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The effects of incoherent feeding and decay on a coherently driven two-level system are
investigated using density-matrix techniques. A closed-form solution that includes the ef-
fects of relaxation and spontaneous emission between the two levels is obtained for cases in
which the sample size is both small and large compared to the wavelength of the coherent
field. The formalism developed herein is somewhat more general than the original ap-
proach of Bloch, Bloembergen, Purcell, Pound, and Redfield, insofar as it is applicable to
cases where the trace of density matrix is not constant in time. As such, several new
phenomena are predicted. Specifically, the steady-state solutions reveal that under appro-
priate conditions a significant off-resonance coherent component can be maintained indefi-
nitely by the combination of driving field and incoherent feeding. We term this effect "ki-
netic coherence" and develop its formalism for both optical and radio-frequency fields.

I. INTRODUCTION

The time evolution of an ensemble of two-state
systems under the influence of a coherent radia-
tion field is a problem of considerable importance
and has been treated extensively for the case in
which the ensemble is always composed of the
same members. By this we mean that the identity
of the individual members and the number of mem-
bers in the ensemble is constant in time. Proton
nuclear magnetic resonance is an example of this,
where for a given sample size the number of pro-
tons is fixed, and the individual proton maintains
its identity throughout an experiment. ' In many
cases, such as optical pumping in gases' and
solids, ' in some double resonance experiments, '
in chemically induced nuclear and electron-spin
polarization, "Stark-shift optical coherence, '
and any process which involves excited states,
the total population of the two-l. evel ensemble is
not constant in time. Although most of the pro-
cesses mentioned above have been treated within
their own context, little emphasis has been placed
on how the creation and destruction of the states
affect the properties of the ensemble in the pres-
ence of a coherent driving field.

It is the aim of this paper to treat an idealized
bvo-level system which is coherently coupled and
at the same time is being incoherently fed and is
spontaneously decaying. In such a case, the num-
ber and identity of the individual members of the
ensemble does not remain constant in time since
the ensemble of excited states will not only evolve
under the influence of the coherent radiation field,
but will also decay to the ground state by radiative
and nonradiative processes. In these cases the

trace of the density matrix describing the ensem-
ble is not constant in time, but rather decays from
an initial t=0 value to zero. In addition, if the ex-
citation source responsible for producing the ex-
cited states is l.eft on after t =0, new excited states
are continually created and also evol.ve under the
influence of the coherent radiation field. The col-
l.ection of excited-state two-level systems is there-
fore not a time-independent collection, but rather
an ensemble which constantly has members feed-
ing into and decaying from it.

Traditional. treatments " that deal with coherent
coupling experiments are inadequate for this pur-
pose since they do not include the effects of feed-
ing and decay. The theory and model system de-
veloped i.n this paper was specifically designed to
incorporate these considerations for a proper de-
scription of zero-field excited-triplet-state co-
herence experiments, "and represents an exten-
sion of the basic theory presented in the first part
of this series. " It must be emphasized, however,
that the treatment is applicable to a broad range
of phenomena owing to the general nature of the
Hamiltonian that describes the time evolution of
a two-level system. In some respects this prob-
lem has been considered by studies on lasers and
I.aser amplifiers, the paper by Icsevgi and
I.amb ' perhaps coming closest to this work. How-
ever, we wish to focus attention on the qualitative
and quantitative effects of feeding and decay on a
coherently driven system and we are not inter-
ested, at least at first, in the coherent fieM pro-
duced by the medium which is the primary con-
cern of laser physieists. By considering "thin
samples, " the coupled MMvvell and Schrodinger
equations may be avoided, and this allows exact
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solutions to be obtained for both steady-state and
transient response in the presence of feeding and
decay for all strengths of the applied coherent
driving field, and also in the presence of phenom-
enol. ogical r elaxation terms.

In addition to providing a basis for understand-
ing the modifications which occur when coherent
coupling experiments are performed on systems
undergoing feeding and decay, the mathematical
formulation developed in the body of the paper sug-
gests that an interestirig and potentially important
effect will. be observed. This effect is related to
the production of steady-state coherence in the
ensemble of excited-state systems that results
directly from a combination of incoherent feeding
and the applied driviag field. Drawing from mag-
netic-resonance analogies one concludes that, un-
der certain conditions of relaxation parameters,
the steady-state coherent component that is pro-
duced by the medium may be several orders of
magnitude larger if the coherent driving field is
applied off-resonance, and application of this phe-
nomenon to laser amplifiers might prove fruitful.
We will term this effect "kinetic coherence" inso-
far as its magnitude is directl. y related to the
kinetic parameters associated with the creation of
the ensemble of excited states.

If the transition involved in producing the kinetic
coherent state is an electric dipole transition in
the optical region, the coherent component is a
precessing macroscopic electric dipole and is
"superradiant"' " in the same sense as the pho-
ton echo, " resulting in the emission of coherent
radiation from what amounts to a linear combina-
tion of Dicke states.

The mathematical. development is illustrated
with three examples: the transient nutation, "
spin locking, "' and a discussion of the steady-
state solutions in order to demonstrate the phys-
ical roles that feeding and decay play in the co-
herent coupling problem. Initially the problem is
considered for the case in which the wavelength
of the radiation field is large relative to the size
of the sample. The equation of motion of the den-
sity matrix includes the Hamiltonian, a decay
term which is analogous to adding decay to the
Schrodinger equation, and a feeding term which
is arranged to affect only the diagonal elements
of the density matrix. T, and T, processes are
not included at this point. The equation of motion
for the density matrix, neglecting T, and T, pro-
cesses, is solved exactly using matrix algebra
techniques. The probl. em is then rewritten to in-
clude T,, T„and T„processes. " It is shown
that the qualitative results obtained in the absence
of T, and T, are correct, provided that high-power
applied fields are used. Finally, the case in which

the wavelength of the radiation field is small rela-
tive to the size of the sample (the opticai case) is
considered. It is shown that except for the usual
directional properties associated with coherent
optical problems, the results obtained for the
long-wavelength case also apply to the optical
wavelength region, when the local coupling of
dipoles is neglected. "

II. DISCUSSION

In order to discuss the role that feeding and de-
cay play in the excited-state two-level coherent
coupling problem, we must have a well-defined
model for these processes. For this purpose,
the entire experimental system is divided into
two parts. The first part consists of the ensemble
of excited two-l. evel systems which are coupled
by the field. The second part is taken to be an
infinite reservoir that represents both a source
and a sink for population to enter and leave the
ensemble of two-level systems.

At a given instant of time, the ensemble of two-
level systems is evolving under the influence of
the applied radiation field; it is also decaying into
the reservoir at a rate which is characteristic of
the lifetimes of the two excited states. Population
is also constantly being transferred from the res-
ervoir into the ensemble. We assume that onl. y
the states which are affected by the radiation field
are included in the ensemble, and that the reser-
voir is taken to be unaffected by the fieM. As a
consequence, population which is transferred in-
coherently from the reservoir to the ensemble en-
ters the ensemble in one of its two eigenstates,
and not in a coherent superposition state; however,
once the population has entered the ensemble it
may evolve into a coherent superposition state,
since it is now influenced by the radiation field.
Later we will. consider feeding into a coherent
superposition of the two-level system. "

In terms of a density-matrix description of the
ensemble, this implies that feeding only occurs
to the diagonal elements of the density matrix.
Off-diagonal elements occur only because of the
effect of the radiation field on the population which
is already in the ensemble. However, decay af-
fects both the diagonal and off-diagonal elements.
Since the reservoir is infinite in extent and unaf-
fected by the two-level ensemble, the populating
rate into the two eigenstates of the ensembl. e is
taken to be constant. Thus, the model for feeding
and decay processes contains the foll.owing fea-
tures: (a) Feeding only occurs to the eigenstates
of the ensemble of excited two-level systems and
not to coherent superposition states; (b) the rates
for feeding into the two eigenstates are constants,
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and are independent of the state of the ensemble;
(c) decay occurs from both the eigenstates and the
superposition states of the ensemble; and (d) the
rate of decay from the ensemble will depend on the
state of the ensemble, and therefore the total pop-
ulation of the ensemble need not be constant in
time.

A qualitative picture describing the examples to
be discussed in Sec. III may be made in terms of
a geometrical representation for the two-level
system. The initial population difference between
the two levels is represented by a vector that is
aligned along the r, direction of the r space of the
well-. known Feynman, Vernon, and Hellwarth
(FVH)" model. ff a coherent radiation field with
frequency equal to the frequency separation of the
two levels is turned on, the vector, viewed in a
reference frame rotating at the frequency of the
applied field, will begin to precess about the field,
resulting in a transient nutation. """In an ideal-
ized case in which there are no T, or T, relaxa-
tion processes and also where the composition of
the ensemble remains constant in time, the vector
will continue to precess about the applied field in-
definitely. However, if we are dealing with an en-
semble of excited states, the population vector,
which began to precess when the radiation field
was turned on, will decay with the lifetimes as-
sociated with the excited states. Further, popula-
tion which enters the ensemble of excited states
at times after the radiation field has been turned
on wil. l also precess about the field. This feeding
and decay process can be viewed in the geome-
trical model as vectors which suddenly appear
along r„ immediately start precessing about the
effective field, and shrink in length as they pre-
cess. These vectors have a different phase than
the initial population vector, and have a random
phase relationship among themselves. In the NMR
problem one need only follow the precession of a
single vector, whereas in the excited-state prob-
l.em one must follow the precession of the initial
vector, which is decaying in magnitude at a rate
dependent upon its location in r space, in addition
to following the precession of the entering vectors
which also are decaying.

Another important experimental situation which
demonstrates the necessity of including feeding
and decay processes in the analysis of the experi-
ments is spin locking. ' In an NMR experiment
where there is no feeding or decay, the initial
population difference vector is made to precess
about the applied radiation field, as in the tran-
sient nutation experiment discussed above. After
it has precessed 90, the appl. ied radiation field
is turned off. If nothing else were done Bt this
point, the vector, which is now in the plane nor-

mal to the direction it was initially pointing, would

rapidly vanish because of fanning in the rotating
frame caused by the inhomogeneous nature of the
line undergoing the transition. However, the field
is immediately phase shifted and is reapplied along
the same direction that the population vector is
pointing in the rotating frame. The vector finds
itself 3.ligned along the rotating-frame static fiel.d,
and the fanning does not occur. In such a case,
the population is said to be spin locked in a super-
position state. The vector will remain spin locked
for a time corresponding to the T, ~ time in the
rotating frame. "' 9

If the analogous experiment is performed on the
magnetic spin sublevels of an excited molecular
triplet state, the initial spin-locked vector would
vanish owing to both T, ~ processes and radiative
and nonradiative relaxation to the ground state;
however, new population would continually enter
the ensemble of triplet states that are coupled by
the radiation field. This additional population en-
ters into the eigenstates of the tripl. et spins and
not into the spin-locked superposition state."
Ne therefore encounter the situation in which the
population that existed at time t =0, which we will
refer to as the t=0 subensemble, is spin locked,
whereas the entering population is not. The enter-
ing vectors are nonetheless driven by the applied
radiation field and execute transient nutations in
the plane normal to the spin-locked vector. " In
NMR one has to deal only with the single initial
population vector, whereas in the excited-state
problem, both the t=0 subensemble and the enter-
ing vectors must be considered, in addition to the
loss of the spin-locked vector because of radiative
or nonradiative decay of the excited spin-locked
states to the ground state.

As we will show, the kinetic coherent state is
produced by essentially spin locking a set of vec-
tors along an off-resonance effective field. The
initial. population difference vector executes an
off-resonance transient nutation about the effec-
tive-field direction, and describes a cone around
the effective field as illustrated in Fig. 1. Owing
either to field inhomogeneity or sample inhomo-
geneity, this initial vector will fan out around the
conical path producing a thin cone of vectors pre-
cessing around the effective field. (Inhomogeneity
is not required, since even with a homogeneous
field and sample the feeding process itself will
cause a cone of vectors. ) The cone of vectors
has a net projection along the effective-field
direction which can be resolved into an r, com-
ponent and an r, coherent component. As the ini-
tial. population decays, additional population is
fed into the system, continually forming a new
cone with acollinear r, component; thus, as the
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r, vector arising from the first cone decays, it
is replaced by the r, vector from succeeding
cones through continual feeding. The cone, and
therefore the coherent x, vector, is constantly
replenished, and in this fashion coherence is
maintained for times far exceeding the lifetime
of the excited-state ensemble. Notice that for an
on-resonance driving field the cone collapses into
a disk whose vector sum is zero." In order to
maintain a coherent component under an on-reso-
nance driving field, the power of the driving field
must be reduced until competing relaxation mech-
anisms produce a "lopsided" disk by virtue of the
fact that the individual population vectors vanish
before a single nutation revolution can occur in
the rotating frame. From this point of view, a
maser or laser is seen to self-regulate at "sat-
uration, " for if the medium produces a higher
field, the disk will tend to become more uniform
and reduce the size of the coherent component.
For the off-resonance condition this situation
does not exist, and it may be possible to utilize
this feature as a means of overcoming power
broadening. "

time do not significantly alter many of the qualita-
tive features of the problem, and are thus reserv-
ed for later sections of the discussion.

We shall use a semiclassical approach for the
driving-field Hamiltonian. Without loss of gener-
ality we assume that the driving field has real
matrix elements and express the Hamiltonian as

(la)

(ib)

(2)

K, is the time-independent Hamiltonian with eigen-
states

~ y& and
~ x&, separated in energy by k&uo,

and o„are the Pauli spin matrices. Invoking the
rotating-field approximation and by performing a
suitable transformation that is equivalent to trans-
forming into a rotating frame, "we obtain an equa-
tion of motion in which the Hamiltonian is time in-
dependent. Let

U= exp(-,'ios~t)

and

(4)

III. MATHEMATICAL DEVELOPMENT

We consider the situation depicted in Fig. 2 in
which a two-level system characterized by the
states ~y& and ~x& is populated from the reservoir
at a constant rate, decays back into the reservoir,
and is also coherently driven by a sinusoidally
oscillating field. In order to isolate and examine
the effects of feeding and decay, we shall first
consider the simplest case in which the wavelength
of the radiation is much greater than the sample
size, i.e., A'»vol. We shall also, at first, ne-
glect all relaxation processes such as T„homo-
geneous and inhomogeneous T„and driving-field
inhomogeneities. These considerations compli-
cate the development considerably but at the same

From the Schrodinger equation,

We substitute for
~

t)' in terms of
~
t ) and obtain

where

3C = g)t (410 —(d)o'~ + pk(d~g~

The Hamiltonian in Eq. (7) is time independent for
any value of the driving-field frequency e, and re-
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FIG. 1. (a) Initial population difference vector (heavy
arrow) will precess about the effective field direction
(dashed arrow in r& -r3 plane). {b) Feeding and dephas-
ing processes produce a cone of vectors about the effec-
tive-field direction. (c) Vector sum of the cone yields
a vector aligned al.ong the effective-field direction and
having a coherent component.

FIG. 2. Pictorial description of the model system
presented in the discussion. E„and F„are constant
feeding rates, whereas k„and &„are decay rate constants.
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i t)=yi y)+xi x), (8)

where y and x are the usual. time-dependent coef-
ficients. We now let these amplitudes decay ex-
ponentially,

duces to the interaction representation" for ~ =~0.
By considering a model system consisting of a

reservoir, details of the feeding and decay pro-
cesses are not considered explicitly and thus we
allow the many-body problem to become tractable.
The simplest way to include decay of a state is to
assume that the amplitude for being in the state
decays exponentia11y. For the two-level system,
we have the state vector represented as a linear
combination

0 F„
(12)

and affects only the diagonal el.ements of the den-
sity matrix.

Owing to the fact that the constant trace condi-
tion must be relaxed, one will need four, rather
than the usual three, independent variables to
completely describe the density matrix. This can
be done easily by defining the components of the
density matrix as follows:

and the symbol I ], denotes anticommutation. The
feeding matrix F is given by

~ 1

~ 1x=- 2k„x;

(Qa)

(Qb)

y
p =

—,'(r, +ir, )
(13)

A. Density-matrix solution

The equation of motion can be expressed as

imp = [x,p] —tif; p], +y', (10)

where X is the rotating-frame Hamiltonian, K is
an imaginary decay matrix given explicitly in the
y-x basis by

iS k.
2 0 k„

k, and k„are physically observable rate constants
associated with the decay of the states

~ y) and

j x), respectively.
As discussed earlier, the populating process

occurs only to the eigenstates
~ y) and ~x) and

cannot appear in a superposition state; thus, the
equations describing the feeding process must
deal only with the probabilities yy* and xx*, and
they cannot affect the terms which define the rela-
tive phase factor as given by xy* or yx*. The re-
sult of this is that the feeding cannot be added to
the amplitudes y and x but only to the probabilities.

At this point there are two possible ways to
treat the problem. First, one could solve the
coupled differential equations formed by combin-
ing Eqs. (6) and (Q), take products of the solutions,
and form integral equations that include the feed-
ing process. Despite the fact that this method is
exceedingly l.engthy, it provides a certain amount
of physical insight to the problem. The second
approach is to use the density-matrix formulation
which effectively deals with the coefficient prod-
ucts from the beginning. The solutions are much
simpler from the computational point of view, and
the development is mathematically less clumsy.
We shall use this method in the following develop-
ment.

r„=—2M r2 —k„r„+F„

ry rz e

(14b)

(14c)

(14d)

(15)

By comparing Eqs. (14a)-(14d) to the rotating-
frame Bloch equations, ' one can see immediately
that k„, the average of the decay rate constants
k„and k„will have the same effect as a T, pro-
cess, and the combination of feeding and, decay
will appear to be a &, process. This is quite rea-
sonable from a physical point of view since the
in-plane components involve a superposition state
which can be viewed as being "undecided" from
which eigenstate it will eventually decay, thus
giving rise to k„. Also, an incoherent T, process
will have a similar effect as decay from

~ y) or
~ x) into the reservoir with subsequent incoherent
feeding into

~ x) and
~ y). The important differ-

These components have a geometrical. significance
which is only slightly different from the FVH mod-
el. The component r, is represented by a vector
which points "up" in a three-dimensional r space,
whereas r„points "down. " They both share the
same "in-plane" components r, and r, . The FVH
vector component r, is given by r„-r„. In terms
of observabl. es, r„and r„are proportional to the
upper and lower level populations, respectively.
The r, and r, components contain coherence infor-
mation and are proportional to the expectation
values of an induced or permanent electric or
magnetic dipole, depending on the explicit form
of V(t).

Before solving Eq. (10) it is worthwhile to write
it explicitly in terms of the r components:

(14a)
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p(t)=Q (P(0) —P )Q+P (16)

ence between T, and feeding and decay, however,
is that the final population difference in the levels
is determined by a Boltzmann distribution in the
T, case, as opposed to the feeding and decay pro-
cess in which practically any polarization is pos-
sibl. e, depending on the ratios of the feeding and
decay constants and on the conditions of the ex-
per iment.

The solution of Eq. (10) is given by the matrix
equation

where the evolution operator Q is defined by

Q =exp{i[(X+A)/k] t) . (17)

Notice that since K is real and K imaginary, the
adjoint of Q is not the inverse, and Q is therefore
not unitary. For this reason the operations indi-
cated in Eq. (16) do not result in a similarity
transformation as would be expected for a pro-
cess in which the trace of the density matrix is
not constant in time. An explicit form for Q is
obtained from Eq. (17) using Putzer's method, "

Q = exp(- ,'k„t)—
cos2Qt+ [(kD+ihe)/0] sinMt

(t&u, /0) sin-,'At

(iu, /0) sin~At

cos —,Qt —[(k~+i4&u)/Q] sin-, Qt (18)

Equation (18) incorporates the following defini-
tions:

k~ ——2(k„+k,),
k~ =2(k, —k,),
AQP = (d0 —(d

n =[(u', +(a(u —ikD)']'" .

(19a)

(19b)

(19c)

(19d)

ro =F,/k, ,

r„' =F„/k„,

(20a)

(20b)

and by defining effective relaxation terms

t, = 1/k„,
t, =k„/k„k, ,

(21)

(22a)

(22b)

In view of the similarity between the rotating-
frame Bloch equations' and Eqs. (14a)-(14d), we
cast the steady-state solution of the density ma-
trix p, into forms resembling NMR expressions.
First, noting that the steady-state populations in
the absence of a driving field (~, =h&u = 0) are
given by

and

ro(1+b &u'P2)
r3=3 1+6M2t22+M2it2tl

(24)

These are the familiar forms for continuous-wave
spectra in magnetic resonance. When the "power
factor" v', t2t, is small, the components reduce to
Lorentzian line shapes. It is interesting that the
effective "transverse" relaxation, t„ is deter-
mined by the average of the decay rate constants,
whereas the effective spin-lattice relaxation time
t, is determined by the average of the decay tife-
times.

The expression for F in Eq. (12) could be easily
generalized to situations in which the feeding oc-
curs to a superposition state, such as when a
triplet state is optically pumped in the presence
of a high magnetic field, and could also be made
time dependent. The solution for p, follows a
similar format.

If one wishes to monitor the effects of feeding
and decay more explicitly, the density matrix
may be broken up into two parts corresponding
to the "zero-time" subensemble mentioned in the
discussion and the "fed" subensemble:

we obtain

r 4(d(01t2
1+~(V2t2+ ~a~t2t

0- r, (d, t,
]. +4&0 t2+(d1t2t1

r, (l + 6&g2P) + u, t, P2[—,'(F„+F,)]
].+A+ t'+e t t2 121

ro(l +b e't,') + vent', t, [-,'(F„+F,)]

(23a)

(23b)

(23c)

(23d)

p(t) = Q'p(o)Q+ p. —Q'p. Q . (25)

The first term corresponds to the zero-time sub-
ensemble. Since feeding into

~ y) and ( x) are in-
dependent processes, one could separate the last
two terms of Eq. (25) into y-fed and x-fed suben-
sembl. es by setting F„=O and F,=O, respectively.
This might prove useful. if one wishes to deter-
mine the effects on the system of feeding into the
individua J. states.



COHERENCE IN MULTILEVEL SYSTEMS. II. DESCRIPTION. . . 389

B.Transient. solutions: Special cases

Q = exp(- —,'k„t)
exp(2 k„t)

exp(- ~k„t)

= exp(- Kt/il) = Q
t . (26)

The simple form for Eq. (16) might lead one to
think that it would be worthwhile to multiply the
matrices explicitly and thereby obtain analytical
expressions for the r-vector components. Un-
fortunately, the solutions are compl. icated enough
to mask the physics contained within them, so we
shall restrict our attention to various special
cases which give some insight into the effects of
feeding and decay. First, we consider the trivial.
case of no driving field. Setting co, =4+ =0, we
have Q =ikD, and Q has a very simple form:

The solutions are [from Eq. (16)]:
r, =r, (0)e '~',

r, =r, (0)e

r, = [r,(0) —(F,/k, )]e "'+F,/k, ,

r„=[r„(0)—(F„/k„)]e ' +F„/k„,

(27a)

(27b)

(27c)

(27d)

Notice that r, and r, are not fed, but merely decay
from whatever initial values they had at the time
t = 0. Equations (27a)-(27d) agree with simple
rate equations that can be written by inspection
from the two-level system pictured in Fig. 2.

We next consider an on-resonance transient
nutation. In this case, b, tu = 0, and Q = (uP, —kn)'".
We assume initial random phases, i.e. , r„(0)= 0
and r, (0) = 0, and let the initial values of the di-
agonal elements be steady-state values without
the coherent driving field: r,(0) =ro, r„(0)=ro.
We obtain from Eqs. (16) and (23),

r, =o,
r, =(e " /Q')[r', (kD —uP, cosQt) —(ro r,')—Qu&, sinQt —(r, —r', +ro —r„')&u,k (1D—cosQt)]+r', ,

(28a)

(28b)

r, =(e " / Q)((r —0 r', )[Q cos(—,'Qt)+kDsin(2Qt)]2

+(r„—r„')v', sin'( —,'Qt) —r', co, sin( —,'Qt)[Q cos(-,'Qt)+kDsin( —,'Qt)]]+r', ,

r„= (e "/Q')((r„—r„')[Q cos(—,'Qt) —k~ sin( —,'Qt)]'+ (r'„-r', )&u', sin'(-,'Qt)

+r,'~, sin(-,'Qt)[Q cos(-,Qt) —kD sin(-, Qt)] j+r„' .

(28c)

(28d)

Despite the formidable appearance of these equa-
tions, the qualitative features are simple, since
they are analogous to a damped harmonic oscilla-
tor. If 0 «k„, the curves will be dominated by
the exponential term and will be highly damped.
When kD»„ the system behaves much like an
overdamped os cillator. Any shif ts in frequency
or phase when ~, ~ kD will be masked by the ex-
ponential terms. When 0 ~ k„, it is also necessar-
ily true that &, - kD and the observable oscilla-
tions will have nutation frequencies close to ~, -

If we allow the driving field to become very large,
i.e. , uP/k„k, » 1, Eqs. (28a)-(28d) reduce to'much
simpler forms which are easier to relate to the
geometrical model:

r =0,

o -Ags k k
r3 e cos +j ~

k

(29b)

r„=—,r, e
k

—cos(d, t + k'
A x+ y

(29d)

Notice that all the expressions contain the initial
population polarization or alignment, r3 ry
As expected from the geometrical model, the vec-
tors precess only in the r2-r, plane. After the
transient terms have died away, the populations
in the two levels are approximately equal and r,
is very small. This is to be expected from the
vector model, since the "disk" that is ultimately
formed has a vector sum of zero. In the absence
of feeding or decay, Eqs. (28a)-(28d) and (29a)-
(29d) reduce to the standard nutation described by
the torque equation in the rotating frame. As is the
case in NMR, we see that the ability to do well-
defined pulse rotations of the r vector depends
upon the relationship between the applied fiel.d
strength and the effective relaxation k„=1/t, .
For sufficiently high power, a —,'m pulse (&u, t = —,'m)

gives from Eqs. (29a)-(29d),

p -It~f kD F,+F„r, —= &r, e —+ costs, t + (29c) r, (-, v) =r„(,w) =r,' +„-'--—
A, x+ y

(30a)

(30b)
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The effects of feeding and decay on a spin-
locked superposition state can be investigated by
using Eqs. (30a) and (30b) as initial conditions
for a phase-shifted transient nutation. Shift-
ing the phase by 90 is tantamount to setting
r, (0) = —r, (,v) —=r,and r, (0) =0. r, and r„are un-
affected by the phase shift. From these initial
conditions, the expression for the spin-locked
component is [from Eq. (16)]

r, =r, (0)e " =roe (31)

From the vector model, one would predict that
feeding subsequent to establishing the spin-locked
component would contribute only a 'disk in the
r, -r, plane and thus could not affect the spin-
locked component. Equation (31) shows that the
spin-locked signal is indeed independent of feed-
ing, and decays with the average of the decay rate
constants for the two levels.

C. Long-term or "kinetic" coherence

Equation (31) demonstrates that a coherent com-
ponent can be made to last on the order of the life-
time of the levels. In this section we shall propose
that %is time is by no means an upper limit, and i

in fact it should be possible to maintain a signifi-
cant coherent component for long periods of time,
limited only by the coherence time of the driving
field. In many ways this is similar to dynamic
equilibrium in which the component parts of the
long-term coherence state are continually feeding
and decaying, but a steady-state value is reached.
The coherence is maintained by the driving field
and is not destroyed by incoherent feeding or de-
cay.

The steady-state expressions in Eqs. (23a)—(23d)
can be somewhat deceptive if one does not keep in
mind the fact that the effective relaxation term t,
was constructed only to show the analogy to T„
and is not related to the actual thermalization of
the two levels. The ratios of feeding and decay
constants determine the initial polarization of the
system, and the population difference can thus be
highly non-Boltzmann. With this in mind we re-
examine Eq. (23a). The r, component represents
the "dispersion spectrum" or the real part of the
susceptibility in the language of NMR, and reaches
a maximum "off resonance. " Owing to the fact
that r, can be significantly larger than a Boltz-
mann distribution of population, the steady-state
coherent component can be orders of magnitude
larger than the thermally populated case. From
the vector model, one would expect the condition
&~ =+,. to give a maximum in-plane component.
The special form of Eq. (23a) suggests that the
problem is identical in form to the one treated

long ago by Bloch, when he calculated the max-
imum nuclear induction signal in an NMR experi-
ment. ' The off-resonance value which corresponds
to a maximum value of r', is

,„=(1/t, )(1 + u&', t, t, )"~',

giving a value for r', of

r,'(max) = (u, t,r 30/2(l +(u 2|t,t,)"',

(32)

(33)

and for sufficiently high power, i.e. , (dylyt2» I,
r', (max) =——,'r,'(t, /t, )'" . (34)

D. Relaxation

At this point we shall investigate the effects of
relaxation on the steady-state components of the
r vector. These terms may be obtained in a rea-
sonably simple analytical. form if we restrict our-
selves to Bloch-type relaxation terms T, and T„
and Redfield-type" T„processes. The transient
solutions will be dealt with at the end of this sec-
tion.

In terms of the r-vector components, the com-
plete equations of motion that include driving field,
feeding and decay, and relaxation are given by

r', = —Asar, —(k„+1/T„)r, ,

r', =ster, —&u, (r, —r„)—(k„+1/T,)r, ,

r„=—2&u|r, —(k, + I/T, )r, +r„/T, +F„,
r„=——,'z, r2 —(k„+I /T„)r„+r,/T, +F„.

(36a)

(36b)

(36c)

(36d)

The maximum value for r,', on resonance, is
equal in magnitude to the high-power value for
r| given in Eq. (34):

r,'(max) = ——,'ro(t, /t, )'" . (35)

If the lifetimes of the two levels were equal, the
long-term coherent component would be half the
initial polarization and», „=(d,. Since r, in
Eq. (34) is linearly dependent on r,', the coherent
component couM be doubled by doubling the feed-
ing rates, unless, of course, this results in a
significant depletion of the "infinite" reservoir in
which case the assumptions that lead to Eq. (34)
are no longer valid.

Of course, the expected value for r', in Eq. (34)
is not realistic owing to omission of the effects of
relaxation. These will be dealt with analytically
at the end of See. III D. However, the simil. arity
of Eq. (34) to the Bloch-equation solution allows
one to speculate that if the field is strong enough
to "overcome" relaxation effects, i.e., if one can
observe a transient nutation, the long-term co-
herent component wil. l be present and can approach
the value given by Eq. (34).
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T„and T„are related to the probability per unit
time for a transition from ~x) to

~ y) and from
j y) to

~ x), respectively. Notice that this form
allows for spontaneous emission from

~ y) to
~ x)

in addition to "spin-l. attice relaxation. " Specifical-
ly, we could break T, into two terms,

I /T~ = 1/T„+ I/T~

k„
k„k, + k,/T„+k„/T„

F,(k„+1/T„) +F„(1/T„)
k„k, + k,/T„+ k„/T,

F„(k,+ 1/T, ) + F,(1/T, )
k„k, + k,/T„+ k„/T,

(41c)

(4ld)

(4le)

(41f)

1/T„= 1/T„+ 1/T„. (38)

in which T„ is related to spontaneous emission
from

~ y) to
~ x) and T„ is related to the normal

thermal probability for a transition from
~ y) to

~ x). If spontaneous emission is negligible, as is
the case in a rf region of the applied field, we
have the normal spin-lattice relaxation (Si R)
time encountered in NMR,

Thus far only the homogeneous relaxation time T,
has been considered. The inhomogeneous relaxa-
tion time T,*„can be included by assuming some
line-shape distribution, usually Lorentzian or
Gaussian, centered about some average Larmor
frequency &,. Here we treat the case for a Lo-
rentz distribution given by the normalized shape
function

T„and T„are related by the Boltzmann factor, g(~ 3 =~
7l 1 + ((d 0

—(d)0T+ 2 (42a)

T„/T„=exp(- Ruo/kT) . (39)
(42b)

For high-power driving fields in solids, Redfield
suggested" an alternative form for the Bloch equa-
tions, separating T, into T„, a transverse spin-
lattice relaxation time applied to the driving-field
direction, and T„ the normal transverse relaxa-
tion time. This distinction becomes necessary,
for example, in the spin-lock experiment in which
the decay of the spin-locked vector is not an ener-
gy-conserving process, and thus cannot be due to
"spin-spin" relaxation. The steady-state solutions
are readily solved by setting the time derivatives
equal to zero and solving for the components. As
was done earlier, we choose to define relaxation
terms T and 7 such that the functional forms for
the components can be recognized as being similar
to the NMR expressions

Integration of the coherent components over all
Larmor frequencies (d„yields

(43a)

-r,'(u„(1/ T+1/Tg[( T/T, ) /( I+(o', T7)]"'])
b(u +(1/T2 +[(1+(uiT7)/TT, ]

(43b)

gid „=1/T2+[(1+~',T7')/TT, ]'" (44)

where 4(d —= (do —(d. We are now in a position to
look again at the long-term coherent components.
The off-resonance value that corresponds to a
maximum value of r', , is

7'~(d~A(d TT~
1+6(d T +(d T7

(40a) yielding

(40b) (45)

r;(1+6,~'T T, ) + (ur', T~/k„) [-,'(F„+F,) ]
1+4(d T +(d T7

(40c)

If one has sufficient driving-field strength to "ex-
ceed the linewidth, " i.e. , (d, T*2»1, (d, T»1, and
uPT~» 1, Eq. (45) reduces to an expression simi-
lar to Eq. (34):

ro(1+6&v'TT, ) + (uPTv/k„)[ —,(F, +F,)]
1+4(d T +~T7

r '„(max) = ,'r,'(T,/7)'"—;— (46)

We have used the definitions

1/T=k +1/T, ,

1/T, = k„+1/T„,

(40d)

(41a,)

(41b)

under the influence of inhomogeneous broadening
the maximum value of F'2 on resonance is not
equal to the high-power limit for r', given in

Eq. (46), in constrast to the cases treated in
Eqs. (34) and (35) in which relaxation was ne-
glected. To see this we rewrite Eq. (43b) for



392 W. G. BREILAND, M. D. PAYER, AND C. B. HARRIS

on resonance, &(d =0.
0—'V3 cd~ T

1+uPTv+(1/T,*)[(TT,)(1+(u,Tr)]" ' (47)

x,'(max) = 2r2(T/7)"" . - (48)

yhe difference between this and Eq. (6) lies in the

Notice that any nonzero value for 1/Tf will reduce
the size of r,'. Figure 3 gives the ratio of the
maximum values of 7", and F', as a function of the
parameter T/T*, . As is seen from Fig. 3, signi-
ficant differences between the maximum values of
F"', and F,' become observable when the inhomo-
geneous relaxation time is greater than or equal
to the homogeneous relaxation time. This is what
one would expect physically, since the high-power
conditions required to obtain Eq. (46) imply that
all isochromats in the line behave identically,
whereas the low-power conditions required to ob-
tain a maximum for F2 imply that each isochromat
in the inhomogeneous line will have a different ef-
fective field direction and the vector sum over the
isochromats will necessarily be smaller.

Some additional points can be made about Eq.
(46). Bloch noted' that an excessively long T,
could be troublesome if one attempted to observe
the coherent component. With feeding and decay
this is not a problem; in fact, one would like to
have T, as l.ong as possible, for then &—= t„and
the "recovery" of the system is due to feeding,
decay, and T, processes.

In the absence of inhomogeneous relaxation the
maximum values of the coherent components can
still differ appreciably. It can easily be shown
that the maximum value of r,' in the absence of
inhomogeneous relaxation is given by

field-dependent transverse relaxation time T„,
which may be orders of magnitude longer than T„
again favoring the off-resonance method for estab-
lishing coherence.

In summary, the maximum steady-state coherent
component that may be maintained is achieved by
applying a high-power off-resonance driving field.
The conditions favoring this method are insensi-
tivity to inhomogeneous broadening and the field-
dependent transverse relaxation time. Even under
the most unfavorable conditions, the off-resonance
method would yield a component that is equal. to
but never less than that which could be obtained
by using an on-resonance driving field.

A solution for the transient behavior of the den-
sity matrix including relaxation is not simple from
an operational point of view. One concise repre-
sentation is in the form of the Liouville opera-
tor." In this case we treat the elements of the
2&& 2 density matrix as being the components of a
four-vector. The time-dependent density matrix
is written as

ijgp = Al.p, (49)

where the Liouville operator is defined by a 4x 4
matrix with elements,

(50)

Relaxation and decay are easily incorporated into
the I. matrix, owing to the fact that terms which
multiply only the off-diagonal or diagonal elements
of p can be inserted by inspection whereas it is
clumsy to perform this operation in the matrix
representation of the density matrix. Explicitly,
the I. matrix corresponding to Eqs. (49) and (50)
is given by

-i k~+—

+—+ 2k' -'('..--'.)
+—+ 2&A

2 T2. T2

(51)

-i k„+—

and the equation of motion corresponding to Eq.
(10) becomes

iSp=NL p+ik& (52)

I' is a feeding vector which in this case has two
nonzero elements, I", and I"„. The solution to Eq.

(52) is straightforward:

p(~) =s "' [p(0)- p, j+p. . (53)

The exponential operator can be calculated in ma-
trix form using Putzer's method, ' and a closed-
form solution may be obtained. It might be noted
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FIG. 3. Comparison of the two in-pI. ane coherent
components under the influence of inhomogeneous decay.
The maximum value of the ~& component is obtained un-
der conditions of high-power applied field and is thus
independent of inhomogeneous decay. The maximum.
value of x2 is obtained for relatively low power and is
strongly affected when the homogeneous and inhomoge-
neous relaxation times become comparable,

that the characteristic equation for L yields a
quartic polynomial with real coefficients. A strict
algorithm for calculating the eigenvalues and the
resulting exponential matrix can be made, and one
may avoid iterative methods that generally re-
strict calculations to time regions that lie rela-
tively close to t=0.

E. Case in which X ((vol

When the wavelength of the driving field becomes
much smaller than the sample size, the phase of
the radiation field is no longer constant throughout
the sample, and therefore the jth molecule within
the sample which is at a position r& will experi-
ence an interaction Hamiltonian V&(t) given by

V, (t) =@a,cos(&ut -k r,), (54)

where k is the wave vector of the radiation with
frequency &. For the same reasons that prompted
a rotating-frame transformation, we may perform
a suitable unitary transformation on the density
matrix which will remove the explicit time and
space dependence from the Hamiltonian. Defining

where the Hamiltonian X is identical to the rota-
ting-frame Hamiltonian in Eq. (l). If we assume
that we have a sample of identical noninteracting
systems, the form of X, which is both time and
space independent, renders the j index super-
fluous. The equation of motion is thus identical,
and the development follows the same lines. The
spatial transformation is not as trivial as the rota-
ting-frame transformation and will depend strongly
on the shape of the sample, how it is driven by the
applied field, and how it is observed. This type
of effect is well known theoretically and experi-
mentally.

We have shown above that the position-dependent
phase factor introduced into the Hamiltonian for
the short-wavelength case in essence does not
alter the development of the previous sections; in
particular, in the absence of strong local dipole-
dipole interactions, it does not hinder the pro-
duction of a long-term coherent state. Through
the use of a spatially dependent unitary transfor-
mation, one can relate the optical case to the
simple and highly useful geometrical picture. It
must be noted, however, that for optical-frequency
energy separations, the long-term coherent com-
ponent will manifest itself as a precessing macro-
scopic electric dipole, and therefore the sample
itself will produce a coherent radiation field. If
this field becomes comparable to the driving field,
it must be included in the Hamiltonian. This pro-
blem and other considerations inherent in a prac-
tical optical case, such as specific spatial effects,
noise arising from on-resonance spontaneous
emission, nonlinear effects, and specific relaxation
mechanisms have not been considered here. How-
ever, it is tempting to consider a situation in
which a properly chosen system and experimental
arrangement could produce coherent radiation
fields that are orders of magnitude larger than the
fields that could be produced by on-resonance
excitation, by initiating stimulated emission off-
resonance in an inhomogeneous distribution and
taking advantage of the fact that the off-resonance
effect allows one to couple the entire line into the
radiation field in the absence of col.lisions or other
processes which tend to yield a homogeneous line
on the time scale of the stimulated emission out-
put.

U» &
=exp[ ,'io, (~t —k x~)—, (55) IV. SUMMARY

ittp~ =[X,p~ j, (5't)

we transform the laboratory-frame density matrix
for the jth molecule to

p((t) =U~ ~ p~(t)U~') . (56)

This leads to an equation of motion,

We have presented a discussion of coherence in
an ensemble of excited-state two-level systems
for the case in which population is being fed into
the ensemble at a constant rate and decay is occur-
ring from the ensemble at a rate dependent upon
the state of the ensemble. The problem was ini-
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tially treated in the absence of conventional T,
and T, processes, and an exact solution was ob-
tained using the density-matrix formalism. Sev-
eral examples were treated to illustrate modifi-
cations which must be considered when a coherent
coupling experiment is performed on an excited
ensemble.

We have shown that it is possible to produce and
maintain a coherent state in the excited ensemble
for times which are only limited by the coherence
time of the driving field, despite the fact that this
time may greatly exceed the lifetimes of the ex-
cited states. Conventional Ty and T, processes
were added to the development and exact solutions
were obtained for the steady-state case which is
important when examing the possibility of pro-
ducing long-term or kinetic coherence. It was
demonstrated that if the modified Bloch equations
are applicable, T, and T, processes do not modify
the "qualitative" results obtained in their absence.
Furthermore, even when rapid T, processes occur
under low-power conditions, it was shown that for
high power in some instances, sizable long-term
coherent components may nonetheless be main-

tained, since the coherent component is effectively
"spin-locked" along the rotating-frame static field.

Finally, it was shown that for thin samples the
development applies to the short-wavelength optical
case in addition to the long-wavelength case. It
was pointed out that the steady-state coherent com-
ponent in optical systems will produce coherent
radiation for both on- and off-resonance driving
fields, and that it may be possible to employ the
off-resonance technique in a coherent light amp-
lifier.

Experimental verification of long-term kinetic
coherence has been established for electron spins
in excited triplet states in zero field and will be
presented in a forthcoming publication. "
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