary field as being generated by a collection of
classical dipoles, arbitarily distributed within the
particle, which undergo forced oscillations at fre-
quency + induced by the transmitted field. The
strength of the induced dipoles may be described
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by an effective polarizability n, which in general
may be a tensor, multiplying the transmitted elec-
tric field. The transmitted field is derived in the
present notation in Appendix B.

At the shifted frequency &, the field inside the
particle is the sum of the induced dipole field and
an internal field due to the dielectric. This inter-
nal field is a secondary field which must be postu-
lated in order to account for the effect of the
boundary upon the dipolar field. Outside the par-
ticle, there is only an outgoing field at this fre-
quency. This outgoing field is determined in terms
of the dipole field by the standard boundary con-
ditions, which state that at frequency cv the tan-
gential components of E and H must be continuous
at the boundary of the particle.

III. BOUNDARY CONDITIONS AND SCATTERED FIELD

We now carry out the calculations outlined in
Sec. II. Consider a spherical particle embedded
in a homogeneous medium. Let a plane wave of
angular frequency u, be incident on the particle.
This will give rise to forced oscillations of free

and bound charges synchronous with the incident
field, as well as to molecular transitions that re-
sult in the emission of radiation at different fre-
quencies. The electric field inside the particle
consists of the transmitted field E', (r, &u, ) at the
incident frequency (see Appendix B) and induced
fields E,(r, (d) at other frequencies. Similar state-
ments can be made regarding the magnetic fields.
As indicated in Sec. II, the induced fields will be
approximated by a distribution of induced dipoles
oscillating at frequency ~. We work out the fields
for a single induced dipole in this section. The
result for the general case may then be obtained
in a straightforward way by superposition.

Let the media inside and outside the sphere be
labeled 1 and 2 with dielectric constants 6y and c2,
magnetic permeabilities p, , and p.„wave numbers
k, and k„and indices of refraction n, and n„re-
spectively. These material constants depend upon
the particular frequency u or uo under consider-
ation; ~ is used for the calculations in Sec. III.
We require the fields outside to approach outgoing
spherical waves at large distances, '

B(r)= P (, c ()m)cx[k, '
(k, r)Y„„(r)]+c„(),m)k["(k, r)Y, , „,(r)),

t

B,(c)= P c (l, m)k", (k r) Y„(r)——c„(l,m)cx[k, '(k, r)Y, , „(l)]).
l, m

The fields E,(r) and B,(r) inside the sphere will be the dipole fields Ed;, and B„;,plus the fields due to the
dielec tric

E,(r) = E„,(r) + p f(ic/n, 'cu)bE(l, m)V [j, (k, r)Y«(r)] + b„(l, m)j, (k, r)Y„(r)j,
l, m

(3)

B,(r) = B„„(r)+ g (b~(l, m)j, (k, r) Y„(r)—(ic/&u)bM(l, m)V x[j,(k, r)Y„(r)]),
l, m

(4)

with

E„.,(r ) = p ((i c/n', e)a~ (I, m) V && [h,' (k, r) Y«(r) ] + a„(l, m)h, ' (k, r )Y» (r )J,
l, m

B„.,„(r) = g f a~(l, m)h, '(k, r)Y«(r) —(ic/&u)a„(l, m)V &&[h,'(k, r)Y«(r)] i,
l, m

(6)

where as(l, m) and a~(l, m) are given by (A14) and

(A19). It should be understood that these fields
refer to one specific dipole localized at r' and that
the coefficients in each of the expansions (3)-(6)
are functions of r'. The coefficients cs(l, m) and

c„(l,m) of the outgoing field are determined in
terms of the known dipole coefficients ae(l, m) and

as(l, m) by the boundary conditions

rxE, =xxE,

yxH, =xxH, (8)

evaluated at r =a. In view of (A16), of the vector
identity
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1 dr x (vx[g, Y„(r)][=rx ——(rg, )r x Y„(r") h,"(k,a)c„(l,m) = h,"(k, a)a„(l,m) + j, (k, a)b~(l, m);

[l(l+1)]' '
g,r1;„r —h, ' (k, a)cs(l, m) = —h, ' (k, a)as(l, m)

d
(rg, ) Y„(r), + —j, (k, a)bs(l, m),

1.
1

(12)

where g, denotes either j, or h,', and also of the
orthogonality of the Y, y s for different y, the
boundary conditions give

—[k, ah, ' (k, a)]'c„(l,m) = [k—,ah, ' (k, a)]'a„(l,m)

+ —[k, aj, (k, a)]'b„(l,m),
1

1-

—,
d
—[ah, ' (k, a)] cz(l, m) =—,

d
[ah—,'~(k, a)] a~(l, m))"2 ' 1

d,
+—,—[aj, (k, a)]bs(l, m),

1

(10)

where

x x '= —x x= d

Solving Eqs. (11)-(13), we find

(13)

(14)

p, ,n2(h~'I(k, a)[k, aj, (k, a)]'- j, (k, a)[k, ah, '( k, a)]') a~(l, m)

~,n,'h&»(k, a) [k, aj, (k, a)]' —p, ,n', j, (k, a)[k, ah'p)(k, a)]'

(in,'/p, ,k, a)as(l, m)

e, j, (k, a)[k, ah', "(k,a)]'- e, hP'(k, a)[k, aj, (k, a)]' (15)

and

p, ,j, (k, a)[k, ah', "(k,a)]'- p. ,h~P)(k, a)[k, aj, (k, a)]' ' (16)

where we have used the properties of the Wron-
skians of the spherical Bessel functions to simpli-
fy the numerators. At large distances

„„=8'„'„. I B.(r) I''"2

h~~~(k r) ( i )'+~8' 2"/k r (17)

C P (—i)'"[c (l,m)Y„(r")
l, m

~x[hI"(kmr»ll (r)]-(-i)'(e'""/r)rxYli (r),

(18)

llf2r

B,(r) - k Q (-i )'"[cs(l,m)Y„(r)
2 l m

+ n,c„(l,m) r x Y„(r")],

2

+n,c„(l,m)r x Y„(r)]

(21)
where @2=1 if the outside medium is vacuum, and
where the coefficients cs(l,m) and c„(l,m) are given
by Eqs. (15), (16), (A14), and (A19).

IV. LIMITING CASE

If both k, a and k2a are much less than unity, we
have

E,(r) - (1/n, ) 82(r) x r" .

The time-averaged power radiated per solid
angle is

(19)

(20)

l+1 S 0
(l m) (2l+1)

n, l p, n,'+ (l+1)p, , ,n22'

for n, = 1, p.,= 1, and l = 1;
(22)
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n '" a fmc () m) (2)+1)
lg, +(l+1)p, , '

for n, =l, p, , =1, and l=1.Sa„(l,m)

.(1, 1) =(-; )'" ~;(p. —p, ),
a.(1, -1) = -(-;~)"~I ', (p. + fp, ),
as(1, 0) = (Bv)'~'ik,'p, .

(24)

(25)

(26)

(23)

Since r' ~ a, Eq. (A14) shows that the leading non-
vanishing values of as(l, m) correspond to l=l and

To this order a~(1,m) =0, as can be seen from
Eq. (A19). Thus according to Eq. (21) the angular
distribution of the radiated power P is (setting
n, =l)

C 2

c~(1, m)Y» (r)"
4 2

, [p„' sin'Q + p,'cos'Q + p,'+ (p„'cos'g + p,' sin% —p', )cos'&8wc' n,'+2p, '
—2 sin6(p„p, sin8cosp sing+ p, p, cos8 sing+ p„p, cosgcosy)j, (27)

and the total radiated power is
e

dp 3u)4n2p '
P=

dQ c'(n'+2p, )' ' (28)

For a dipole along the z axis the angular distri-
bution reduces to the simple form

~P 94n2p 2

, sin26
dQ 8mc'(n', +2)j, ,)'

(29)

In this limit the radiation depends upon the strength
of the induced dipole but not on the radius of the
particle. In general, the angular distribution in-
volves more terms in the series expansion. These
additional terms will contain information about the
radius a, and this will be of interest in applica-
tions to cell biology and atmospheric physics.

V. DISCUSSION

The angular distribution of the radiation emitted
by a dipole in a dielectric sphere is represented in
terms of a multipole expansion in Eq. (21). The
expansion coefficients cs(l, m) and c~(l,m) are given
in terms of the dipole strength by Eqs. (15), (16),
(A14), and (A19). The effects of the particle
boundary are immediately obvious when, as in
Eqs. (15) and (16), the expansion coefficients for
the inelastically scattered field are expressed in
terms of the corresponding expansion coefficients
for the dipole alone. The strength and orientation
of the dipole depends, in turn, upon the transmitted
field (at the unshifted frequency ~,) at that location
within the particle and upon the polarizability ten-
sor. Finally, the transmitted field is a linear func-
tion of the radiation field incident on the particle.
For the reader's convenience we rederive the (un-
shifted) transmitted field in our notation in terms

of the incident field in Appendix B. For many im-
portant cases the polarizability e is a scalar and
the angular distribution is completely determined
by the transmitted field.

Problems involving distributions of more than
one scattering molecule can be obtained from the
above solution by superposition. For coherent
scattering the expression for the electric field
given in Eq. (20) can be multiplied by the appro-
priate distribution function and integrated over the
relevant region of the particle. For incoherent
scattering it is the time average power per unit
solid angle given in Eq. (21) that is weighted and
integrated.

In neither case is it reasonable to expect either
the angular distribution or the polarization to be
identical to the elastic case when the expression in
Eq. (21) is integrated over the distribution of fluo-
rescent particles, even in the special case where
the fluorescent molecules comprise the entire par-
ticle.

Most problems of practical interest will require
computer calculations similar to those now used
in the standard Lorenz-Mie scattering calcula-
tions. 4 Raman and fluorescent scattering are cur-
rently used to identify specific molecules and to
estimate their concentrations. When the scatter-
ing molecules are embedded in particles that are
large compared to molecular dimensions the angu-
lar distribution and polarization of the inelastically
scattered radiation can be used to extract informa-
tion on the size and shape of the particle. When
used in conjunction with Lorenz-Mie scattering,
information on the distribution of the relevant
molecules can be obtained.

Most important, the effect of particle size and
refractive index on the angular distribution of the



400 H. CHEW, P. J. McNULTY, AND. M. KERKER

fluorescent or Raman scattering must be consid-
ered in any quantitative description of that scatter-
ing.

APPENDIX A: VECTOR SPHERICAL HARMONICS

EXPANSION OF DIPOLE FIELD

Let the vector potential at the coordinate r due
to an oscillating electric dipole at r' with dipole
moment p be A„,. Suppressing the factor e ' ',
we have

e lkIr -r
Ad, —-zkp

)

We shall use the same units and notation as
Jackson' except for the vector spherical harmon-
ics. For the latter we follow the notations of Ed-
monds. '

=4z[k'p g j, (kr')kI'](kr)Y, * (r ') "Y, (r),
l,m

(Al)

so that

7r 2

B~,. =VxA„„=4]zk' p j, (kr')Iz, '(kr)rx pY,* (r')Y, (r)+ p j, (kr')k", (kr)Y(* (r')[rx LY, (r)], (A2)
l, m l, m

where j, (x) denotes the spherical Bessel function
regular at the origin,

k',"(x) =
d

k',"(x), and L = —irxV.

pansion of Bd;„of the form

B„,= P (ae(l, m) k,"(kr) Y» (r")

l,m

—(ic/&u)a~(l, m) V x [k['](kr)Y„(r)]]. (A3)
To avoid complications in writing we assume x'& r.
This is justified in the case of a sphere which we
work out in detail because the fields are eventually
evaluated for r at the surface of the sphere.

To fit the boundary conditions, we need an ex-

The coefficients ae(l, m) and a~(l, m), which de-
pend on the coordinate r', are obtained from (A2)
using the orthogonal properties of the vector
spherical harmonics. We have

az(l', m') kI' (kr) = YP, (r) , B~d;,dQ

yg ~ yyI () y~
l, m

Y& ~ .(r) x [r Z,.(r)]dn

—P [l(l+1)]' 'l', (lr') Y, (r )h, ' (kr) r[Y, , d(l) Y, , „(r)]d))) .
l,m

(A4)

To evaluate the first integral in the last statement of (A4), we use the identity'

(A5)

The integral then reduces to a sum of integrals of cross products of vector spherical harmonics. The lat-
ter can be evaluated by expanding the vector spherical harmonics in terms of the ordinary spherical har-
monics F, . Inserting the appropriate Clebsch-Gordan coefficients, we find

Yr = P [Y, „r,(l', d, l, d[l', l, l', m)]*=- P m, d.
)

*,
p, e

(A8)

= g [Y„»e, (1+1, ]z', 1, q' ~l+1, 1, l, m)]=- P(P, e, ),
P, 0 e

(A7)

Y;; (r) x Y, „~, (r) dO= [-(n*,p, + n,*p,)e, +(n,*p, —n*,p, )e, +(n,*p, + n,*p,)e,] dQ

l, l+1 l +1 F2l' 2l'+1 (A8)
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where

F„=i{[(l'—m)(l'-m'- 1)] ' 5,+ [(l'+m')(l'+m' —1)]'

F, = [(l'- m') (l'- m'-1)] ' ~'5 ~, + [(l'+ m ') (l'+ m'- 1)]' ~'5 ~

F, = -2i[(l'+ m')(l' —m')] '~~5

The other cross product can be evaluated in the same way; the result is

l'+1 1
gl'(2l'+1}(2l' —1} ' ' ' ' (l'+1)(2l'+1)(2

where F is given by Equation (A7) and

G„=i{[(l'-m'+ l)(l'- m'+2)] ' '5 ~ „—[(l'+ m'+1) (l'+ m'+2)] ' '5,
G, = [(l'-m'+1)(l'-m'+2)] ' '5 „+[(l'+m'+1)(l'+ m'+2)] '~'g .

G, = 2 i[(l'+ m'+1) (l'- m'+1)]'~'l},

To evaluate the second integral in (A4),

r" [Y,*, (r) ~ Y„„(r)]dQ -=R,

(A10}

(A11)

we first express the quantity inside the brackets as a sum of spherical harmonics times their complex
conjugates (of different orders in general). This is then multiplied by

(A12)

and integrated over dO using well-known results for integrals of products of three spherical harmonics. '
Thus

R„=
(l'+1) (l'-1) 'l'{[(l'-m') (l'- m'-1)] 'l'6 ~, —[(l'+ m')(l'+ m'-1)] '~'6

~ „j
2l' (2l'+1)(2/'-1)

l' l'+2 x /2

+2')' ') (, (, (-(()'+~'+))()'+~'+l)I')'5 —,+((('-~'+()()'-~'+2)I')'))

f)('(+, (,l'+1)(l'-1) '~'{[(l'-m')(l'-m'-1)] 'l'5, +[(l'+ m')(l'+ m'-1)] ' '6 „j
(2l'+1) (2l'- 1)

{[l'+m'+1) (l'+ m'+2)] ' l't}, „,+[(l'- m'+1) (l' — '+2)] ' '5

1 l'(l'+2)(l'-m'+1)(l'+ m'+1)

l' (2l'+l)(2l'-1)

(A13)

We now insert (A13) and (A10) into (A4), using the recursion relations of the spherical Bessel functions'
to eliminate the derivatives of h',"(kr). After considerable algebra, we find on dividing out h",, '(kr) and

dropping the primes that

where

2mik' (l+1)j,(kr') lj „,(kr')
[l(l+1)(21+1)]~)'2P [2l 1) ~)'2 [2l+3] &12 (A14)

e„=[(l+ m)(l+ m-1)]'"1;*, ,(r') —[(1-m)(l-m-1)]'~'Yp, , „(r'),
e, = —i {[(l+m)(l+ m-1)] '~'Y", (,(r') + [(l-m)(l-m —1)]'~'Y,", „(r')j,
e, = 2[(l+ m)(l —m)] ~)"Y(", (r');
q„' = [(l+ m+1)(l+ m+2)] '~'Y,*„„(r')—[(l-m+1)(l-m+2)] '

Y,"„, ,(r ),
= i{[(l+m+1) (l+ m+ 2)] ' '

Y,*„„(r')+ [(l-m+1}(l-m+2)] ' 'Y,*„,(r') j,
e,' = —2[(l+ m+1)(l —m+1)] ' 'Y,"„(r').

The evaluation of a„(l,m) is similar. Taking the scalar product of Eq. (A2) with {V&[g, Y, , (r)]j pere
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g, denotes k,"(kr)] and integrating we have

——a {t„m',') lg, l'+, ,—rgl'd rg, )

=drg'pt'{ttr'tg, 'g;„{r't f[ttx[g, . t;{,r)]]'{rxp) r{r) dtt
J,m

+ pt', {gr']g, g, {r')f[ xr{ gV, , , {r)]] ~ [ttx[rxLr, {i)]]dg
i, m

+r [t{t+t']]'t'([t'{!'+1{]'t'g;f i, {r]g„{r)dtt —t —{rgrt [i xgr, {i)]x[ix Y„„{j]]dtt)

(A15)

The first two integrals in the last form of Eq. (A15) can be easily evaluated by expressing the Y» s in
terms of Y, 's, while the last one can be evaluated by noting that

i XY„„(x)=i(2E+I) '~'[v1Y[ „, (r)+(E+I)'~'Y .t. „(P)], (A16)

which can be verified by using the identities given in Ref. 5. Proceeding in the same way as for the elec-
tric term, we find

[r &Yt&, (r")] x[r &&Y„(r)]dQ

= [2l'(l'+1}] '5» (i(5 ~ „[(l'+m')(l' —m'+1)] 't" + 5,[(l'-m')(l'+ m'+1)] '~') i
+ (5 „[(l'+m')(l' —m'+1)] '~' —5 ~,[(l'-m')(l'+ m'+1)] '~')f + 2m5, k) (A17)

V&, re, f g

=-,[l'(l'+1}] ' '5, [((5, ,[(E'-m')(E'+m'+1)]' '+ 5 „[(E'+m'}(E'-m'+1)]'~')i
+ i(5„,[(E'-m')(I'+ m'+1}] '~' 5 „[(I'+m')( Etm'+1)] '

}t 2j+2m5, „k), (A16)

(A19)

A

where i, j, k, are the Cartesian unit vectors. Together with an analogous expression for J It ~ (r)Y„(r)
&&dA, we finally-get

-2~i(k'{d/c) j,(kr')p M
[l(l+1)l ' ~'

M = (g[(E-m)(E+ m+1)]' 'Y,* „(r') +[(l+ m)(l-m+1)] ' 'Yt*,(r'))i
+ i([(E-m) (I+m+ 1)]' '

Y,
~ „(r')—[(I+ m)(l —m+1)] ' '

Y,*„,(r"')jj+2m Y,* (r')k }. (A20)

In arriving at (A19) we have used various identities for the spherical Bessel functions' to simplify (A15),
divided out a factor involving g„and dropped the primes on l and m.

We note the following properties of the coefficients a~ and a„which are helpful for numerical work:

ag(E, m) =(-1) "as(E, -m),
a„*(l,m) = (-1)"a„(l,-m) .

(A21)

(A22)

APPENDIX B: TRANSMITTED FIELD

In our model the induced dipole moment p in Eq. (Al) is equal to the polarizability n times the trans-
mitted electric field at the unshifted frequency ~,. This is the field that stimulates the molecular transi-
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tions that ultimately result in the emission at the shifted frequency (fluorescence, Haman scattering, etc.).
It can be calculated in the same way as the scattered fields for Lorenz-Mie scattering. Let a circularly
polarized plane wave of frequency v, moving along the e axis be incident on s sphere of radius a (as in
Sec.III, the inside of the sphere is called medium 1 and the outside medium 2; also, ~0=k,c); then

E,„,= ( ex i&,)e" '2= g ((ic/n,'v, )os(l, m)V [j,(k,r) Y„(r)]+a„(l,m)j, (k,r) Y»„(r)}, (81)
l, m

8;„,= e, &c E,= w i E,„,= g (ae (l m)j, (k,r) Y„(r}—(ic/&u, ) a„(l,m) V x [j, (k,r) Y„(r)j,
l, m

(82)

where

u„(i,m) = 1' [4lr (2i+I )] ' ~'5

o.s(i, m) = + in„(), m) .
(83)

(84)

(outside the particle the electric field E, is the sum of E;„, and an elastically scattered field E„, which
can be expanded as

E„=g ((ic/n,'~,)Pe(l, m) V && [{h,"(k,r) Y«(r)] + P„(l,m) h, ' (k,r) Y«(r)) .
l, m

(85)

Similarly B~= B;„,+B3&, with

8„=g(pe(l, m)h, '(k,r)Y«(r) —(ic/&o, )p„(l,m)V&&[h, '(k,r)Y«(r)]).
l, m

Inside the particle the transmitted fields at frequency ~, maybe written

E~ = g ((ic/n', &u,)ye(l, m)V &[j,(k, r) Y„(r)]+ y„(l,m) j, (k, r) Y„(r)}, (87)

8, = g (ye(l, m) j, (k,r) Y» (r) —(ic/~, )y„(l,m}V &&[j,(k,r) Y«(r}]).
l, m

Unlike the familiar case of Lorenz-Mie scattering, we are interested in the fields E, and B,. As usual,
these are determined by the boundary conditions

y' xEz =& x E2,

yxH, =rxH, ,

(89)

(810)

(811)

(812)

and

together with the orthogonal properties of the vector spherical harmonics. These provide the following
equations for the coefficients ye(l, m) and y„(l,m):

n,'oe(l, m)[k, aj, {k,a)]'+ n', Pe(l, m) [k, ahI''(kla)]'= n',ye(l, m) [k, aj, (k, a)]',

a„(l,m)j,(k, a) + P„(l,m) h,"(kaa) = y„(l,m)j, (k, a),

p, ,oe(i, m)j, (k, a) + p, Pe(i, m)h, I'~(k, a) = p, y e(l, m)j, (k, a), ,

p, ,o~(l, m}[k,aj, (k, a)]'+ p, p„(l,m) [k, ah", ~(k, a)]'= p, y(l, m[k}, aj, , (k, a)]' .
Solving these gives the expansion coefficients of the required transmitted fields

(813)

{814)

(iy, ,n,'/k, a) ne(l, m)

n', p, ,j, (k, a) [k, a hI"(k, a)]'-n2~p, ,h',"(k,a) [k, aj, (k,a)]',
-(i p, ~/kna) u„(i,m)

p, ,h,"(k,a)[k, aj, (k, a)]'- p, ,j, (k, a)[k, ah', "(k,a)]'

(815)

{816)

These expressions have a somewhat different appearance from those given in Ref. 8 because we have used
the properties of the Wronskians of the spherical Bessel functions to simplify the numerators. To facili-
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tate comparison with works that employ different notations we list also the standard Mie scattering coeffi-
cients:

e,j, (k,a)[k,aj, (k,a)]'- e,j,(k,a)[k,aj, (k,a)]')a~(l, ~)
e,j, (k,a) [k,ahP'(k, a)]' —e,hI"(k~) [k,aj, (k,a)] '

,j, (.k, a)[k, aj, (k, a)]'- p,j,(k, a)[k, aj, (k, a)]'le„(l m)
2h~P&, (k, a) [k, aj, (k, a)]' p,j-, (, k, a)[k, ah I'&(k, a)]'

(B17)

(B18)
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