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We investigate the statistical properties of superradiant pulses emitted by a system of many atoms. By using

a representation of the atomic density operator in terms of directed angular-momentum states (which are also

known as atomic coherent states), we find that the statistical behavior of the atoms is formally equivalent to
that of a harmonic oscillator subject to linear amplitude amplification and driven by Gaussian white noise.
The emitted light pulses are then found to exhibit very large quantum fluctuations for atomic initial states

corresponding to complete or nearly complete excitation. For all other atomic initial states the superradiant

pulses show classical behavior.

I. INTRODUCTION

It has been well known for quite some time that
the emission of radiation by a system of many
atoms can, under certain circumstances, lead to
exceptionally bright radiation pulses for which the
peak intensity is proportional to the square of the
number of atoms. '-' Such pulses, which are said
to be superradiant, have recently received con-
siderable theoretical'-' and experimental' attention.

For radiation processes at very large wave-
lengths for which spontaneous emission is usually
unimportant and which can therefore be treated
classically, superradiance is quite a familiar phe-
nomenon, too familiar indeed to warrant special
consideration. However, radiation pulses at wave-
lengths in the infrared and visible parts of the
spectrum are usually not superradiant. The co-
operative behavior of the atoms necessary to build
up a macroscopic polarization as the source for a
macroscopic electric field tends to be destroyed by
such effects as collision broadening of the atomic
transition frequency, Doppler or crystal-field
broadening, destructive interference due to the
spatial separation of the atoms, and spontaneous emis-
sion. By a careful choice of the atomic system and

of the shape of the volume containing the atoms,
and by appropriate techniques of preparing the

atoms in certain initial states of excitation, how-

ever, all of these obstacles can be overcome ex-
cept for the effects of spontaneous emission. If,
with these conditions met, the atoms initially ex-
hibit a macroscopic polarization, they may radiate
like a macroscopic dipole, i.e. , superradiantly,
even at short wavelengths. If, on the other hand,
the atoms are initially fully excited and thus dis-
play no polarization at all, it is not immediately
clear whether or not the emitted pulse will be
superradiant. As we shall see, there is a super-

radiant pulse even then which, however, is highly
random in character as a result of the highly ran-
dom character of the spontaneous-emission events
that initiate it.

In order to deal with as simple a prob|em as
possible we consider N identical noriinteracting
two-level atoms. Since two amplitudes specify the
state of a two-level atom, each of them is formally
equivalent to a spin of magnitude &. The dynamics
of the jth spin can be described in terms of the
familiar vector operator 0, The z components
0„.of the spin operators 0,. are related to the en-
ergy of the atomic system by

N

H„= pN(E, +E,)+2(E,—E,) Q 0,,
In this equation E, and E, refer to the energies of
the atomic ground state and of the excited state,
respectively. The x components 0.„,. define the total
polarization,

P =-,'d g o„, ,

where d is the dipole moment of a single atom.
We then assume to have electric-dipole couplings

to the electromagnetic field which are equivalent
for all atoms, so that only the total polarization p
of all atoms is coupled to the electric field E ac-
cording to the Hamiltonian'

H =H~+ H~ —2dE (1.3)

where HE is the free-field part of H. Note that the
spin variables 0,. enter the Hamiltonian only in
terms of the total angular-momentum vector
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The components J, and J„measure the total atomic
energy according to Eq. (1.1) and total atomic po-
larization according to Eq. (1.2), respectively.
Since the electric field F is the same for all atoms,
the operator J" is conserved by the interaction
with the field. The behavior of the atoms can
therefore be described in terms of the motion of
J with the constraint of J' being fixed. In a classi-
cal picture, J would move on a sphere. For a
quantum-mechanical treatment, the density opera-
tor for the atomic system may be expressed in
terms of the set of eigenstates of J' for a fixed
eigenvalue j(j+1). If this set of basis states were
taken to be the familiar eigenstates of both J' and
J„ then the density operator would have a. (2j+ 1)
x (2j+1) matrix representation. While it is indeed
possible to discuss the behavior of the atomic sys-
tem in terms of such a matrix representation, ' we
shall show that the use of a different basis leads
to a simpler and physically more transparent de-
scription. The states we shall use as a basis are
one which assign a particular direction to the vec-
tor J with minimum uncertainty. In view of this
property we shall call them the directed-angular-
momentum states. ' They have already been dis-
cussed under the names atomic coherent states and
Bloch states in several references. "" Since the
direction of J can be chosen arbitrarily, these
states form a continuous basis and the rules for
calculating with them are rather different from
those for dealing with the familiar (2j+1)-fold
basis. They are simple and elegant rules, how-
ever, and we shall present a self-contained intro-
duction to them in Sec. II. A more detailed account
of the states in question can be found in Ref. 11.

Let us think of the composite system of atoms
plus field as described in terms of a certain densi-
ty operator p~. If we fix our attention for the
present on the atoms alone, then all that interests
us is the atomic density operator

p~= trzp~

which is found by summing as indicated over the
field variables. The motion of the atomic system
thus considered is, of course, irreversible; it
tends to lose energy irretrievably to the radiation
field. Since J' is constant, the motion of the atom-
ic system will correspond to a relaxation which
wiQ eventually leave the atoms in the state of low-
est energy for the given value of j. In a classical
picture, the vector J, whatever its initial orienta-
tion, will move on the sphere J'=j' until it comes
to rest parallel to the negative z axis.

The quantum-mechanical description of this re-
laxation has been shown"4' to lead to the following
equation of motion for the densi. ty operator p„:

dt
—p.=„(P,p.J.]+V p.,J.]), ~,=J„.t~,

(1.6)
In this equation, which has often been called the
superradiance master equation, the constant v is
the relaxation time for the motion of the vector
J. It is proportional to the natural radiative life-
time of the excited state of a single atom and in-
versely proportional to the number of atoms ¹

The derivation of the master equation (1.6) as-
sumes that the initial state of the field is the vacu-
um state and that the field radiated by the atoms
escapes from the atomic system in a time short
compared to the relaxation time 7. Indeed, the
master equation itself holds only for times t that
are large compared to the radiation escape time.

While the density operator p~ which solves the
superradiance master equation (1.6) provides an
exhaustive description of the behavior of the radi-
ating atoms, it does not contain any information
about the equally interesting behavior of the radia-
tion field. However, the very conditions securing
the validity of the master equation, by requiring
that the radiation escape time be much smaller
than the atomic relaxation time, imply that the
field follows the motion of the atoms instantaneous-
ly. In order to formulate this statement in a quan-
titative manner, we introduce the creation and an-
nihilation operators a and a' of photons for the
field mode carrying the light pulse. In terms of
these operators, the adiabatic relation between
atomic and field variables is'

(8,'8' ), =(const) x(a'a' )„ l, l =0, 1,2, 3, . . . .
(1.7)

The limits of validity of this relation are the
same as those for the master equation (1.6). In
particular, this adiabatic correspondence holds
only for times t larger than the photon escape
time. [If applied literally at t=0, Eq. (1.7) would
contradict the assumption that the field begins in
the vacuum state; what happens actually is that the
field expectation value (a"a' ), increases from
zero to the value given by Eq. (1.7) during a time
of the order of the radiation escape time. ] Since
the field expectation values (a"a' ), for I, l = 1,2,
3, .. . completely specify the behavior of the field,
the solution p„(t) of the master equation (1.6) to-
gether with the correspondence law (1.7) provide
an exhaustive description of the superradiant light
pulse.

II. DIRECTED ANGULAR-MOMENTUM STATES

The components of the angular-momentum vec-
tor J obey the familiar commutation relations

[Z„Z,]=+2, , [O',„Z ]=21,, [J',Z, ,]=O, (2.1)
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with

J,=J„+iJ, ,

J =J +J +J =J +J J Jx y z z + - z'

The well-known angular-momentum eigenstates
~j,m) are defined by

'ij-& = j(j'1)lj-&,

J, ~jm& =~ ~jm&,

J,~jm&=[(jism)(j+m+1)]' '~j, m+1).
For any state

~
jm&, the vector J has the variance

(jm
~

J'
~
jm) —((jm

~

J
~

jm&)' =j(j+1) —m' . (2.3)

(2.2)

V(8, y) = exp[f8(J„sing —Z, cosy)]
= exp(yJ ) exp[- d, ln(1 +yy*)] exp(- yZ)

The minimum value of this variance for fixed j is
attained for m =+j. The states ~j, +j&, in which the
angular momentum is aligned along the g axis,
specify the direction of J with minimum uncertain-
ty. It is easily shown that no linear combination
of the

~
jm& can have a smaller dispersion for J.

There do exist, however, many linear combina-
tions of the

~
jm) with the same minimum disper-

sion. These are all simply rotated versions of the
state ~j,j&.

We shall call any state which aligns the vector
J along a direction e with minimum uncertainty a
directed-angular-momentum state. We have seen
the state

~jj) to be one particular such state. All
other directed-angular-momentum states pertain-
ing to the same eigenvalue of J' can evidently be
generated from the state ~jj) by the unitary rota-
tion operator"

FIG. 1. Angles of rotation & and y.

(1+ o*r)'" '"=(o (2.8)

It is useful to know explicitly the expectation
values of products of angular-momentum operators
in a state

~
jy). By using the definition (2.5) and

the commutation relations (2.1), we get

with eigenvalue j. The expansion of ~j, y& in terms
of the

~j,m) is obtained by expanding the exponen-
tials in U in power series and reads

Z/2

(j, 8, ~&= (j,»=(1 ~*)-'gr"
v=0

(2.7)
From this expansion we find that two different di-
rected-angular-momentum states are, in general,
not orthogonal, but rather they have the scalar
product

=- v(r),
with y=e" tan&8. The states so generated,

(2.4)

(2.5)

{jr~a,J,J ~jy&

have the angular momentum oriented in the direc-
tion specified by the two angles of rotation, 8 and

y (see Fig. 1), or, equivalently, by the stereo-
graphic projection variable y (see Fig. 2). While
the angles of rotation locate a point on the unit
sphere, Rey and Imy are the Cartesian coordinates
of the stereographic projection of this point onto
the plane tangent to the sphere in the point 8= 0,
the projection being taken from the pole opposite
to the point of tangency, i.e., from the point 8 = z.

By using the commutation relations (2.1) we
easily see that the directed-angular-momentum
state ~jy& is an eigenstate of

J e=v(y) J,V(y)-'

=Z, cos8+ J', sing sin8+ J', cosy sin8, (2.6) FIG. 2. Stereographic projection variabl. e y.
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Simple and important special cases of this rather
complicated expression are

(jr l
J. l jr& =j(1—rr *)/(1+ rr ")=j cos 6,

&jrl J, ljr&=&jr
l

J eely&*

=j[2y/(1+ yy*)] =je'" sin0.

(2.10)

d y jy jy- jm jm (2.11)

where

+OO

d Re@ d lmy ~

This identity is most conveniently verified by in-
serting in the left-hand side the decomposition
(2.7) of ljr) in terms of the jm& and carrying out
the integral over the complex y plane term by

These formulas again express the geometrical
meanings of the angles 8 and y.

It is easy to see that the set of directed angular-
momentum states for fixed j and 0 ~ 8 & z,
0& rp &2m (or, equivalently, -~&Bey, Imy&+~)
form an overcomplete set and can thus be used as
a basis. The overcompleteness is evident from
the following resolution of the unity operator:

term. Any eigenstate of J' with eigenvalue j(j+I)
can now be expanded in terms of the directed-angu-
lar-momentum states. Moreover and more im-
portantly, any mixture of the states ljm) with fixed
j can be represented as

I=g M..Ir~&&rv
I

= f d'r M&v) liv&& jv I,

(2.12)

with a suitable chosen weight. function M(y). Es-
pecially if the statistical behavior of the system is
described by a density operator p(t), which re-
mains a mixture of states

l jm) with j fixed at all
times, an equivalent and, as we shall see, more
convenient description of the system is provided
by a time-dependent weight function P(r, t) accord-
ing to

(2.13)

If the representation (2.13) is used, the expecta-
tion values of products of angular-momentum op-
erators can be calculated as averages of the corre-
sponding expectation values in a state ljy) over
the complex variable y with the weight P(yt) as

9l+l'
d'rP(r, t)(prl J' J'J' ljr&= d'rP(r, t)(1+rr*) ",» j —r* „(1+rr*)". (2.14)

III. SUPERRADIANCE MASTER EQUATION

%e have already outlined in Sec. I that the super-
radiant behavior of an atomic system as implied
by the master equation (1.6) has the operator J'
conserved. Although the components J„and I, of
the vector J refer to the atomic polarization and
to the atomic energy, respectively, the vector
J = (J„,J,,J,) formally is an angular-momentum op-
erator. Therefore, if the initial atomic density
operator p„(t =0) is a mixture of states all of which
are eigenstates of J' with one and the same total
angular-momentum quantum number j, then the
time-dependent a,tomic density operator p„(t) can
be given the representation (2.13) at all times.
The master equation (1.6) for p„(t) then implies
an equation of motion for the weight function
P(yt) which we shall now construct. The deriva-
tion is formulated most conveniently by using a

differently normalized version of the directed-an-
gular-momentum states ljy). By introducing the
states

lly&=(1+ry')'ljr&=e" lj j& (3.1)

we may write the representation (2.13) of p„(t) as

p„(t) fs'vt'(vt=)(( rv'&-"llvv&&vll.

The convenience of the sta, tes lly) is that, as we
may see from Eqs. (2.4) and (2.5), the operation
of J, on them is given simply by

9 9J llr& =—llr&, J,lly&= y 2j- r llr) . (—3.3
9/ 9/

(3.2)

Equipped with these properties of the states lly&,

we find that when the representation (3.2) is in-
serted in the master equation (1.6) the latter be-
comes, with" N = 2j,

P, (v)= fd'rP(v, t)(lvrr') "llr&&vll=vrv &vv'(v, t)((+rv') (2& Ilv)&rile—Zz lly)&-yll —Ily&&v(l(l&&, )

9 9 9
=vrr ]' s'ys'(yt&&(+yy")

v v
+

v
—(xva)v r+c.L) llr&&vll. (3.4)
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In the latter expression for the right-hand side the integrations may be carried out by parts so that the
operations of differentiation with respect to y and y* are transferred to the function P(yt). The master
equation then takes the form

2
~

~ e ~
!

2 ~ I

N
2 . 1 82 82

c'r)'(rc))lr)&jrl =
~

c rlj'y)&jrl)c, —()jn&) , r+,—,r'+, c, cc c) )( r )c.
J

(3.5)

A sufficient condition for Eq. (3.5) to hold is that
the weight function P(y, t) obey the partial differ-
ential equations~

2
— ~P, (4.2)

8 8 8p (r, c}= (j)n C ) y-n, —crn c. n)cBy By By+ By

(3.6)xP(y, t) .
Once we have solved Eq. (3.6) subject to appropri-
ate initial conditions, we have in effect solved the
master equation. We can then find the statistical
properties of t;he superradiant atoms by using the
representation (2.14), which will reduce the prob-
lem of evaluating operator averages to one of in-
tegration.

IV. ASYMPTOTIC BEHAVIOR OF THE %EIGHT FUNCTION

(4.1)

are asymptotically small in their effect and may
be dropped. The remaining second-order deriva-
tive term,

If the second-order derivative terms in Eq. (3.6)
were neglected, which is not in general permissi-
ble, the resulting first-order equation would be
essentially classical in character. It would simply
describe the drift of the weight function P(y, t)
away from the origin in the stereographic plane,
which corresponds to the classical descent of the
vector J to the pole 8= p. This classical approxi-
mation to the radiative relaxation process has been
discussed by several authors. ' ' """One char-
acteristic of the classical approximation is that it
neglects the development of dispersion for J during
the relaxation and therefore also the generation of
noise in the radiated light pulse. It is the second-
order derivative terms in Eq. (3.6) which take into
account the effects of quantum fluctuations and
thereby induce a dispersion of J. We shall see
that these effects are of considerable importance
for certain initial states.

Rather than construct a formally exact solution"
to Eq. (3.6), we shall find it more economical and
interesting to discuss the asymptotic properties
of the solution as the number of atoms, N, be-
comes large. In doing this we shall show that two
of the terms of Eq. (3.6), the terms

is then entirely responsible for the description of
quantum fluctuations.

In order to identify the contributions of the terms
(4.1), it is useful to introduce a factor X in their
coefficient in the differential equation which then
reads, for N&&1,

d
dtP(y, t) = (Lo+ XL,)P(y, t), j(.=1, (4.3)

with

8 8 2 8
L =--—y- +~Byy By+y N By By+

] 82
(4 4)

Let us now consider the time-dependent behavior
of the moments

(y"y*"),= d'yy"y~"P(y, t), n, m =0, +1,+2, . . .

+ (yn-lyjjr-1)2nm
(4.6)

We shall show by considering some specific exam-
ples that the effect of the terms proportional to X

in these equations is negligible in the limit N -,
provided we limit our consideration to

~
n

~

and

I
m

~

sufficiently small compared to N and to times
t &&¹'. Since the duration of the superradiant
pulse is always much smaller than N7, the latter
restriction is not a significant one.

The simplest averages to evaluate are those with
either n or m equal to zero. If I=0, for example,
we integrate Eq. (4.6) immediately to find

(y"),= (y"),exp((t/r) [n+ ](n(n —1)/Nj) . (4.7)

The differential equation for averages of the form

(4 5)

of the distribution function P(y, t). By using Eq.
(4.3) for P we find that these moments obey the
coupled set of differential equations

r—(y"y ), = n+m+ —[n(n —1)nm(m —1)])(y"y* ),
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dP B B 2 B
y — y*+ P ~

dt By By* N By By* (4.9)

This equation implies a remarkably simple physi-
cal picture for the statistical behavior of the
atomic system. The variable y behaves like the
complex amplitude of a harmonic oscillator sub-
ject to linear amplitude amplification and driven
by Gaussian white noise. Equation (4.9) differs
from the well-known Fokker-Planck equation for
a damped harmonic oscillator" "by the sign of
the first-order derivative terms. This change of
sign turns the damping into an amplification. The
solution P(r, f

I

o.'), which obeys the initial condition

P(r, oI ~) = 6"'(r —~), (4.10)

is readily verified to have the following Gaussian
form:

P (r, f
I

o.') = [w(e —1)/N] '

xenix- Ir- oe"'I'l. (e"'-1)/N] ')
(4.11)

With the help of this special solution we find the
solution P(rt), which obeys the more general ini-
tial condition

(r "r*&, is then seen to contain the solution (4.7) as
an inhomogeneous term. It is likewise easily
solved. By proceeding recursively we can evidently
go on to construct all averages of the form (r "r* &,

provided either n or rn is non-negative. A parti-
cularly useful result is the variance

&rr*&, 1&-r&, I' =""(&»*&.
I
&r—&. I') - 1/N .

(4.8)

The averages (4.7) and (4.8) clearly illustrate the
statement made earlier that the terms containing
X are negligible. The same property holds for all
of the moments (4.5) evaluated by means of Eq.
(4.6). Inasmuch as the physically interesting pro-
perties of the superradiant system are determined
by finite-order moments of P, we can drop the
term L, from the equation of motion (4.3) and con-
struct the weight function P(r, t) from the much
simpler equation

indefinitely as t- ~. This behavior of the weight
function, when projected on the sphere of constant
J', describes the relaxation of the vector J to the
ground state 8 = m.

V. ASYMPTOTIC MOMENTS OF THE INTENSITY

The evaluation of the radiated intensity and its
higher-order moments requires us, according to
the adiabatic correspondence (1.7), to calculate
the angular-momentum expectation values &Z,

' J'&,
for l =1,2, 3, . . . . The latter is indeed proportion-
al to the lth-order moment of the intensity. The
appearance of a supperradiant pulse manifests it-
self in the fact that this moment displays, at least
during a time interval near the peak of the pulse,
a proportionality to N". Any behavior which is
not fully superradiant, on the other hand, would
imply that the lth intensity moment increases with
a power of N less than 2l. We might expect non-
superradiant behavior to prevail in the wings of
the pulse away from its peak. The asymptotic
weight function (4.11) or (4.13) is especially well
suited for an investigation of the superradiant part
of the pulse.

We obtain the lth-order moment of the intensity,
according to Eq. (2.14), by averaging

B2g

&jr l~'.~) jIr& = (1+rr*) " » (1+rr*)" (5.1)

over r with the asymptotic weight function (4.11)
or (4.13). Insofar as we are mainly interested in
the behavior of the pulse while it is superradiant,
before doing this average we may also simplify
the expression (5.1), by evaluating it asymptotical. -
ly as N- . By carrying out the differentiations,
we see that the right-hand side in Eq. (5.1) is a
polynomial of order 2l in N with coefficients de-
pending on y and y*. Asymptotically, for N -~,
the polynomial can be replaced by its monomial of
order 2l, provided that the modulus of y is neither
infinite nor vanishingly small. The asymptotic
form of Eq. (5.1) is easily constructed by noting
that each of the 2l differentiations has to generate
an explicit factor N if a term N" is to be produced.
We find, by using

P(r, 0) =P.(r), (4.12) N!/(N 2l)! -N" as —N- (5.2)

(4.13)

e see that the weight function P(rt
I

o') drifts,
starting from its initial location y = &, toward in-
finity in the complex y plane. This drift is accom-
panied by an increase of the width of the Gaussian
peak. The width is the limit of the variance (4.8)
of y for large ¹ It is zero initially and increases

= (2Ne'" sin8)' (gNe '" sine)'

=(&jr l~. ljr&)'(&jr IJ ljr&)'. (5.3)

This asymptotic approximation is not without
limits of validity, however. We emphasize that it
is correct only if the complex amplitude y is suffi-
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ciently far away from both zero and infinity in the

y plane. For directed angular-momentum states
with an amplitude y asymptotically close to either
zero or infinity, i.e., for states asymptotically
close to either the fully excited state or the ground
state, the right-hand sides in Eq. (5.3) vanish; the
left-hand side, however, need not vanish but rather
is of lower than 2lth order in N.

Let us define the normalized lth moment of the
intensity as

are in a state of unstable equilibrium and do not
radiate at all. Obviously, therefore, quantum ef-
fects play a decisive role in the generation of
superradiant light pulses originating from such
initial states. ""'"

In evaluating the normalized intensity moments
according to Eq. (5.4) for initial states correspond-
ing to an asymptotically small electric polariza-
tion, it is convenient to parametrize these states
by introducing the variables 4 and g by

M (t) =(PPQ /(gN)". (5.4) n=e'"(~/N)' ' (6.1)
Since we provided M, (t) with an explicit factor
N ", it will be of order unity during the superra-
diant part of the radiated pulse. Its asymptotic
form as N-~ is obtained by averaging Eq. (5.3)
over y with the weight function P as given by (4.11)
or (4.13). If the atomic initial state is a directed
angular-momentum state

lj = 2 N, o.'), we have to
use the weight function given by Eq. (4.11), and.
obtain.~. ~=.''(', t,

i)"('"'-' ')'
x exp{- ly —ne" l'[(e"' I)/N]—-')

(5.5)

This expression is valid for initial amplitudes
and times t such that the Gaussian weight function
P(yt

l
&) occurring in it does not place all of its

weight on points too close to either y =0 or y=
in the y plane. The superradiant part of the pulse
which, as we shall see, occurs while P(ytl o') con-
centrates its weight near ly l

= 0(1}, is correctly de-
scribed by Eq. (5.5). In the nonsuperradiant wings
of the field pulse the intensity is quite low. The
expression (5.5) is not intended to approximate the
intensity and its moments in the nonsuperradiant
wings of the pulse, i.e., at very short and very
large times. "

If the atoms are initially prepared in a mixture
of directed angular-momentum states lj =2N, o')

with weight Po(n), the time-dependent intensity
moments (5.4} are obtained, according to Eq.
(4.13), by averaging the expression (5.5) over o.

with the weight P,(n).

If we choose d, such that 6/N-0 as N- ~, the di-
rected angular-momentum state

lj = ,'N, —

o.=e'"(6/N)' ') corresponds, as is obvious from
Eq. (2.10), to the initial atomic inversion

(j, o. lZ, lj, ~) = ,N- 6-
and to the initial. atomic polarization

l(j, l~, lj )l=(N~) ".
(6.2)

(6.3)

We see that the parameter & measures the devia-
tion of (Z,) from full inversion and that the initial
polarization is asymptotically small relative to
the total number of atoms.

In order to cast the expression (5.5) for the in-
tensity moments into a form that is convenient for
further evaluation, we note that it predicts the
maximum intensity for times where

N~ ~28 /T ~ (6.5)

(6.4)

This estimate follows from the fact that the inte-
gral in Eq. (5.5) draws its most important contri-
butions from the neighborhood of the maximum of
the integrand with respect to the modulus of y.
This maximum is constrained to occur near ly
=

l
&l e'~' by the Gaussian weight function P(y, t &)

and near ly l
=1 by the expression (5.3) for the ex-

pectation value (jy leaf
Z'

l jy) which multiplies
P(y, t

l
o,') in the integrand in Eq. (5.5). By inserting

the representation (6.1) for the initial-state ampli-
tude o,'into the estimate (6.4), we see that the in-
tensity of the pulse will be large for times where

VI. STATISTICAL BEHAVIOR OF SUPERRADIANT PULSES

We may expect initial states corresponding to
complete or nearly complete atomic excitation to
give rise to the most interesting statistical proper-
ties of the emitted light pulse. Since nearly fully
excited atoms display no or almost no electric
polarization, their radiative behavior possesses
no classical analog. Indeed, according to the
classical theory of radiation, fully excited atoms

It is therefore suggestive to use as a time variable
the parameter z, defined as

(6.6)

Obviously, z will be close to 4 while the intensity
is large.

We now eliminate o.'and t from Eq. (5.5) in favor
of the variables 4 and z and find for the normalized
intensity moments



ROY J. GLAUBER AND FRIT Z HAAKE

z .z -', 2lyl 1/2 2 z -1
M (n=e'" (~./N) ', t=~vln(N/z)=-M (~,z)=—1-—

)

d'y
9 X . S+ y' exp —z y- e'~

z N

(6.7)

For times near the peak of the intensity, we have

z/N='/N=1,

so that Eq. (6.7) simplifies asymptotically, as
N-~, to read

M(~ z)=—
) d'y--

1+ lyl'

1/2 2

x exp —z y —8 (6.9)

(~)
— dp'kxcoso

m 0
(6.11)

we can carry out the integral over the phase y of
y explicitly. The remaining integral over the mod-
ulus of y assumes an especially simple form if we
use the integration variable y, defined as

(6.12)

We find, as our final asymptotic formula for the
norma, lized intensity moments for the case of near-
ly complete initial atomic excitation,

'fo(2I.~(y —z)]'") (6 13)

The most important and interesting property of the
emitted light pulse is now immediately obvious
from this expression. Since the number of atoms,
N, does not occur explicitly in Eg. (6.13), the
normalized intensity moments will be of order uni-

ty in the limit as N- ~ at least for times nea, r the

peak of the pulse, i.e., for z = 4. Therefore, the
non-normalized intensity moments (a'a') -N"M,
will be of order N". In other words, even from
completely or nearly completely excited atomic
initial states for which the polarization is zero or
asymptotically small, a superradiant pulse will
eventually be generated. Furthermore, the shapes
of the moments M, as functions of the rescaled
time are independent of the number of atoms. let
us also note that the moments M, (4,z) are inde-
pendent of the phase P of the initial state ampli-
tude n.

The integral over the complex y plane is most
easily evaluated by using polar coordinates,

(6.10)

By invoking the well-known integral representation
for the Bessel function of imaginary argument and
order zero,"

For the fully excited atomic initial state, i.e.,
for ~=0, the result (6.13) reduces to a form con-
jectured by Degiorgio. ' For d 40 it i.s equivalent
to a previous result of ours obtained for the states
lj, m) with m =j, j—1, j—2, . . . as atomic initial
states. " This equivalence will be demonstrated
in the Appendix.

We have numerically integrated the integral in
Eg. (6.13) for various initial-state parameters 6.
The normalized intensity M, (b, z) so obtained is,
for all d with ~/N 0 as N- ~, a bell-shaped func-
tion of the time z with a superradiant maximum
value of order unity. This maximum occurs, in
agreement with the estimate (6.5), for z =z
corresponding to the real time

t =t = ~1n(N/').

The precise dependence of z on 4 is plotted in
Fig. 3. The half-width of the intensity as a function
of t turns out to be insensitive to the initial-state
parameter d and to be close to the relaxation time
7. Note that the time t of maximum intensity is
appreciably larger than the width 7' of the super-
radiant pulse. The normalized maximum intensity
M, (4, z ) is plotted in Fig. 4. It is a monotonical-
ly increasing function of 4 and approaches unity
as 4 increases. Since l(J',) l= ,N is the -maximum

value the atomic polarization can assume accord-
ing to a, classical treatment of the relaxation of the
vector J with J' fixed, M, = 1 is the maximum val-
ue of the normalized intensity predicted by a clas-
sical theory. The numerical result for M, (h, z )

Zmax(') '
15

FIG. 3. Time z m, „(A,I of maximum intensity as a
function of the deviation S, of the initial inversion J» (0)
from total inversion 2~; the dashed line shows the
classical result zmax class~A~ h. f from Eq. (6.20)].
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1,max A

1.0

discussed, may even be described in an analytical-
ly closed form. To do this we could consider the
integrals in Eq. (6.13) in the limit as &- ~ and
show that, in this limit,

M, (A&z) =M~(6&z)' as (6.16)

0.5

0.1

10 15

FIG. 4. Maximum intensity M&(gz, „}—=I&,„, the
dashed line gives the classical result M&,„=1.

thus shows that the superradiant system behaves
quite nonclassically for nearly completely excited
atomic initial states for which 4 is close to zero.
However, as soon as the initial-state parameter
4 becomes large compared to unity, the quantum-
mechanical result becomes practically indistin-
guishable from the classical result.

As a more direct measure of quantum fluctua-
tions in the pulse we have calculated the disper-
sion of the intensity at the time of maximum inten-
sity,

( )
M, (4,z,„)—M, (h, z,„)'

M, (A, z )2
(6.15)

as a function of 4. The result is plotted in Fig.
5. The dispersion v(n.} takes on its largest value
for 4=0, i.e., for the fully excited initial state,
and then decreases monotonically and rapidly to
zero as 4 increases. We see that the superradiant
pulse exhibits large quantum fluctuations for nearly
fully excited initial states while such fluctuations
are unimportant for initial states with & large
compared to unity. The appearance of large fluc-
tuations for the case of small 4 is, of course, due
to the initial spontaneous-emission events which
trigger the relaxation of the angular-momentum
vector J away from the (classically unstable equili-
brium) orientation parallel to the positive z direc-
tion. Since the initial spontaneous-emission events
are completely uncorrelated among one another,
the pulses triggered by them may be expected, and
indeed turn out to be, roughly amplified noise. It
is somewhat surprising, however, that even an
asymptotically small initial deviation from full ex-
citation of the atoms corresponding to 4 large
compared to unity but asymptotically small com-
pared to N suffices to lead to superradiant pulses
behaving fully classically.

The classical behavior of the pulses emerging
from systems initially prepared in a state with
large 4, which we have inferred from the numeri-
cal evaluation of the integral in Eq. (6.13) just

However, it is simpler and more instructive to
discuss the behavior of the M, for b, =

~

o' ~'/N large
by working with the expression (5.5). The latter will
evidently imply classical behavior, i.e. , Eq.
(6.16), when the width of the Gaussian weight func-
tion I'(y, t

~

o') is negligible. In order to find the
conditions under which I'(y, t

~

o') is effectively
equivalent to a 5 function with respect to the mo-
ment M, (o.', t), we expand the function of ~y~, mul-

tiplying the Gaussian in the integrand in Eq. (5.5}
around the point y= ne' ' at which the Gaussian
peaks. The resulting expansion of the integral has
as its expansion parameter the ratio of the width
of the Gaussian to the squared modulus of the am-
plitude ne'~',

2tl~ ] -2t/~ y -2tl~

I,(,»=(,
~

(6.19)

This result evidently has the classical property
(6.16). It is easily rewritten in the familiar form

M, (o., t) =sech'[(t- t )/r],

t.„= .I ~n~=. in(X/~),

M, (n, t) =Mi(o. , t)'.
(6.20)

Equation (6.20) are the well-known results of the
classical theory of superradiance" and hold, ac-
cording to the condition (6.18), when the deviation
of the initial atomic inversion (Z,)0 from full inver-

0.05

0.01

1 5 10 15

FIG. 5. Dispersion of the intensity 0'(4} at the time
z~,„of maximum intensity.

When this ratio is small compared to unity, i.e.,
lf

(6.18)

the series for M, (o.', t) is well approximated by its
first term,
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sion &N is large compared to unity.
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Here we substitute E(l. (Al) and find

M, (a, z) =z'e'
j~ dy (y —z)'y "e ' 1+—

(A2)

APPENDIX

For angular-momentum states Ig =,N, I=,N v), —
with v = 0, 1,2, . . . as atomic initial states, we had
previously obtained' the following expression for
the normalized intensity moments:

(A1)

with z as defined by E(l. (6.6). From these mo-
ments we can construct the ones evaluated in the
present paper, M, (b, , z), by using the expansion

N! m(y —z)
v! v! (N v)! -N

In the limit as N-~ this expression simplifies,
since

(1+&/N)-" -e-'

and since the sum over v becomes the well-known
power-series expansion of the Bessel function
I,(2[m(y —z)]'~'}2O Therefore, as N-~, E(l. (AS)
becomes identical with E(l. (6.13).
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