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Multiple scattering in the Compton effect. I. Analytic treatment of angular tifstributions
and total scattering probabilities
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The probabilities of single and multiple Compton scattering and the angular distributions of scattered photons
are analyzed in terms of the efFects of sample geometry and details of the photon-electron interaction {form of
the single-electron cross section). It is shown that the desired quantities may be calculated analytically if
Thomson scattering and an appropriate geometry are assumed. Consideration of scattering using an isotropic
cross section suggests that in most cases sample geometry is more important than the form of the cross
section in determining the probability and angular distribution of single and multiple scattering.

l. INTRODUCTION 6A, =A.2 -A.o

When a high-energy photon is inehstically scat-
tered by an electron, the change in wavelength of
the scattered photon is determined by the scatter-
ing angle 0 and the projectionP, of the electron's
initial momentum along the scattering vector:

h X=A., -Xo= sinss8+2 ' Xosins8, (1)~C ~C

where Xo and A. , are the initial and final wave-
lengths, respectively, of the photon. At a fixed
scattering angle, then, the energy or wavelength
spectrum of scattered radiation (the Compton pro-
file) provides a direct determination of the pro-
jection of the electronic momentum distribution of
the scattering material on the scattering direction.

A marked revival of interest in the Compton ef-
fect has occurred in the past decade, owing to and
resulting in advances in both theory and experi-
ment. ' Recent work, including an international
project aimed at standardizing and evaluating
Compton techniques, ' has indicated that perhaps
the major outstanding problem in Compton scat-
tering is that of multiple scattering, i.e., succes-
sive scatterings of a single photon by more than
one electron. The effects of multiple scattering
on the Compton profile may be seen by considering
the following example of double scattering.

A photon of wavelength X, is scattered at an
angle ~, by an electron with momentum p, and then
again at an angle 82 by a second electron with mo-
mentum p, . The photon is then observed at some
angle 8s (see Fig. 1). The wavelength after the
first scattering is X„after the second scattering
it is A2.

Two applications of Etl. (1) yield, for the ob-
served change in wavelength,

= (2h/rrt c) (sin' —,'8, + sin'-,'8s)

+2(1/mc)(p„A. o sin-,' 8, + p,p, sin —,'8, ) .

Only the over-all scattering angle 0~ can be mea-
sured, and thus the components of the electronic
momentaP„and P82 cannot be inferred from 4A. ,
since 8, and 8, are unknown. As may be seen
from Fig. 1, many different pairs of individual
angles 6), and 8, may result in a single observed
angle 0~. It is clear that if a signif icant fraction
of photons are multiply scattered, then consider-
able inaccuracy will result if one attempts to de-
rive the electronic momentum distribution from a
measured Compton profile using the assumption
of pure single scattering [Etl. (1}].

In order to account for the effects of multiple
scattering in a Compton profile measurement, the
following two tluestions must be answered: (a) To
what extent are multiply scattered photons being
observed P (b} How do multiply scattered photons

ko 0

FIG. 1. Geometry for single and doubl. e Compton scat-
tering. (a) A single scattering event, with fo the initial
photon direction, %& the scattered photon direction, and
se cos $t ks} the angle of scattering, which is also
the angle of observation. {b) A double-scattering event.
Here ~& is still the angle of observation, but it is no
longer equal to either of the actual scattering angles
&g or 02.
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affect the observed wavelength or energy spec-
trum? Only the first question will be considered
here; the second will be dealt with in paper II.

Recently, considerable attention has been given
to the problem of multiple scattering, extending
earlier analytic results' and utilizing Monte Carlo
techniques' ' for numerical calculation of multiple
scattering effects. The Monte Carlo method ap-
pears to be the only means for providing complete,
quantitative answers to our questions above, and
we have undertaken such a study. Here, however,
we present a number of analytic results in an ef-
fort to derive a qualitative understanding of mul-
tiple scattering.

Several of the quantities calculated in this paper
have been considered elsewhere, but generally in
less detail and/or from very different points of
view. Felsteiner and Pattison' and Williams and
Halonen' have used Monte Carlo techniques to cal-
culate total probabilities and spectral distributions
of multiple scattering from a cylindrical sample,
but have not dealt in detail with the angular dis-
tribution of multiply scattered radiation. Kirk-
patrick' and McIntire' have carried out analytic
calculations of the double-scattered intensity and
spectrum, but only at a single angle of observa-
tion (90' and 180', respectively) in each case. Du-
mond" considered the probability of multiple scat-
tering as a function of angle, but for a somewhat
unrealistic sample geometry, and with approxi-
mations very diff erent from those of the present
work.

Chandrasekhar' and O' Rourke" have obtained
the total spectral distribution of Compton-scat-
tered radiation via an approximate solution to the
Boltzmann equation. However, in addition to making
some rather drastic approximations, this approach
is incapable of distinguishing the singly scattered
from the multiply scattered contribution. It is
therefore of little practical use to those interested
in electronic momentum distributions. A technique
based on the theory of Markov processes, sugges-
ted by Brockwell, " suffers from the same draw-
back, through it does yield angular distributions of
total scattering over a discrete grid of solid angles.

Most other work'2'' has dealt with the spectral
distribution of doubly scattered radiation, and in
paper II of this series we shall take up that prob-
lem. Paper III will utilize the results of Monte
Carlo calculations to assess the accuracy of the
approximations employed in our analytic work and
to extend the qualitative insights derived there.
Finally, in paper IV, we shall discuss how results
like those obtained in our earlier papers may be
used to improve the accuracy of electronic mo-
mentum distributions derived from experimental
Compton profiles which contain unavoidable and

often sizable contributions from multiple scatter-
ing.

II. BASIC PROCESSES AND VARIABLES

A. Fundamental equations

where dA is an element of solid angle, and E; and

c, represent the energy and polarization of the pho-
ton, with i =1 for the incident and i =2 for the scat-
tered photon. We shall be considering several dif-
ferent forms for do/dQ, which for the moment we
leave unspecified.

(iii) The change in energy of a scattered photon
according to Eq. (1), which, written in terms of
energy in electron rest mass units and atomic
units becomes

=2 sin' —,'8+—
&3'& sin —,

' ~.
1 0 0

(4)

The intensity of multiple scattering is then a
function of the many variables which appear ex-
plicity or implicitly in the above equations. For ex-
ample, the energies E; of the photons appear ex-
plicitly in (2) and (4), but p, in Eq. (2) is also a
function of photon energy. Sample geometry is
critical in determining both the average and the
range of values of I in Eq. (2).

In this analytic study of multiple scattering and
in later, Monte Carlo studies, we shall attempt to
assess the relative importance of these variables.

B. Simple model

For the present analytic calculation, consider
the following simple model for a Compton-scat-
tering experiment. A cylindrical sample of radius
~~ and thickness t is irradiated by a circular beam
of radius R~ ( ~ R&) of unpolarized photons with a
single incident energy E,. The photons enter per-
pendicular to the cylinder face and are observed
at angle 8~ (Fig. 2). It is assumed that the elec-
trons within the sample are stationary.

Three equations represent the basic physical
processes taking place in a Compton-scattering
experiment. These processes are:

(i) Exponential attentuation of the intensity of a
photon beam on traversing a distance l:

(2)

where p. is the (total) attenuation coefficient of the
scatterer.

(ii) The probability of scattering a photon into
some direction 0 according to a differential cross
section do/d&,

=f(Q, E„e„E„e,),do'
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with

dQ — =1.dg

)Rf

Rb

FIG. 2. Geometry for simple Compton-scattering ex-
periment. && is the angle at which scattered photons are
observed. For 1-scattered photons, 8& will also be the
scattering angle.

The attenuation coefficient p. is the sum of the
attentuation coefficients for all process occurring
in the sample. In a typical Compton experiment
these are photoelectric absorption, Ray leigh (elas-
tic) scattering, and Compton (inelastic) scattering;
p is taken to be the same for incident and scattered
photons. Only Compton events will be considered
in detail. Elastic scattering and photoelectric ab-
sorption will be considered only in terms of their
contribution to the attenuation coefficient p. .

For the differential cross section we employ the
classical (Thomson) expression averaged over all
polarizations:

,'r', (I +—cos'8),

where ~ is the scattering angle and r, the classical
electron radius. We shall use a cross section of
this form, but normalized to unity and also denoted
by do/dQ:

(cos'8+ 1},
dv 3

Suppose that the probability of multiple scatter-
ing is a function of ~ variables. Let V be an or-
dered m -tuple of those variables. Define P„(V) as
the total probability of a photon's scattering ex-
actly n times within the cylinder, and then escap-
ing. Define also the angular distribution of the n-
scattered photons (&P„/BQ~) dQ~ as the probability
of observing an n-scattered photon within dO~ of
solid angle at Q~. Only P„8P,/8Q~, and 8P, /80~
for restricted cases will be explicitly calculated.

III. SOME IMMEDIATE DEDUCTIONS

From Eq. (2} and the experimental geometry de-
scribed above, the probability of a photon's pass-
ing through the sample without scattering is e &',

and hence the probablity of scattering at least once
is 1 —e "'. Therefore,

gP„(V)=1 —e ~',
n=l

and it follows that

A lower bound for P, (V) will be derived later
Figure 3(a) shows do/dQ as in Eq. (5). This is

the angular distribution &P,/BQ of one-scattered
photons for a sample consisting of a single station-
ary electron. The angular distribution of photons
scattered first by a single electron and then again
by a spherical shell of electrons centered on the
first electron is

dQ, 16 (cos'8, + 1)-16
(cos'8, + 1),

~I 3 2 3
16m

where"4

0.8
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FIG, 3. Normalized Thomson differential-scattering cross sections as a function of angle of observation. (a) Single
scattering from a single stationary electron. (b) Double scattering, Eq. (9) (see text).
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cosH, =sinH~ sinH, cos(y~ —y, )+cosH~ cosH, . (8)

On carrying out the integral, we find that

BI2 3
(13 + cos'8~) .

This function is shown in Fig. 3(b). Both Eq. (9)
and Fig. 3 clearly show that the angular distribu-
tion of two-scattered photons in this simple case
is nearly isotropic. Since the initial angular dis-
tribution &P,/HQ~ was a 5 function at 8 =0, HPO/&Q~
= (1/2n)6(0'), it is obvious that the scattering pro-
cess randomizes" the angular distribution quite
rapidly, from 5 function to essentially isotropic in
only two scatterings. Further, it is easy to show'4

that an isotropic distribution remains so on under-
going a classical scattering as in (5).

%'e conclude that any anisotropies in the distri-
butions aP„/HQ~ observed for a finitely large sam-
ple result primarily from the sample geometry
and not from the differential-scattering law. Thus
an approximate calculation to assess the effect of
geometry on multiple scattering might be able to
utihze an isotropic deferential scattering cross
section" do/dQ = I/4n .

IV. SINGLE SCATTERING

A. Coordinate systems

I.et us construct a Cartesian coordinate system
with the z axis along the cylinder axis. One face
of the cylinder is at z=0, the other atz=t. The
origin is at the center of the first face [Fig. 4(a)].

A cylindrical system of coordinates can be con-
structed with the same z axis and origin as above,
and with & the distance from the z axis and y the

B. Total scattering probability

We define a differential probability d(P, as the
probability that a photon enters the sample within
an &d& neighborhood of & and a dy neighborhood of
y, Compton scatters within adz neighborhood of
z into a sin8d8 neighborhood of 8, and a dy neigh-
borhood of p„and then escapes the cylinder by
traversing a distance I from (r, y, z) along the di-
rection (H„y, ) to the cylinder boundary. The dis-
tance l is a function of 8„y„R&, z, and t. d6',
is given by the product of the normalized proba-
bility densities of the above events multiplied by
their respective differentials:

d6' =—dr (p.e &'
gd) —dQ foe "'2x dy, do

2m dn (10a)

where fo is the probability that a photon-electron
scattering event will be a Compton event. Then

angle with the x axis [Fig. 4(b)].
A primary (or observation) system S~ of spheri-

cal coordinates (8~, p~) may also be defined such
that 8&—- 0 is parallel to the z axis and p~ is mea-
sured from the x axis [Fig. 4(c)].

Direction vectors k are defined as unit vectors
in S~ with angles (8„,y„). In general, a photon en-
ters the cylinder face at (r, y, 0) with direction vec-
tor Ko= (0, 0), and can scatter within the cylindri-
cal sample at (r, y, z} into a new direction k, de-
fined by (H„y, ) = (8~, y~) in S~. Another spherical
system S, is now constructed by rotating the polar
(8) axis into the direction k, . The old azimuthal
(q) axis is rotated so that it now intersects the
cylinder axis [Fig. 4(d)]. If the photon scatters
again before escaping, the new direction is speci-
fied in S, by (H„y, ). The extension to n scattering
is similar.

X

I

I

I
I

I

'%y

FIG. 4. Coordinate systems: (a) Cartesian system;
(b) Cylindrical system; (c) Primary spherical system
8&, and first scattering direction k& with 8~ = 0&, y~
=p&, (d) Spherical system S& and second scattering di-
rection k2 =(82, p2) relative to kf.

where the o s and p, 's are the respective cross
sections and attenuation coefficients for the possi-
ble photon-electron processes: Compton scatter-
ing, elastic scattering, photoelectric absorption,
and pair production, this last being negligible un-
der normal experimental conditions.

A cumulative probability distribution (p, (R, I', i,
p, H„p„R&) is now defined as the probability that
a photon enters the sample at (r, y, 0) with

0&x &R & ~~, and 0& y & 1 & 2z,

then scatters at (r, y, z) into (8,', y,') with

0&z (E,
0&8,'&8, & n,

0 & p) ~+ p) ~+ 2 7l',
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and finally escapes the cylinder:

6', (R, I', t, p, , 8„y„Ry)=fc 'sin~~ d
0 7T QQ 0 0

(10b)

For the moment, we set fe =1.
On taking R =R„ I' = 2m, I9, = w, y, = 2n, we obtain

the total probability of 1-scattering, P, (V):

P~(R~, f, p, , R&) =6', (R~, 2w, t, p, , w, 2n, R&'). (10c)

The integrals required to calculate P, are difficult.
If, however, we take t«R&-R„ then a closed ex-
pression for P,(R„ f, g, Rz) can be found in terms
of higher transcendental functions. " With the
above restriction, Pj becomes independent of R,
and &f, and in fact depends only upon the "optical
thickness" p, t =- u. We denote the total probability
of single scattering in this "infinite-radius" limit
by P,"((u).

An interesting conclusion follows from a com-
parison of scattering from this limiting geometry
with that from a finite radius cylinder. Figure
5(a) depicts a number of single-scattering events
for a cylinder with finite B& and optical thickness
co. The paths labeled f lead to escape through the
faces, while those labeled s result in escape through
the sides. Imagine now that ~z is increased while
v is held constant, The sum of probabilities for
all multiplicities of scattering is independent of
Rf [Eq. (6)]. Figure 5(a) shows that f events of
single scattering are unaffected by an increase in

8&, but that the probability of s events decreases.
Then it must be true that a lower limit of single
scattering is obtained as B&-~, so that

P,"((u) & P, (p, f, Rq, R,) & 1 —e

that the forward portion rises to a maximum and
then decreases asymptotically to zero F.igure 5(b)
depicts several scattering events for a cylinder of
infinite radius and optical thickness cup Forward-
scattered photons are denoted by f and back-scat-
tered photons by b. A photon need not scatter at
all, as indicated by path III. Consider now an in-
crease in optical thickness to + = co, + 4 e. The
back-scattered events remain unaltered (paths I
and IV). There is, however, an increased prob-
ability that the f photon (path II) will be scattered
again. Also, there is increased probability that
the photon formerly transmitted (path III) will now

be scattered either forward or backward. Thus,
forward single scattering may be expected to in-
crease to a maximum with increasing m because
of an increase in events as in path III, and then
decrease to zero because of the increased proba-
bility that any forward-scattered photons will be
scattered again as in path II.

In an actual experiment, only those photons are
observed which scatter into L9~ in some small range
of angles. We now turn to a consideration of the
angular distribution BP,"(~, 8)/8 8, or, letting
x=cos8, aP,"(&u, x)/Sx.

C. Angular distributions

From Eq. (10) and the definition of P,"(ur), we

may write"

Figure 6 shows the dependence of total P," on co

as well as the variation of the forward- (8, &90")
and back- (8, & 90') scattered components. Note
that the back-scattered portion monotonically in-
creases to an asymptotic value of 0.16764, and

~t ey
P,"(&u, 8, )= J

dz pe ~' 18' sin8'

2'Ir

(12)

030

&Rf

0,25

0.20

P"(~)
O. I5

0, IO

0,05

FIG. 5. Paths for some single-scattering events. (a)
Finite-radius cylinder showing photons escaping through
faces (f) and sides (s) . (b) Infinite-radius case and
effects of increasing optical thickness on forward- (f)
and back- (b) scattered photons.

I.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 IO.O

FIG. 6. Probability J'& (co) of single scattering for cy-
lindrical. sampIe with R~ =- ~.
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where, for single scattering, Igy 8p the angle of
observation. The angular distribution for single
scattering may then be found by differentiating Eq.
(12) with respect to 8, or by changing variable to
x=cos8, and taking 8/Bx of P,"(&u, x)." The result
is given explicitly in Ref. 14.

Figure 7 displays a number of these distribu-
tions for optical thicknesses e ranging from 0.001
to 0. These angular dlstrQ)utlons have beeQ nor-
malized to 1, so that their shapes for different cu

may easily be compared with one another. At very
small. ~, 8I',"/~x is nearly identical with the single-
electron Thomson cross section

I
Fig. 3(a)], except,

of course, for the immediate neighborhood of 6= &&,

which is forbidden by the infinite-radius geometry.
As ~ increases, an asymmetry about 8=-,'-w is in-
troduced; i.e., for x&0, we have

BP,"(&u, —x) SP,"((u, x)
Bx ~x

whereas equality holds for the single-electron ex-
pression. From our earlier remarks on Thomson
and isotropic scattering and on forward-vs-back
scattering, we conclude that this symmetry is the
result of sample geometry (and of the exponential
attenuation).

In Tables I and II we compare the total proba-
bility of single scattering and the angular distri-
butions BP,"(&u, x)/Bx, respectively, for isotropic
(iso) and Thomson (Th) scattering. The total prob-
abilities never differ by more than 10'fp, but the
angular distributions agree much less weB. For
small &u, the isotropic distribution (except around
90' or x=0) is, of course, a constant, in contrast
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TABLE I. Total probability of single scattering from
Thomson and isotropic cross sections as function of
optical thickness ~.

multiply rather than singly scatter in this region.
Therefore, it is to be expected that

(&g (&)];..( t.&i (&)]Th
Pf (cv)

(Thomson)
Pf(cu)

(isotropic)
Fractional
difference and

0.001
0.01
0.10
0.20
0.30
0.40
0.50
1.00
2.00
3.00
4.00
5.00

10.00

0.9964. xlp 3

0.9725 xlp
0.8186 x10
0.1399
0.1821
0.2127
0.2347
0.2715
0.2369
0.2012
0.1823
0.1738
0.1677

0 9955 xlp 3

0.9675 x10
0.7966 x10 '
0.1342
0.1728
0.2001
0.2192
0.2482
0.2138
0.1820
0.1657
0.1585
0.1535

-0.0009
-0.0051
-0.0269
-0.0407
-0.0511
-0.0592
-0.0660
-0.0858
-0.0975
-0.0954
-0.0911
-0.0880
-0.0847

to the Thomson distribution which is greater at 0'
and 180' than at 90'. For m = 1.0, the effects of
geometry begin to be felt, though there is still
significant difference between the Thomson and

isotropic cases. As ~ continues to grow, the rel-
ative difference between the two cases decreases
to a nonzero limit.

An isotropic cross section will scatter relatively
more photons into the region around 8 =90' than
will the Thomson cross section. In this region,
the path length through the sample is large (since
R~ =~), and thus it is quite likely that photons will

(
XP, (r, x))"aP,"(rx, x))

jso Bx Th
(14a)

for angles near 0' and 180', while

XP, (rx)) "XP,"(rx, x))
~X iso . Th

(14b)

R& —R, ) t ~tan8(.

Equation (15) may be derived from the geometric
relations given in the Appendix. For a typical ex-
perimental arrangement with 0 =150' and t and R,
on the order of 0.1 to 2 cm, condition (15) will be

for angles near 90'. Tables I and II bear out this
expectation.

With certain restrictions on the sample geometry
and scattering angle, the angular distributions cal-
culated here will apply to finite cylinders as well.
The requirement is that the observed singly scat-
tered photons escape only through the cylinder
faces. For a finite sample of thickness t and ra-
dius R&, and a beam of radius B~, this condition
requires a scattering angle 0 such that

~
cos8() t/[(R& —R~)2 + t2]~

TABLE II. Angular distributions for single scattering from Thomson and isotropic cross
sections.

cosep
co = 0.1

(&Pf/&x)T„(BPf/Bx);„,
cu =1.0

( Pf /~+ )Th (~Pf /~& ) iso

Go = 5.p
(&Pf/Bx )Th (d Pf/Bx );,„

-0.975
-0.875
-0.775
-0.675
-0.575
-0.475
-0.375
-0.275
—0.175
-0.075
+ 0.075
+ 0.175
+ 0.275
+ 0.375
+ 0.475
+ 0.575
+ 0.675
+ 0.775
+ 0.875
+ 0.975

0.0405
0.0364
0.0328
0.0295
0.0267
0.0241
0.0219
0.0197
0.0172
0.0122
0.0120
0.0170
0.0196
0.0218
0.0241
0.0266
0.0295
0.0327
0.0363
0.0404

0.0284
0.0283
0.0281
0.0278
0.0275
0.0270
0.0263
0.0251
0.0229
0.0167
0.0163
0.0226
0.0250
0.0262
0.0269
0.0274
0.0277
0.0280
0.0282
0.0284

0.3135
0.2727
0.2355
0.2016
0.1704
0.1414
0.1137
0.0862
0.0575
0.0263
0.0113
0.0299
0.0523
0.0766
0.1023
0.1298
0,1594
0.1917
0.2270
0.2657

0.2143
0.2060
0.1962
0.1846
0.1707
0.1538
0.1329
0.1068
0.0744
0.0349
0.0149
0.0387
0.0648
0.0895
0.1113
0.1300
0.1460
0.1597
0.1714
0.1816

0.3611
0.3090
0.2621
0.2200
0.1822
0.1480
0.1167
0.0870
0.0576
0.0263
0.0002
0.0006
0.0010
0.0017
0.0028
0.0044
0.0070
0.0107
0.0159
0.0231

0.2468
0.2333
0.2183
0.2015
0.1825
0.1610
0.1364
0.1078
0.0745
0.0349
0.0003
0.0007
0.0013
0.0020
0.0030
0.0044
0.0064
0.0089
0.0120
0.0158
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easily satisfied, and it probably holds for many
of the experiments which are currently being per-
formed.

V. DOUBLE SCATTERING

A. Total scattering probability

As in the case of single scattering, we define a
differential probability d6', as the probability that
a photon enters the sample within an &d& neigh-
borhood of & and a dy neighborhood of y, then
Compton scatters within a d'z neighborhood of z
into a sin8d8 neighborhood of 8, and a dp neigh-
borhood of y„Compton scatters again in a dl2

neighborhood of l,' into a sin8, d8, neighborhood of
8, and a dq, neighborhood of q„andfinally escapes
the cylinder by traveling a distance I, to the cyl-
inder boundary. The distance I2 from the first
scattering point to the second is less than or equal
to the distance l, from the first scattering point to
the cylinder boundary. As above, I, is a function
o«, 8„y„R&, and t (see Appendix). The angles
8, and cp, (the final direction of the photon) are de-
fined in the coordinate system S, [Fig. 4(d)], which
has k, as the polar axis. The distance l, from the
second scattering to the cylinder boundary depends
upon z, 8z pz R&, t, l2, 82, and y, .

Proceeding as before, we obtain a cumulative
probability distribution

ky', (R, I', t, p, , 8„y„&„y„R&)

2r "' 1 ' ~&, ~ j,da r&, &g e2 do

0 b ~0 ~ 0

with fo defined as before. The Rz dependence is contained implicitly in /, and I,.
On setting R=R„, I"=p, =y, =2n, and 8y 8g=n, we obtain the totalprobability of double scattering,

P, ( V) =P, (R„f, p, Rz). In the special case v «p, (R& R, ), we fi—nd

(16)

2' do' 2
rP2 (&u) = dz pe~' . dy, J

d8, sin8, dl2 p, e ~'2 dkp, d8, sin8, e "'3,
0

with

do' 3
dQ 167

A change of variable from 0, to p the observation of primary system, is made. Since this is merely
a rotation, the Jacobian is unity, and we simply replace the volume element dp, d8, sin8, by dy~d8~ sin8~.
Another change of variables, from 8, to x, =cos8„ i=1,p, is made, so that

t 2r 1 1

P,"(~)= dz pe ~' dip, dx, (x', +1) dlmpe "'2 dp~ dx~ (cos'8, +l)e t''3.
0

If we now replace 1 by x~ as the upper limit in
the last integral and differentiate with respect to
x~, we obtain the angular distribution BP,"(u&, x~)/
Bx~. This quantity is calculated in closed form
in terms of higher transcendental functions in Ref.
14. The total probability of double scattering,
P,"(&u), is not calculated directly, but is obtained
by numerically integrating this angular distribu-
tion.

Unfortunately, P2 (w) is not a lower bound for
P, (V). It is not true, as it was for single scatter-
ing, that increasing R& from some finite value
causes P,(V) to decrease monotonically. Although
the probability of double scattering through the
sides does strictly decrease, the total P, (V) can
actually increase at the expense of P, (V). We do

have

0&P2(V)~ 1 —e -P,"(&u) ~1 —e -P,(V).

(19)

Figure & shows that the behavior af P,"(&u) for
0 «o & 10.0 is qualitatively similar to that of P,"(~)
(Fig. 6) and to the Monte Carlo results of Fel-
steiner and Pattison. ' P,"(~) is always less than
P,"(~), but peaks at ~-1.6 compared with &u -1.0
for P,"(ur). For large &u, P,"(&u) = 0.092 63, while
P", (kd) =0.16 I 64.'7

B. Angular distributions

It has already been noted that the angular dis-
tribution of doubly scattered photons for an elec-
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0.08
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FIG. 8. ProbabilityP2 P) of double scattering for cy-
lindrical sample with R& = .

tron surrounded by a spherical shell of electrons
is nearly isotropic. For small &o, SP, (e, x)/&x~ is
quite similar to the single-electron angular dis-
tribution except in the immediate neighborhood of
x~=0. Figure 9, however, shows that the angular
distribution of double scattering for very thin cyl-
indrical samples of infinite radius is quite differ-
ent from that shown in Fig. 3(b). For such sam-
ples, 8P2/&x~ actually increases as Ix~ I

decreases

from 1, then falls rapidly to zero at x~=0. The
rapid decrease near x~ =0 results from the infinite-
radius condition. To understand the appearance of
the maximum in &P,/ex~, we note that the small
value of ~ makes it unlikely for a photon to two-
scatter at aQ, but if it does two-scatter, it is most
likely to do so around x~= 0, where the path length
through the sample is large. As e increases, 2-
scattering increases around x=+1, and becomes
less likely around x=0, where higher-order scat-
tering dominates, so the maximum disappears
[Fig. 9(c)j. We note also that, like BP,"/Bx~,
&Pm/Bx~ displays an asymmetry about x~ =0 which
increases with increasing ~.

To study double scattering for an isotropic dif-
ferential cross section, we simply replace Eq. (1V)

by

dv/dA& = 1/4w

and proceed as in Eq. (16) and Ref. 14. We obtain
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FIG. 9. Normalized an-
gular distributions for dou-
ble scattering from cylin-
drical. samples with vary-
ing thicknesses and R& = ~.
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P2 (~)
(Thomson)

P& (~) Fractional
(isotropic) differences

TABLE III. Total probability of double scattering
from Thomson and isotropic cross sections as a
function of optical thickness u.

though the reason is the same: the isotropic cross-
section scatters more photons into the central re-
gion where the path length through the sample is
large and multiple scattering is more likely.

VI. LIMITATIONS AND RESTRICTIONS

0.001
0.01
0.10
0.20
0.30
0.40
0.50
1.00
2.00
3.00
4.00
5.00

10.00

0.3107 x10
0.2192 x10 3

0.01106
0.030 33
0.050 85
0.070 17
0.087 34
0.1382
0.1437
0.1228
0.1077
0.099 62
0.092 43

0.3856 x10
0.2686 x10 '
0.012 97
0.034 78
0.057 42
0.078 28
0.096 44
0.1475
0.1489
0.1265
0.1114
0.1036
0.0968

4Go((u, xq, 1), —1 ~ x~& 0

(
8

BXP i~
0, xp—-0.

0.2411
0.2254
0.1727
0.1467
0.1292
0.1156
0.1042
0.0673
0,0362
0.0301
0.0344
0.0400
0.0473

The above calculations have been based upon a
rather idealized view of a Compton-scattering ex-
periment. Since the aim of this analytic work was
to provide some qualitative insight into the prob-
lem of multiple scattering, we have not attempted
to treat a more realistic model analytically. From
even the present simplified model, it is evident
that the calculations involved would be formidable,
if not impossible. In paper III of this series we
shall show that Monte Carlo techniques provide a
much more attractive route to accurate results
for more detailed models, but that the simple mod-
els treated here are not as unrealistic at one might
think. Nevertheless, in this section we shall take
explicit note of some of the restrictions of the pre-
sent treatment, and indicate how they might be
dealt with, at least in approximate fashion.

The function G, is defined and eva, luated in Ref. 14.
The total probabilities and angula, r distributions

of double scattering using the Thomson and iso-
tropic cross sections are presented in Tables III
and IV. We find that the inequalities (13) and (14a)
obtained for single scattering are now reversed,

A. Finite geometry

Our calculations have been greatly facilitated by
the choice of Rz=~. For a general, finite set of
cylinder dimensions, the integrals to be done seem
so complicated as to make an exacttreatmenthope-
less. However, at least in certain cases, such a,

TABLE IV. Angular distribution from Thomson and isotropic cross sections.

cos& (&P&/Bx) Th

u = 0.].
(BP,/Bx),.„ (R,/Bx)»

co = 1.0
(aP, /ax~, ,.

-0.975
-0.875
—0.775
-0.675
-0.575
-0.475
-0.375
-0.275
-0.175
-0.075
+ 0.075

0.175
0.275
0.375
0.475
0.575
0.675
0.775
0.875
0.975

0.005 70
0.005 85
0.005 97
0.006 06
0.006 11
0.006 10
0.006 02
0.005 81
0.005 32
0.003 86
0.003 85
0.005 31
0.005 80
0.006 02
0.006 10
0.006 11
0.006 06
0.005 97
0.005 85
0.005 69

0.007 37
0.007 33
0.007 27
0.007 21
0.007 12
0.006 99
0.006 81
0.006 50
0.005 91
0.004 28
0.004 26
0.005 89
0.006 47
0.006 80
0.006 99
0.007 ll
0.007 20
0.007 27
0.007 32
0.007 37

0.1144
0.1099
0.1045
0.0978
0.0897
0.0797
0.0674
0.0522
0.0341
0.0140
0.0095
0.0251
0.0415
0.0563
0.0690
0.0796
0.0884
0.0958
0.1019
0.1071

0.1244
0.1189
0.1126
0.1050
0.0960
0.0851
0.0718
0.0556
0.0362
0.0149
0.0099
0.0263
0.0436
0.0593
0.0728
0.0842
0.0938
0.1019
0.1089
0.1149
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calculation may not be necessary.
We recall that for certain scattering angles and

for t and R~ sufficiently smaller than R& [Eq. (15)]
our expressions for single scattering also hold for
finite samples. While no such simple geometric
constraint will make our double-scattering results
exact for finite samples, it seems clear that sat-
isfaction of the constraint of Eq. (15) or of a some-
what more stringent but by no means unattainable
one should make it possible to restrict double scat-
tering almost completely to the regions considered
in our model. Also, standard experimental prac-
tice' involves the use of a sample holder which
makes the walls of the cylinder essentially perfect
absorbers. While this is not precisely equivalent
to an infinite value of p,B&, it should bring scat-
tering from the finite radius cylinder somewhat
closer to our model.

Our results show that both total scattering and
angular distributions for all orders of scattering
approach asymptotic limits with increasing ~.
Values of these quantities for m values as small
as 2.0 are quite close to their infinite-thickness
limits. This indicates that for reasonably thin
samples and narrow beams, even a sample radius
of a few mean free paths might make the present
treatment applicable. Preliminary Monte Car lo
results support this conclusion, e.g., for copper
samples of radius 1.0 cm in a beam of radius 0.5
cm at either x-ray (E,-15 keV) or y-ray (E,- 60
keV) energies.

Finally, for samples with ~ «1, but Rz and R,
finite, it may be possible to carry out the result-
ing integrals for P, (V) and P, (V) approximately in
terms of elliptic functions.

For double scattering,

P2(V)=f cP2(V)cc+fcfzP2(V)cz

+fz fcP2(V)sc+ fsP~(V)RR, (20b)

where the subscripts denote the order and type of
scattering, R for elastic (or Rayleigh) and C for
Compton. The corresponding formulas for an-
gular distributions are obtained by substituting

B. Other processes

Initially we set fc, the fraction of events which
are Compton events, equal to 1. To a,ccount for
photoelectric absorption, elastic scattering, and
pair production, we must obtain the cross sections
for these processes for the sample of interest. '
For single scattering, the total probability of ob-
serving a photon is the sum of the probabilities of
observing a Compton-scattered photon and of ob-
serving an elastically scattered photon:

&i(» = fcPi(»c+f&i(V)z. (20a)

BP,(V, x)/Bx for P;(V), i=1, 2, in Eq. (20).
The probabilities for elastic scattering are easily

obtained from our results, since (do/dQ)s is equal
to (do/dQ)c except at small angles (coherent scat-
tering)":

(x'+ 1)/N„, —1 & x & x,

Z(x'+ 1)/Ns, x, & x& 1, (21)

where Z is the atomic number of the scattering
material and x, is the cosine of the critical angle
0&, given by

8 = Z'~'/E, (keV),

C. Differential scattering laws

Thus far, we have taken the differential scatter-
ing cross section dc/dQ to be the Thomson (class-
ical) cross section for unpolarized photons [Eq.
(5)]. The corresponding cross section for polar-
ized photons is"

[ 1 —sin'8, cos'(p, —$0)],
d(x 3

(22)

where 6, and y, are as before and P, is the angle
between the initial polarization vector and the x
axis .

It is easily shown, by interchanging the order of
averaging over initial polarization and performing
the integrals in Eq. (10b), that use of Eq. (22) in
place of Eq. (5) does not change our single-scat-
tering results. However, the polarization g, of the
scattered photon now depends on the initial polari-
zation g, ." Thus, for double scattering the inte-
gration over go is not simple, and use of Eq. (22)
will not a priori lead to the result obtained with
Eq. (5). Recall, however, that similar results
were obtained with Thomson and isotropic cross
sections, indicating that these results are rather
insensitive to the form of do/dQ, at least for mod-
erately thick samples. The Monte Carlo calcula-
tions of paper III will provide a quahtative estimate
of the effect of neglecting polarization.

Another choice for dc/dQ is the relativistic or
Klein-Nishina (KN) cross section, whichfor polar-
ized photons is

N„= 2w[(Z+ 1) + (—,'x,'+ x, )(1 —Z)].

The special functions used to calculate the Comp-
ton-scattering probabilities and angular distribu-
tions have x, as a variable, so that the quantities
in Eq. (2 1) can easily be evaluated. Williams et al ."
have studied the effect of elastic scattering on
spectra, l distributions in an extension of Dumond's
earlier work" on multiple scattering.
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~ + ' —2+ 4 cos'8

(23a)

the range of energies appropriate to a given ex-
periment. More accurate results mightbe obtained
by approximating p. as a linear function' of E:

6 being the angle between the electric vectors of
the incident and scattered photons of energies E,
and E„respectively. Averaged over polariza-
tions, Eq. (23a) becomes

~+ 0 ~ 2g (23b)

where 6) is the scattering angle. As might be ex-
pected, Eq. (23) results in integrals which are
considerably more difficult to perform analyti-
cally. Since Monte Carlo techniques will easily
determine whether use of the KN cross section
will make a significant difference in multiple-
scattering calculations, no analytic calculations
employing Eq. (23) have been attempted. Again,
for moderately thick samples, the isotropic re-
sults suggest that such differences are not likely
to be large.

D. Variation of p with energy

Our calculations have assumed that p. , and p, „
the attenuation coefficients for one- and two-scat-
tered photons, are equal to po for the incident pho-
ton. Since each scattering changes the photon en-
ergy by an amount depending upon the magnitude of
the scattering angle, and since the variation of p
with energy is not, in general, insignificant, "our
assumption of a single value of p. is not correct.

One may attempt to estimate the effect of this
approximation by Monte Carlo calculations. An-
alytic calculations may attempt to minimize the
effects of variation in p. by using an average p. for

p, (E —Eo) = p,o+b(E Eo—)

or, perhaps leading to more tractable integrals,
by a relation of the form

u(&) = ~/&'.

Finally, we recall that the energy of the scattered
photon depends [Eq. (4)] upon the electron momen-
tum. Williams et al. ' have analytically investiga-
ted this effect on the spectral distribution of doubly
scattered photons, but incorporation of electron
momentum into the present calculations of scatter-
ing probabilities and angular distributions would
probably be exceedingly difficult.

E. Higher-order scattering

As Table V shows, triple and higher-order scat-
tering are significant for infinite-radius samples
even at small optical thickness. This rapid in-
crease in multiple scattering with increasing co

appears to be an artifact of the infinite-radius
geometry, since our own and other" Monte Carlo
calculations on finite samples find considerably
less higher-order scattering. For finite samples,
escape of singly scattered photons through the
sides of the cylinder will cut down the amount of
multiple scattering. An upper bound on total mul-
tiple scattering is therefore given by

gP„(V)( gP"„(e)=1 —e ~ —Pi(v).
n=2 fl- 2

For certain sample geometries, such as spheri-
cal, use of an isotropic cross section may make

TABLE V. Single, double, and higher-order scattering from infinite-radius cylinder as a
function of optical thickness.

(Total
scattering)

0.001
0.01
0.05
0.10
0.20
0.30
0.40
0.50
1.00
2.00
5.00

10.00

0.9964 x10 '
0.9725 x10 2

0.4473 x10 &

0,8186x10 &

0.1399
0.1821
0.2127
0.2347
0.2715
0.2369
0.1738
0.1677

0.3107 x10-&
0.2192 x10
0.3633 x 10-2
0.1106x10 i

0.3033 x10 &

0.5085 x 10"
0.7017 x10 &

0.8733 x10 &

0.1382
0.1437
0.9962 x10 '
0.9243 x10 i

0.9995 x10 3

0.9950 x 10
0.4877 xl0 &

0.9516x10 &

0.1813
0.2592
0.3297
0.3935
0.6321
0.8647
0.9933
0.9995

(10 6

0.5966 x10 5

0.4070 x10 3

0.2243 x10 2

0.1104x10-&
0.2623 x10
0.4681 x10
0.7144 x] 0-&

0.2224
0.4841
0.7198
0.7398
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possible an analytic calculation of the probability
of higher-order scattering. This does not appear
to be the case here, since our difficulties in inte-
gration arise from the geometry rather than from
the functional form of the cross section.

The results of astrophysicists ' ' and of workers
in neutron scattering ' may shed some light on the
problem of higher-order scattering. Monte Carlo
calculations seem somewhat less attractive here,
since they become less eff icient as the number of
scatterings increases.

VII. CONCLUSIONS

We have shown how multiple scattering varies
with optical thickness in a simple model for a
Compton-scattering experiment. Answers to the
first question posed in Sec. I, to what extent are
multiply scattered photons being observed, have
been given for total scattering and for scattering
at any fixed angle.

It has been found that for moderately large opti-
cal thickness, sample geometry rather than phy-
sics (differential scattering law) is the chief de-
terminant of both the intensity and the angular dis-
tribution of multiple scattering. Answers to our
second question, the effect of multiple scattering
on the observed energy spectrum, will be pre-
sented in paper II.

APPENDIX: SOME ASPECTS OF CYLINDER GEOMETRY

&= (t -z)/cos8.

For region III, we have simply

l = —z/cos8.

(A1)

(A2}

Region II is somewhat more complex. Consider
a cross section C (Fig. 11}through the cylinder
defined by a plane passing through P perpendicular
to the z axis. Let p be the projection of the scat-
tered path onto C, and let r be the vector in C
from the z axis toP. The length of p is

p =lsin8. (A3)

From Fig. 11, it is evident that ~p
—r~=R&, or,

on squaring and solving for p,

Consider an arbitrary point P in a cylinder of
radius Rz and length f (see Fig. 4 for coordinate
systems). We wish to find the distance from P to
the cylinder boundary along some specified scat-
tering direction (8, y). As seen in Fig. 10, for any

P, the possible directions of scattering fall into
three regions corresponding to escape through (I)
the forward face, (II) the sides, and (III) the back-
ward face. Let L be the distance from P to the cyl-
inder boundary along (8, y). We shall first find l
as a function of (8, y) in each of the three regions
and then define the limits of the regions.

In region I, simple trigonometry gives
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where we have chosen the positive root of thequad-
ratic since p =&+&& when y=0. Thus, combining
(A3) and (A4), we have for region II

I = [rcosy + (Rz —r ' sin'y)'~'j/sin8 . (A5)

The boundaries between the regions are defined
by the heavy lines in Fig. 10, which trace out con-
ical regions I and III when Fig. 10 is rotated about
the z axis to produce the cylinder. The equation
for the boundary between regions I and II is

FIG. 10. Regions of scattering in a finite cylinder.

FIG. 11. Projection onto plane perpendicular to z axis
of scattering from point P along (8, y). Cross repre-
sents z axis and j is projection of scattering direction
onto plane.
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E —8 t —2cos8* = —
[ 2 (f )2p y2, (A6)

where p is given by Eq. (A4).
Similarly, the boundary between regions II and

III is

cos8' = -z/(p'+z')'i'.

Thus, for 1~cosy)cose*, the scattering direc-
tion falls in region I, and I is determined by (A1).
For cos8~«cos8«cos8', we are in region II, and
the equation for I is (A5). Directions with cos8'
& cos8& —1 lie in region DI, for which l is given
by (A2).

For our limiting geometry (Rz —R, »t), since
r(R„(A4) reduces to p -Rz and we find that cos8*

-0+ and cos8'-0, according to (A6) and (A7).
The extension to higher-order scattering follows

similar lines. For the double-scattering event de-
scribed in Sec. VA, we find

(f —z,)/cos 8~, 1 & cos8~ & cos8~,

l, = ps/sin8~, cos8~~ «cos8~ «cos8~,

—z, /cos8~, cos8~ & cos8~« —1,

where

z2 =z|+ I2 cos8~,

p, = —&, cos8~ + (R& —r 2 sin'8~)' ',
and 19~ is the angle of observation. If r «R&, then
simple limiting values for p, cos8~, and cos8~
result as before.
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