
PHYSICAL REVIE% A VOLUME 13, NUM3ER 1 JANUARY 1976
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Hartree-Pock equations for transition matrices are formulated as an extension of the ordinary theory of
atomic spectra. These equations form a hierarchy which may be subjected to various truncations. Some
of the truncations are identified as equivalent to different forms of many-body theories (random-phase
approximation, time-dependent Hartree-Fock, many-body perturbation theory, etc.). Thereby we connect the
modern many-body treatments more explicitly with the Condon-Shortley-Racah tradition of spectral theory
and provide physical interpretations of various approximations. Spin and angular variables are factored out at
the outset by angular-momentum techniques. The problem then takes the form of a system of integro-
differential equations for radial wave functions, which affords conceptual and computational advantages. The
correlations that are characteristically studied by many-body techniques are seen to be confined to short radial
distances and could accordingly be treated by R-matrix procedures.

I. INTRODUCTION

Many-body theory techniques have proved them-
selves in recent years by accounting for previous-
ly unexplained major features of atomic spectra.
Particularly striking was the success of Amusia
and co-workers in explaining large departures of
the Ar and Xe oscillator-strength distributions
from the predictions of single-particle models. "
Three such lines of work have proceeded rather
independently, namely:

(i) The RPA (random-phase approximation) ap-
proach, originating from the physics of condensed
matter and used extensively in nucl. ear physics,
has been applied to the photoionization of atoms
by Amusia and Cherepkov' as well as by Wendin"
and more recently by others. " IThe term "RPA"
is meant in this paper to include the treatment
which is called RPAE (RPA with exchange) by
Amusia and others. ] Applications to the discrete
spectra of molecules have been made recently by
McKoy and co-workers. ' The theoretical back-
ground is described in the nuclear treatises by
Brown' and Thouless' and in Bn articl. e by Rowe. '
Use of a basis of independent-particle states,
truncated on the high-energy side, leads to com-
putation of large algebraic systems.

(ii) The time-dependent Hartree-Fock (TDHF)
approach has been applied to calculate the dynam-
ical polarizability and other response functions of
light atoms, primarily by Dalgarno and Victor, "
the results prior to 1973 being reviewed by
Jamieson. " The basic equations of this approach
and of the RPA are known to be equivalent, but
the procedural details of the two methods and their
interpretation have proved difficult to compare.
TDHF calculations consist of solving coupled in-
tegro-differential equations for single-electron
radial wave functions. Because of the basic equiv-

alence of BPA and TDHF procedures, " remarks
concerning the HPA in this paper will often apply
by implication to the TDHF as well.

(iii) The many-body perturbation methods
(MBPT) originate from Brueckner's and Gold-
stone's works in nuclear physics" and have been
applied by Kelly's and other groups initially to the
calculation of correlation energies and of other
ground-state properties' "but increasingly also
to photoabsorption. "" These methods are related,
but not equivalent, to the RPA and TDHF. Calcula-
tions have been made mostly by solving algebraic
systems but have been reduced more recently to
solving integro-differential equations. ' '9

As these approaches were implemented by differ-
ent groups of workers using different techniques,
they have remained rather disconnected, in that
even practitioners of the field experience difficulty
with their intercomparisons. They also remained
disconnected from the standard Condon-Shortley-
Hacah approach of theoretical spectroscopy. The
resulting mismatch has hindered the transfer of
experience and intuition between different ap-
proaches and, consequently, the efforts to pin-
point and to overcome or bypass the limitations
of each of them. Efforts to extend their ranges
of application have been laborious but expanding
rapidly in recent months. '

Accordingly, we have endeavored to identify a
treatment and a point of view that would encom-
pass the various approaches and would facilitate
the analysis and illustration of their relationships
as well as their progressive extension. The
Green's-function formalism is a candidate for
this purpose, because it deals with any particular
problem starting from a formal analytical solution
whose evaluation can proceed flexibly by alterna-
tive approximate expansions. "' We have pre-
ferred, however, to keep closer to the more
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traditional theory of spectra, utilizing its wave-
mechanical representation, angular-momentum
algebra, and configuration-mixing (or, rather,
channel-mixing '2s) procedures, which provide
for unlimited extension as appropriate to any
specific problem.

This framework will be extended in Sec. II to in-
clude an element foreign to traditional spectros-
copy but common to all the many-body approaches,
namely, the simultaneous treatment of the initial
and final states of a transition. The extension will
lead us to a hierarchy of equations whose approxi-
mate solution is to be achieved by truncation pro-
cedures. One such truncation reduces the equa-
tions to the homogeneous form of the TDHF equa-
tions IEg. (V18) of Ref. 8]. Section IH will connect
various forms of many-body theory to our equa-
tions. In the development of our open-ended hier-
archy of equations we shall find that the appearance
of apparent inconsistencies serves as an indicator
of the effects of truncation.

To make our presentation reasonably self-con-
tained, some material. other than our own has been
included. For simplicity, we shall deal mostly
with the simple example of Ar photoionization from
the ground-state 3P shell to d states only.

Finally, two points may be stressed to clarify
the application of many-body treatments to atomic
spectra:

(a) Many-body treatments have dealt very suc-
cessfully with a particular class of electron-cor-
relation effects, namely, those in which ground-
and excited-state correlations are strongly cou-
pled. Yet they need not prove either useful or
adequate in other circumstances. (Indeed, A. F.
Starace kindly informs us that the coupling of
ground- and excited-state correlations turns out
to be weak in the photoabsorption of Cl, in con-
trast to that of Ar from which Cl differs by a sin-
gle 3P electron; the loss of coupling stems from
the geometrical averaging inherent in the addition
of the transition angular momentum to the nonzero
angular momentum of the open-shell Cl ground state. )

(b) Treating simultaneously the initial and final
states of a transition implies foregoing the bonus
of the Rydberg-Ritz principle, which permits us
to deal with a smaller set of separate stationary
states rather than with the larger set of transi-
tions. Paying this price seems fair when the cor-
relations of the two states are strongly coupled
as they are also in the theory of line profiles;
some compensation is provided, as we shall see,
by the elimination of irrelevant variables.

II. WAVE MECHANICS OF A TRANSITION

We take as our starting point a joint Schrodinger
equation for the initial and final states of an atomic

transition. For definiteness and simplicity, we
consider the transitions of an Ar atom from its
ground state I

SP''S) to a continuum or discrete
state I SP'O''P), omitting reference to inner shells
and regarding 4 as a single-electron d state even
though transitions to s states also occur. While
many treatments of the same problem represent
the state 4 as a superposition of a complete set
of eigenstates of a Hartree-Fock Hamiltonian and
cal.culate the coefficients of that superposition, we
shall study instead the radial. wave function of C.
Dealing directly with a transition permits one to
concentrate both his attention and his computation-
al effort on the differences between the energies
and the el.ectron distributions of the two states,
which alone are relevant to the transition. As
anticipated in Sec. I, we regard this step as an
important extension of the theory of atomic (and
molecular) spectra.

The combination of the ket symbol of one of the
states with a bra symbol for the other represents
a transition operator. Thus the symbol I

SP'O'P)-
(SP' 'Sl represents the transition from the ground
to the excited state. The difference of the formal
Schrodinger equations forthe two states yields our
basic equation:

Hl SP'4'P)(3P' 'Sl —
I
SP'O' P)(SP"Sl ff

= PE, I
SP'O'P)(SP"SI ] =&

I
SP'+'P)(SP"SI

where 0 is the Hamiltonian and & is the energy
difference of the two states, i.e., the excitation
energy. Equation (1) pertains to exact states,
even though we have labeled them for simplicity
by a single configuration symbol. In the following
we shall replace the bra and ket state symbols in
Eg. (1) by their position representations, that is,
by wave functions, with successive approximations.

A. Ordinary Hartree-Fock approximation

At the outset we represent the ground state of
Ar approximately by the single-determinant wave
function (SP'~SI r', ) corresponding to the SP'
configuration, where r', represents the position
and sPin coordinates of the ith electron, with
i = 1, 2, . . . , N, and N = 18. The radial wave func-
tions y„,(r) for various subshells, 1s, 2s, . . . , 3p,
are assumed to have been calculated by the stan-
dard Hartree-Pock (HF) procedure. The excited-
state wave function ( r, I SP'O'P) is that lin-
ear combination of determinants with alternative
distributions of magnetic quantum numbers which
yields 'P character with total magnetic quantum
M. (In photoabsorption, the value of M depends
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on the light polarization; we set M = 0.) Its radial
wave functions are the same as for the ground
state except for (l((r), the radial part of 0', which
remains to be determined by the SchrMinger equa-
tion (1). Substitution of this wave function into the
usual equation

If( r, l
3P'e'I ) = ( r l

3P'e'~) h,
where H is the nonrelativistic Hamiltonian without
spin-orbit coupling, would lead one to the frozen-
core, 'P-restricted, HF equation for ((r) We.
shall show, by contrast, that substitution of the
same form of wave function into the seemingly
equivalent Eq. (1) yields additional terms.

The reduction of a many-particle wave equation
to a single-particle radial equation proceeds by
integrating over the positions of all but one parti-
cle and by factoring out the angular dependence.
In our case, the pair of functions

(" r I sp'q"z)(sp"sl r' )

constitutes a transition matrix and the reduction
amounts to extracting from it the single-particle
matrix which we call, in Lowdin's language, the
first-order transition matrix. Orthogonality of 0
to all other occupied orbitals simplifies the cal-
culation and yields, on the right-hand side of
Eq. (1),

N

N dr, dr', 5 r,. —r', r,. ~ ~ ~ 3P'4 'P 3p''S r', = r, 2, r, zo,,' 1,r,' y~ r,'
i=2

On the right-hand side of Eq. (3) we have represented the dependence on spin and direction variabies
through a matrix symbol defined by

(l, rim,", ~l l', r') =(-1) '"' "8(-,m, , —,—m,'l-,' —,'zv) g Y, (8$)(-1)' "
Y,*, , (8'Q')(Lm, l'-m'l ll'kq);

mm'

(4)

this matrix constitutes a space-coordinate representation of the double-tensor operator developed by
Judd, 25 to within a normalization factor -1. Anal. ogous basis sets of operators have been used in spectros-
copy since Racah's early work. The symbols in parentheses on the right-hand side Eq. (4) indicate Wig-
ner coefficients. The operator zu in Eq. (3) has z =0 and k =1, indicating that the transition leaves the spin
unchanged and has dipole orbital character, while m=0 and q=0 indicate no change of the z components of
spin and orbital momenta. The first-order transition matrix (3) is indicated, in a notation akin to Low-
din's, by (r„l 1'l r,'), and serves to calculate matrix elements of single-particle operators in a condensed
form. Thus the dipole moment of our excitation is calculated from Eq. (3) in the form

(Xp''Sl Q z IXp'O'pl= J f drdz, 'z ll(r, - rz l Hr(T'(

dr cos8, 2r, so~ 1r, dray»r r, r, =3 $3p
0

where the j dr~ includes a sum over spin, Q S
On the left-hand side of Eq. (1), the electron-

electron interaction terms complicate the reduc-
tion to a single-particle equation. There arise
nonlocal potential terms which involve integrals
over wave functions of a second electron and which
are substantially the same as appear in Hartree-
Fock equations. " We represent these terms in
the form of reduced matrix elements, defined as

(&ll&'(a, &;r)ll &') =(&ll &'"'ll &')(&.ll &"'ll &,)

x drar brr,' x~&", 6

I

where C " matrix elements are standard" and re-
strict the values of k by requiring k+ l'- I, to be
even, r, =min(r, r), and a(r) and b(r) indicate two
radial wave functions. (The Cl ~ matrix elements
of odd degree k are anti-Hermitian according to
their usual definition; therefore the matrix V is
Hermitian only with the proviso that Hermitian
conjugation implies the transposition of a and b. )
We also utilize the symbol II, for the HF radial
Hamiltonian of an electron with orbital quantum
number / in the field of the neutral (N-electron)
ground-state Ar atom, given in atomic units by

xx'f(.(= (--,--.— ~ +p „.x((llx'(x. . . x. , ;.)Il(()f (z)
1 d' Z 1l(l+1) [l'J"'
2dr r 2 r

-
liJ Q Q (-1)'(f llew'(x. gf(, r)ll~')X. (r)

n'I, '
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where [t]=2l+1. (Recall that the very same operator aLso determines the occupied bound-state orbitals,
H, .X„,.= e„., X„, ) With these definitions and with the approximate representation (2) of the first-order
transition matrix, Eq. (1) reduces to the radial equation

22k
H2 —&»-& —Q )111 (2IIV'(X„, X»;r, )II2) @(r,)- l(2IIV'(X„, )t; r, )il1)X„(r,) (2, r, i~oo~/ l, r', )X„(r,')

+X»(r, )(1,r, l
~OL~PI 2, r,')X»(r', ) g ~ ~ ~

~'21k
)(( Il v'(x„, (;r,') ll 2)+ ~ = 0, (8)

where the dots stand for terms corresponding to
3P- s and to inner-shell excitations, which have
been omitted for simplicity. In the large square
brackets of Eq. (8), e» originates from the appli-
cation of H to X»(r'), the P» terms represent the
attractive field exerted by the 3p vacancy upon the
excited electron, and the Last term, »(2((V'(~ 1)~
represents the strong repulsion associated with
excitation transfer among the 3P electrons, which
is characteristic of collective excitations and
which shifts their oscillator-strength distribution
toward higher frequencies (Sec. 6.1 of Ref. 22).
The terms in the large square brackets resulting
from the presence of a 3P vacancy can be absorbed
into the definition of a HF Hamiltonian H" ' for an
electron with l =2 moving in the field of a core
with a 3P vacancy,

22k'
»(-1 NH(,»),f,(r) = H,

«(2(lv'(x„, x„; r)ll 2))f,(r)

—-,'(2
II V'(X», f; r) J( 1)X»(r), (8)

whereby the expression in the large square brack-
ets of (8) reduces to

(10)

The spin-angular matrix mo, appears in the two
groups of terms of Eq. (8) with alternative permu-
tations of its indices (l, l'), namely, (2, 1) and

(1,2). This circumstance, essential for our
problem, prevents immediate elimination of the
spin and angular variables, that is, the reduction
of Eq. (8) to a purely radial equation, and hence
requires discussion.

The terms of Eq. (8) with the factor
(1,r, ~

u)o(oo~~ 2, r,') represent the exchange of k
units (k=1 or 3) of orbital momentum between
the excited and the 3P electrons, an action which
is applied to the ground-state coordinate r",'. The
invariance of the Hamiltonian under joint rotation
of all electron coordinates permits all terms of

Eq. (8) to depend on spin-angular matrices u)",'»)

with the same values of these indices; however,
transfers of orbital momentum between electrons
manifest themselves through the occurrence of
different values of the indices (t, t'). Mathemati-
cally, the validity of any equation with the form
E(r, r') =0 for arbitrary r and r' implies that,
upon expansion of F into a complete set of se

matrices, the coefficient of each teem vanishes.
Hence Eq. (8) actually resolves into the two sep-
arate equations

(H(3o)2 ~3P E)&( ).) = 0 (11a)

B. Ground-state correlations

The extension of the matrix (2) which we consider
involves the introduction of correlations in the
ground-state wave function ( r, ~

3P' 'S), but
only the very minimum of correlations that is rel
evant to the transition of interest. The possibility
of minimizing this extension is afforded by our
having restricted our goal to studying the transi-
tion between two states without any attempt at de-
scribing the separate states accurately. The ap-
propriate minimal correlation consists of admix-
ing in the ground-state wave function the virtual
excitation of a pair of 3p electrons to d orbitals,

(11b)

where the ? sign draws attention to their apparent
inconsistency. Equation (lla) is a HF equation ex-
pressing the requirement that ( r; ~

3P'4 'P)
be an approximate eigenfunction of H with the
eigenvalue»»+&, but Eq. (11b) is generally in-
compatible with it. Thus we see that the usual
HF equations for excited states disregard the el-
ectron-interaction effect represented by Eq. (11b).
To take this effect into account, we are forced to
generalize the simple trial form (2) of the transi-
tion matrix.
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whose radial wave functions, y, and y, , remain
to be determined by solving the Schrodinger equa-
tion (1). Full determination of the admixture of
this virtually excited state, I 3p'4, 4, "S), with the
unperturbed ground state I 3P"S) would require
the identification of its parentage and of the ad-
mixture coefficients. The parentage can be
identified as a particular superposition of the
three alternative couplings of 3p' and of (4,4,),
namely, 'P, 'D, and 'S, with coefficients b».
The determination of these coefficients, of the
normalization of y, and y, , and of the over-all.
normalization, will be considered later in the
context of the solution of the Schrodinger equa-
tion.

We proceed then by replacing the initial trial
form (2) of the transition matrix by

(r, I 1 I r,') = g(r, )(2, r, I woo~ I 1,r', )x» (r,')

+ x»(r, )(1,r, I zool,'~ I 2, r', )(p(r', ), (13)

where Q is a superposition of y, and y, ,

(p(r) = & [(kl v()p (r)+(kl 0' )0'(,(r)1, (14)

with

22L
&» = Q(-1) bsr~.

SI

(15)

(12)

where the relative amplitude of the two terms is
included in the normalization coefficients indicated
above. Here and henceforth, the specification of
the state in wave-function symbols such as
(3p''Sl r', ) has its usual meaning of repre-
senting a Slater determinant or a l.inear super-
position of determinants of a given configuration
with the specified LS quantum numbers, whereas
in Eq. (1) the symbol (3p' 'Sl had been used for
simplicity to indicate a ground state with an un-
specified admixture of configurations. Our choice
of virtual excitations to be admixed in the transi-
tion matrix (12) has the following main property:
The first-order (i.e., single-particle) transition
matrix to be derived from it includes, besides a
term identical with Eq. (3), a second term whose
spin-angular factor, (1,r, lmol', ~l 2, r', ), coincides
with that of the second group of terms of Eq. (8).
The analytic expression of this matrix is

Note thai the matrix I' depends on the parentage
coefficients 5» and on the radial functions y, and

q, only through the single function Q(r). The ana-
log of the dipole matrix element (5), calculated
from the transition matrices (12) or (13), consists
now of the sum of two terms

(16)

The minus sign in this equation derives from the
angular integration; the ket and bra positions of

g and Q in the matrix elements correspond to those
in Eq. (12). The introduction of the second term
in Eq. (16) is characteristic of many-body theor-
ies.

The construction of the first-order matrix, Eq.
(13), and of the single-particle equation, which
results by substituting Eq. (12) into Eq. (1) and
integrating over r„.. . , r„as in Eq. (3), consti-
tutes a straightforward but lengthy task. Indeed,
Eq. (12) represents the superposition of a large
number of products of Slater determinants, and
the calculation of electron interactions involves
extensive applications of angular-momentum
algebra. To perform this task in a condensed
form, keeping in sight the tensorial properties
of the transition matrices, we have developed an
application of Racah techniques to transition ma-
trices and to the reductions of their Schrodinger
equation. This development is reported in a com-
panion paper" and we give here only the results.

The Schrodinger equation (1) for the transition
matrix (12) reduces to a linear combination of
spin-angular density matrices whose structure
we indicate as

(17)

Here, as in Eq. (8), the last set of dots represents
additional terms involving spin-angular matrices
with (l, f') indices other than (2, 1) or (1, 2) and/or
with radial wave functions of inner-shell electrons.
These terms arise from 3p- s transitions or from
excitations of inner shells, which we omit here for
simplicity and which are actually unimportant for
many practical purposes. The dots in the two

pairs of curly brackets in Eq. (17) represent two

expressions which depend only on the radial co-
ordinates r, and r', ; each of these expressions
must be set to zero in order that Eq. (17) be sat-
isfied for all (r„r',).

The first expression yields
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2 1 k

(If~(„-~), ~„-z)g(r,) —g —.'&„- - „" I(2llv"(0, x»;~, )ll 1)x..(~,) x»(&l)
k

211 5

——,'g(p, ) g di»[y, (r,')(2II v"(x p, q&», &I)II 1)+y»(p', )(2ll v'(x», (I(). ; &,')ll1)] =o, (18)

with the notations of Eqs. (14)and (18). Equation (18)is not yet in final form because it cannot be reduced to
an equation in r, alone by factoring out the radial function X»(p", ), as we had done in Eq. (8). This circum-
stance suggests that our trial matrix (12) is still not sufficiently general, but we postpone a discussion of
this hint until 8ec. &y and proceed here to eliminate the dependence of Eq. (18) on r,' by projecting it on

(p'), l.e. by multiplying it, with X, (p",) and integrating over r', . This operation eliminates X»(&,') fro m

the first ljne of Eq. (18) and reduces the expression in the square brackets in the second line to a matrix
element of the Coulomb interaction, thus bringing Eq. (18) to the form

[If~&„~), —e„E](-(r,) —Q 3&», — (2II v'(0&, x,p' &,) 111)x»(&~)
2 1 1

+ g '
(2II v»(p, x», r&II1)x»(&i) »g(&-i) g ~»(q' X»II v'll x»q») =0, (19a)

where

( dllV a(lad)= f dra(r)(( II'V (I, d;r)ll) )alr) .
0

getting to zero the expression in the second curly brackets of Eq. (17) and applying a procedure analogous
to that which reduced Eq. (18) to Eq. (19a) yields the equation for (t)(&,'):

2 1 k

e~&,p~» —c»+E)(t)(r,') —x»(&', ) g»~», — (1II v (x p, 0;&~II2)

21k
-„—p ~»», x»(~', )(1llv'(x», y;~,')II2)

+g (d, I I(rp. (r,')(x„d, ll)"Ill)x.,)rd, (rl)(a„d. l)F'Ildaa)l

where

+ &»(2, 1)[q.(~', )(x»9»ll v'll x»O)+ 9,(~', )(x.,v. II v'll x.pO)]

r(:,(d, ()Id.(r', )(dll)"(rP, (a, ;r', )112)r(a,(r')(2II)' (d, r(a')2)1) =O, ((()bl

llL l l L
&»(I, &') = —Q 1 (1' l bg~, C»(I,, l') = Q „ , , b~z .

sL lP P

(20)

The expressions indicated by the last set of dots of Eq. (17) yield additional terms and equations having
the same structure as Eqs. (19) but with other values of quantum numbers and different radial functions;
the complete expressions are given in Appendix A.

We introduce the discussion of the rather complicated pair of Eqs. (19) by selecting out of them those
terms which will be identified with the RPA approximation in Sec. IIIA,



MAN Y-BODY THEORY OF ATOMIC TRANSITIONS 269

21k
(«", -&, —r„-«)X(r) —g (lr„— ( 1 {XII (r (X'x„,; r)II ))x„(r)=0, (21a)

2ik
( «», - r+ «) (Xr', ) —g (-,*x„- {xll(r"(X,x„;r',)Il()x„(r,) 0',= (21b)

where the last term has been rewritten to empha-
size the symmetry of the two equations. The
structure of this pair of equations is made appar-
ent by considering Eq. (8) once again. That equa-
tion consists of two terms with different spin-orbit
factors: The first of them contains in large square
brackets expression (H(s~i» —e» -E)g(r) which now
appears in Eq. (21a), while the essential part of
the second term constitutes now the second term
of Eq. (21b). Recalling also that Eq. (8), originat-
ing as the Schrodinger equation for the single-
term transition matrix (2), resolves into the pair
of inconsistent equations (11), we see that the in-
troduction of the two-term transition matrix ap-
pears to have had the effect of complementing
Eqs. (11) so as to make them consistent in this
particul. ar respect. The complement involves the
additional wave function Q(r,'), whereby the pair
of equations (21) constitutes a system of coupled
HF equations. The extensive agreement with ex-
periment achieved by RPA calculations' equivalent
to the solution of this system indicates low impor-
tance of the terms which we have initially left

H= Q H,(r, ) +-,' Q V(r; —r;), (22)

consists of singl. e- and two-particle terms, the
process of integrating over all. el.ectron coordin-
ates but (r„r', ), as in Eq. (3), is nontrivial for
the next-to-the-last pair, (r„r,'). This point has
been covered explicitly in textbooks (e.g. , p. 16
of Ref. 9}for the case of density matrices such
as

( .r I3P"S)(3P"Sl "rI )

consisting of two identical wave functions, but our
case of transition matrices consisting of two dif-
ferent wave functions is equivalent in this respect.
After (N- 1)-fold integration, the Schrodinger
equation (1) has the general form

aside from the complete equations (19) but pro-
ceed now to discuss.

To this end we outl. ine part of the derivation of
Eqs. (19) from the general Eq. (1). Since the Ham-
iltonian,

«(r )(r{X(p)—(r I)'Ir')«(r')+ f j Xr«r'(V(r, —r ) —)r(P, —F))(r„r lr{r'„) (r-rr'X)=«(r,{X(p),
(23)

which involves not only the first-order but also the second-order transition matrix. Our N-particle ma-
trix, Eq. (12}, yields the first-order matrix (13) and, as shown in a companion paper, '8 the second-order
matrix

(r, l rl r', ) g (2[i])"'x„,(r, )(l, r, l wLdl f, r')x. ((r2)
nS

0' 1 0
( 1)«[k] )./2

c,.X.,(r, )X.,(r.)2 i i 2 K 3 1 3 2

x [(1,r, l
w "~

l 1,r,')(1,r, l w " i
l 2, r,')]oocy»(ri) {1(r,')

A' i 4'
[k]—g (-1)' — ., 0(,)X.,( .)

x [(2,r, l
wt'~il 2, r', )(1,r, l

wl"'~
l 2, r,')]oloo~ [y,(r,')y, (r,') + ()(),(ri)y, (r,')] (24)
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where P„and P, ,. are the operators that permute
(r„r,) and (r,', r,'), respectively, and

—,'-,'8 22 1.
c„,, = g (-1)""'([~][h'])'",,

The first term in the large square brackets of
Eq. (24) is the product of our first-order transi-
tion matrix and of the first-order density matrix
of the ground state

~
3P''S).28 The RPA equations

(21) result if only this first term is retained in

Eq. (23). The second term in the large square
brackets of Eq. (24) depends, like the first term,
on the wave function (t)(x') rather than on the sep-
arate wave functions p, and y, . Its contribution
to Eqs. (19) can be identified as the second group
of terms in both equations. One might then con-
ceive of adding this second group of terms to those
retained in the RPA equations (21) without appar-
ently spoiling the property of forming a system of
iwo coupled equations for the wave functions (t and

Note, however, that this additional group of
terms depends on combinations of the parentage
coefficients b~l different from their combination
A. , which is included as a coefficient of (Ie) itself.
The last term in the large square brackets of
Eq. (24) yields the last group of terms in both
Eqs. (19). These terms depend, in contrast to
those discussed above, on the separate functions

y, and y, through their correlated product

y, (r,')y, (r2) + y„(r,')(t), (x,'). Thus we see that Eqs.
(19) involve unknown functions other than the pair
((t, Q) and are accordingly insufficient to determine
them all. To proceed, one must either disregard
the additional functions or introduce additional re-
lations. We return to this matter in Sec. IV.

Retention by the RPA of only the first term in the
large square brackets of Eq. (24) may be rational-
ized by remarking that only this term includes con-
tributions by the full 3P' shell of Ar. This is
shown by noticing that the integral

holes, keeping in mind the restrictions upon the
values of k arising from parity sel.ection rules.
For example, the terms with the coefficients B,
represent interactions between a particle and a
vacancy, while those with C~ represent interac-
tions between two particles or two holes.

We come now to consider the normalization of
our wave functions. As noted above, it is an im-
portant feature of many-body theories that they
deal with the evaluation of transition amplitudes,
or transition matrices, rather than with the sep-
arate evaluation of wave functions for the initial
and final states (see, e.g. , p. 57 of Ref. 9). Ac-
cordingly, even their normalizations should not
be carried out separately. Consider, e.g. , what
would happen by applying the usual procedure for
orthonormalizing the set of wave functions lI) with
different excitation energies E. This procedure
considers pairs of solutions ((t, $) of the relevant
wave equation —Eq. (19a) or (2la) in our case-
for a pair of excitation energies (E,E). From the
equations, one forms the expression
(E-E)(~le) —[(Ol~lg)-(~IHi~)]=o; i«he
usual procedure, the term in square brackets reduces
to an integral over a surface of very large radius,
by application of Green's theorem. In our case,
however, this procedure would fail because the
coupling terms including the wave function y do
not cancel out in the square brackets.

We are thus led to perform a simultaneous
orthonormalization of the pair of wave functions
(1)(r) and ()()(x) by manipulation of the whole system
of RPA equations (21). More specifically, we con-
sider the RPA equations (21) for iwo different ex-
citation energies & and &, with alternative solu-
tions (g, P) and (II, T()). The equations with energy
E are multiplied by (I and Q, respectively, inte-
grated over x, (or r,') and summed; the two equa-
tions with energy & are handled in the correspond-
ing way. Upon subtraction of the expressions thus
obtained for 8 and +, the coupling terms do cancel
and we obtain

lim E -& dr [y(r))t (r) —y(r)y(r)]

x(l, rnl wloo'~11, r",')y~(r,') =6

represents the number of electrons of that shell.
The contributions of the other terms of the transi-
tion matrix (24) to Eqs. (19) might then be expected
to be small by virtue of including factors of the or-
der of -,'. However, this expectation is not readily
verified by closer inspection of the equations. A
detailed evaluation of the various terms of Eqs.
(19) exceeds the scope of this paper, but each
term is interpreted by inspection as a particular
element of the interaction among particles and

+ (serrate terms at r =ft) )
= 0 . (00)

This equation requires the radial integral to vanish
when & is an eigenvalue not equa, l to E, because
the surface terms then yield no contribution. » In
the limit E--E, on the other hand, the ratio of the
surface terms to E -& yields the value of the rad-
ial integral, and hence the normalization constant,
in terms of the asymptotic expression of (t)(R).
[The wave function Q(R) does not contribute to the
surface terms because it vanishes much faster
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than ((R) as R- ~, even in the discrete spectrum,
owing to the sign of E in Eq. (21b).] The quantity
to be normalized is thus the limit, for E-&, of
the integral of (I)g —QQ, which will be identified
in Sec. IIIA with the corresponding expression of
the RPA treatment. We also note that this normal-
ization procedure complements Eqs. (21) to the ex-
tent of determining the absolute magnitudes be-
sides the r dependence of (C)(r) and (P(r), but fails
to determine any of the additional parameters of
the virtual excitation which have remained un-
specified in Eq. (12).

The cancellation of coupling terms of Eqs. (21),
which has led to the orthonormalization formula
(25), no longer occurs when the same procedure
is applied to Eqs. (19). This observation confirms
that the non-RPA terms of Eqs. (19) should not be
regarded simply as a correction to be added to the
RPA equations (21). They indicate that a consis-
tent treatment, more accurate than the RPA,
hinges on the use of a more accurate form of the
transition matrix than is provided by Eq. (12),
and on the formulation and solution of an equation
for the second-order matrix analogous to Eq. (23).

III. INTERCONNECTIONS

A. The RPA method

The BPA method considers a single-particle
(i.e., first-order) transition operator in the sec-
ond quantization representation, with the form'

(26)

where the pair of creation-annihil. ation operators
a„a,. shifts one particle from a spin orbital i to a
spin orbital &. Each of these spin orbitals is iden-
tified by spin and orbital quantum numbers m, ,
L, m, and by the energy eigenvalue of a radial
eigenfunction of the HF Hamiltonian 0", defined
by Eq. (7). Indices i {or j) pertain to orbitals
which are occupied in the ground state of the sys-
tem, indices n (or m) to excited states; the treat-
ment of Ar in Sec. II implies restricting (i, j) to
3P and (n, m) to d orbitals. Allowing for the dif-
ference of representation, the operator (26) is
seen to be equivalent to the transition matrix (13),
with the coefficients X„, and 1'„playing the same
role as the radial wave functions g(r) and Q(r),
respectively. Both pairs have to be determined
by solving a Schrodinger equation; Sec. II has re-

dueed Eq. (1) to Eqs. (19); here, we start from

(27)

[RPA treatments do not usually assign a specific
multipolarity to the operator Q at the outset,
whereas we have been deal. ing in Sec. II explicitly
with a dipole operator. However it emerges later,
e.g. , in Sec. 2.3 of Ref. 2, that Eq. (27) resolves
into separate equations for operators Q of differ-
ent multipolarity. ]

In the second quantization representation, the
Hamiltonian takes the form

H= Q (n[HO[P)ataj)+ Q (nP(V[y5)atasta~ay,

(28)

which consists of single and two-particle terms,
the latter arising from electron-electron interac-
tions. Greek letters denote either (i, j) or (m, n)
indices. The commutator of a single- (two-) par-
ticle operator with the operator Q of Eq. (26)
yields again a single- (two-) particle operator.
Consequently the complete Eq. (27) includes single-
and two-particle operator terms. This result is
the counterpart of the fact, noted in Sec. IIB, that
Eq. (23) interrelates first- and second-order
trans ition matrices.

The RPA proceeds at this point to reduce Eq.
(27) to a single-particle form through a two-step
&inearization approximation: (i) It retains only
those two-particle terms of Eq. (27) whose opera-
tors a~asaja& have just one index of the (m, n),
i.e., "excited-orbital" type. This approximation
is made plausible, in applications to atoms or
nuc1.ei, on the grounds that the operators with two
or more (m, n) indices represent interactions be-
tween pairs of excited particles, and that such
double excitations are less likely than single ex-
citations; similarly, the terms with no (m, n) in-
dices would represent interactions between va-
cancies. In the original applications of RPA to
very large systems it was argued that terms of
Eq. (27) that are due to interactions between many
alternative pairs of excited particles tend to can-
cel out because their coefficients have quite differ-
ent ("random") phases. (ii) It replaces pairs of
unexcited particl. e operators a,. a, by their ground-
state average value 6„..

These simpitfications reduce Eq. (27) to the form

P ((e„—e; —x)x„;+P (sjl)'lim)x„, + p (nial j'I jj)x,„)a„a,
ni ms'
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(e„—c,. -E)X„,+g (nmIV. Iij)Y, =0,
m J

(e„—~, +&)Y,.„+ Q (ij I V I &~)X = 0,
(30)

are equival. ent to Eqs. (21) of Sec. II 8. The equiv-
alence is demonstrated in two steps. The first
step consists of factoring out of Eq. (30) the de-
pendence on all spin and magnetic quantum num-
bers which is included in the indices rn, n, i, and

j, and is represented by 3-j coefficients. This
operation amounts to reducing Eqs. (30), regarded
as representations of the group of space rotations,
and is included in the calculations performed by
Amusia et al. (e.g. , in Sec. 2.3 of Ref. 2). It
brings the matrix elements of V to the form of
reduced matrix elements which, together with the
coefficients X„,. and Y,.„, depend now only on the
eigenvalues &„. In the second step, one multiplies
each Eq. (30) by the eigenfunction g„(r) of H&",~~),

corresponding to the eigenvalue &„and sums over
al. l n, of both the discrete and continuum. Sub-
stituting in Eqs. (30)

H(spn)24n 1

where (aPI Vl y&) =(&Pl Vl)'I')) —(+PI VI 5)'). The
basic system of linear equations of the RPA
emerges now by equating to zero the two expres-
sions in the large parentheses of Eq. (29), i.e.,
the coefficients of the two operators a„a,. and a,a„;
this step is wholly analogous to our having set to
zero the coefficients of the two spin-angular ma-
trices of Eq. (17). (A procedure for solving the
resulting infinite system of coupled equations is
outlined in Appendix B.) The term

(n j I V I im)X,. in the first large parentheses
of Eq. (29) and the term P, (imIVI nj)Y,„in the
second large parentheses are equivalent to the
terms of Eq. (9) which were combined with the
Hamiltonian H to yield B(~)„ if i and j are re-
stricted to 3P orbitals as we have done in Sec. II;
this term can then be deleted with the understand-
ing that the index n will apply henceforth to eigen-
states of H&,~'» rather than of H". [Amusia et af.
perform the same transformation (see, e.g. , Sec.
2.4 of Ref. 2); however, in their notation, the in-
dex N+1 replaces our ¹ Their analytical treat-
ment also retains the terms with j~3P to allow
for transfer of excitation from one shell to another,
whereas we are disregarding such transfers for
simplicity. ]

The RPA equations thus obtained from Eq. (29),

and using the compl. eteness relation

(32)

to transform the matrix elements of V into poten-
tial terms completes the demonstration.

A correspondence between the terms of [H, Q ]
discarded in the linearization process and the non-
RPA terms of Eqs. (19) emerges from the follow-
ing considerations: within the framework of the
present paper, which considers only transitions
between 3P and d orbitals, parity conservation
yields only two-particle terms of [H, Q ] that in-
clude either (a) three creation or annihilation op-
erators of the 3P shell (i, j) and one of the d orbit-
als (I,n), or (b) one (i,j) and three (m, n) opera-
tors. Step (ii) of the linearization approximation
acts on the terms of type (a) by replacing one oper-
ator pair a, a; by ~,,; the terms thus disregarded
correspond to those retained in the second group
of terms of Eq. (24), which involves the single ex-
cited orbital &j&(r,'). Step (i) of the linearization
discards instead the terms of type (b), with three
excited orbital operators, and thus corresponds to
discarding the third group of terms of Eq. (24),
which contains all three orbitals g, 9), , and y, .

which implies

4 C=C +AC +AC +p p 1 2 (35)

(The notation is designed here to facilitate com-
parisons with Sec. II.) Hartree-Fock equations
for the orbitals X„, P„, and )))„are obtained by
entering the wave function C in the variational
express ion

B. Time-dependent Hartree-Fock method

This method studies small oscillatory departures
of the state of a system from a ground state repre-
sented by a single-determinant wave function. In
our example of Ar, the ground-state wave function
takes the form

( r,. ; tI 4', ) = N! '"DetI x„(r,) I exp(- iE,t/h),

(a, i) = 1, . . . , 18, (33)

where the index n labels the 18 occupied spin orb-
itals. Unspecified oscillations of this state are
represented by adding to each spin orbital. g„an
increment proportional to a small parameter
A. exp(ai&ut) —and orthogonal to all X„—as indicated
by the substitution

x.(r;)-x.(r;)+x4.(r;)&"'+x4.(r, )e *"',

„rx„,. = r, Y,.„„r= (31)
5(4I H-

lee�/sf

I 4) = 0, (36)
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applying the variation in turn to each of the orbit, -
als and keeping terms to first order in X only.
The Hamiltonian may include an external poten-
tial term which drives the oscillations of 4; in
our example this term might take the form
AE+, ez, cosset, where AI' represents the peak
strength of an electric field and z, a cartesian
coordinate of the ith electron.

The terms of Eq. (36) that are of zeroth order
in ~ lead to the usual HF equations for the spin
orbitals y . The first-order terms l.ead to cou-
pled equations for the Q„and g„which have the
general structure of those of Sec. II and are
actually equivalent to the RPA equations of Sec.
IIIA, as detailed further below. Indeed, both the
initial application of RPA in nuclear physics' and
the most recent review of atomic applications'
have followed the route starting from the TDHF
formulation. To compare the TDHF approach
with that of Sec. II and to identify the role of time
dependence, we shall utilize the fact that all. the
equations for radial wave functions considered in
this paper may be regarded as obtained from the
SchrMinger equation (23) in terms of first- and

second-order I" matrices, by elimination of spin-
angular factors and of one set of radial functions.
Alternative approaches correspond to the use of
different approximations for the I" matrices. The
presence of the 8/Bt operator in Eq. (36) does not
disturb us, as long as all. time-dependent factors
are exponentia, l.

The construction of I' matrices from TDHF
wave functions is facilitated by the fact that the
N-particle density matrix corresponding to a
single-determinant wave function is obtained by
matrix multiplication in the form of a single de-
terminant. Thus Eq. (33) leads to

=&t 'Det Q y„(r;)y (r,') . (37)

Substitution of @' for 4'p in this equation is equiv-
alent to the substitution of Eq. (34} on its right-
hand side. Subsequent integration over i &1 ac-
cording to Eq. (3}leads then [see, e.g. , Eq.
(2.20) of Bef. 9] to the first-order matrix

(r, lf"(f)l r,') =P (~.(r, ) XC(r,')+~[4.(r, )X.*(r,')+X.(r, ) e.*(r,')]c '"
+~[ 0 (r, ) X*(r,')+X.(r, )4.*(r,')1 8' '+o(~')]. (38)

According to usual conventions, the terms of this
matrix with time dependence exp(+i&et) represent,
respectively, the conjugate transition matrices
pertaining to absorption or emission by the atom
of a quantum Iu. Accordingly, the wave functions
g„(&,) represent excited single-particle states
that can be actually reached in an absorption pro-
cess, while the Q„, which appear in Eq. (34) with
the opposite factor exp(icut), correspond to virtual
excitations. Indeed, the term

g [0 (r )X*(r,')+X (r, )Pg(r,')]

of Eq. (38) can be made to coincide with the matrix
for an excitation transition, Eq. (13), by restric-
ting the g„ to 3p orbitals and the g„and Q„ to d
orbitals, as we have done for simplicity in Sec. II.

Two remarks can already be made at this point.
The introduction of time dependence in the varia-
tional expression (36) has served to sort out the

terms of the first-order matrix that correspond
to absorption or emission processes, and partic-
ularly to combine in each of them contributions
that originate from different terms of Eq. (34} and
correspond to real or virtual transitions, respec-
tively. Secondly, a single wave function Q repre-
sents the contribution of virtual excitations of the
ground state to both first-order matrices, Eqs.
(13}and (38), even though such excitations must
involve a pair of particles in any HF model. The
excitation of a pair was displayed explicitly in

Sec. II and projected into a single wave function
by Eq. (14), whereas it is only implied in the
TDHF procedures (except as manifested in dia-
grammatic representations}.

The difference between the TDHF approach and
that of Sec. II emerges as we proceed to compare
second-order matrices. Substitution of 4' for 4p
in Eq. (37) and integration over i & 2 leads [see,
e.g. , Eq. (2.24) of Bef. 9] to

(r„r,~&(&)~ r,', r,') =&(1 P, , ) g y„(r-, ) y.„*(r,') P ga(r, )g8(r,')

+ 2&(1 -&»)(1 -&, , ) g X~(r, ) X~~(r,') g f 4&(r, ) X*,(r,') + X 8(r, }&*,( r,')] e

+[ $8(r, }y~8(r,') +y 8(r,')g*(r2)] e" 'j +0 (&'),
(39)
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where P» and P. .. indicate permutation operators
as in Eq. (24). The term of this TDHF matrix of
first order in & and with the exp(-i~t) factor,
which is relevant for comparison with Sec. II,
corresponds to the first term only within the
large square brackets of Eq. (24). The additional
terms of Eq. (24) may correspond to terms of Eq.
(39}of order &' which do not appear to have been
studied. The fact that the RPA equations result
from the procedure of Sec. II by deleting the
second and third terms of Eq. (24) had been noted
and rationalized earlier. %'e have now verified by
a more systematic procedure that only the first
term results from the expansion of the TDHF ma-
trix to first order in ~. That virtual excitations
occur in pairs is still not manifest in the second-
order matrix expansion, Eq. (39), to first order
in ~.

We illustrate the difference between the ap-
proaches of Sec. II and of the TDHF by stressing
the restriction under which the perturbation pa-
rameter & is introduced in Eq. (34). A perturbed
many-particle wave function @' is usually expanded
in the form 4'0+&@,+~'4', +' ' with few, if any,
restrictions on the form of 4', beyond its orthog-
onality to @,. On the other hand, Eq. (34) implies
that @', is a superposition of determinants each of
which differs from ~', in one column only. Equa-
tion (34) thus amounts to assuming that the excita-
tion of any one electron —if it happens at all —does
not affect the other except to higher order. This
condition is unrelated to the expectation that ex-
citation is itself unlikely owing to weakness of an
external disturbance. The TDHF approach thus
appears appropriate, at least in essence, to the
limit of large systems, as anticipated in the dis-
cussion of Eq. (24}. It has proven at least rea-
sonably accurate in applications to atoms with
six valence electrons, less so in applications
to lighter atoms.

An. attractive feature of the TDHF approach is
the following: Its calculation of the effect of an
external field has the formal aspect of a con-
sistent expansion into powers of the parameter
~ that characterizes the perturbing field strength.
This consideration appears to have encouraged
applications, particularly by Dalgarno and co-
workers, "conducted consistently in the sense of
extending the calculation to the perturbations g~
and P„of all orbitals n, including those of inner
shells where they should be extremely small for
frequencies e in the optical range. The amount
of labor inherent in such complete calculations

(Bp% 'P/U, '(Q z,)U, [ Bp"S), (40)

where the state symbols indicate single-configura-
tion wave functions constructed with eigenfunctions
of the Hartree-Fock Hamiltonian H" and U~ and
U, represent the perturbations of these wave
functions due to the residual electron interaction
V, i.e., to the interaction not included in H .

The MBPT formalism, derived from quantum
field theories, provides concepts and rules for
analyzing, classifying, and partially evaluating
the infinite expansions of the operators

has tended in turn to direct the applications to
very light atoms, that is, just to those cases
where the method is least appropriate —as noted—
owing to the greater role of electron-electron in-
teractions. This remark may account for the
modest success of the calculations reviewed by
Jamieson. " Recent applications have, however,
evolved toward the treatment of heavier atoms,
disregarding the coupling to inner shells, "thus
becoming more closely analogous to those devel-
oped by Amusia et al. '

Equivalence of the basic TDHF equations —i.e.,
Eq. (28) of Ref. 11 or Eq. (1) of Ref. 12—with our
Eqs. (21) can be demonstrated, but it requires
several adjustments. On the one hand, the separa-
tion of spin-angular variables has to be introduced
in the TDHF equations and the inhomogeneous
terms must be separated; on the other hand, the
coupling of all shells and orthognalization correc-
tions must be introduced in the equations of Sec. II
(as it is done in Appendix A); finally, various
terms have to be regrouped in accordance with
the definition of the H" ' Hamiltonian. In Brown's
book, ' the TDHF equations are given initially in
their homogeneous form and in the space represen-
tation [Eq. (V.18) of Ref. 8], and are then trans-
formed by Eqs. (31) to the RPA second-quantiza-
tion form (29); Thouless's book' follows the same
path in a more condensed form.

C. Many-body perturbation theory

This approach may be described for our purposes
as an extension and adaptation of the usual Rayleigh-
Schrodinger perturbation theory. It deals with the
evaluation of observables, such as the dipole tran-
sition matrix element between

~
3P''S) and ~3P'@'&)

in our example, bypassing any study of the sepa-
rate wave function of each state; the motive is the
same as we indicated at the outset of Sec. II. Our
dipole matrix element may be represented as

U, =1+ P PV + P PVq qV+
P OP Pq 8' OP Oa
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U, =1+ V P + VP P Vq q

Here ~P), ~ 4'), . . . indicate states obtained by
lifting any numb&& of particles to various eigen-
states of H; the MBPT stresses that none of the
~ P), ~ p), . . . may coincide with the ground state.
Conservation of angular momentum and parity by
V implies that all states ~P), ~ q), . . . that con-
tribute to the expansion of U~ in Eq. (40) are 'S,
all those in the expansion of U~ are 'I'. In the
denominators of the expansion (41), E indicates
the excitation energy, as in previous sections„
E~ indicates the ground-state energy of the atom,
and H, I, , H„, . . . indicate the eigenvalues of the
HF Hamiltonian corresponding to the states ~P),
~ g), . . . . Rules for the evaluation of these eigen-
values and for the sign of the matrix elements
(P~V~Q) are provided by the MBPT. The MBPT
also shows how to condense certain subsets of
terms of the expansion of U~ and U~ into more
compact forms whose parameters can be evalu-
ated. Beyond this point, one is left to evaluating
as many terms as feasible of the joint expansions
of U, and U~, usually only a very few of them.
A convenient feature of the MBPT approach is
that its steps of approximation are open ended
and fairly easily interpreted by diagrammatic
analysis, although not easily classified according
to successive orders of magnitude.

Consider first the portions of U, containing only
matrix elements (P~ V

~ g} that represent either the
direct interaction of one 3P and one excited elec-
tron or the "exchange" interaction which pulls one
excited electron back into the 3P shell and excites

another electron out of this shell. These portions
have been taken into account in Sec. II by replacing
single-particle eigenfunctions of H" by the cor-
responding eigenfunctions of the Hamiltonian
H~&,~'» defined by Eq. (9). The corresponding opera-
tion is represented in the MBPT by condensing an
infinite series of diagrams, representing correc-
tions to a single line —i.e. , to an eigenfunction of
H"—into one double line which represents an
eigenfunction of H" ' [Fig. 1(a)]. If one discards
all other portions of U, and sets U~=1, the whole
matrix element, Eq. (40), reduces to a single-
particle radial integral (f~&~y»), where g is the
solution of Eq. (11a); this condensation is repre-
sented diagrammatically by Fig. 1(b).

Owing to the two-particle character of the inter-
action V, nontrivial operation of U~ on the ground
state

~
SP"S) in Eq. (40) yields an initial matrix

element (VIV~ SP' 'S) in which the state g is nec-

essarilyy

of the type ~
SP' 4',@~'S) considered in

Sec. IIB; this matrix element is represented by
the diagram in Fig. 2(a). (As in Sec. IIB, we as-
sume 4', and C, to be d rather than s orbitals. }
The combination of this matrix element with por-
tions of U~ and U~~ containing (P~V~q) of the same
type considered in the preceding paragraph is
again represented diagrammatically in the MBPT
by replacing an infinite sum of terms by a single
diagram with double lines [Fig. 2(b)]. The re-
sulting contribution to Eq. (40) by expansion terms
with U, &1 includes both direct and exchange terms;
it is represented graphically in Fig. 2(c) and ana-
lytically by an expansion into radial eigenfunctions

d

d„
+ ~

dl

d 5p
+ ~ ~ ~

d' Sp
5p dip d

{a)

+ ~ ~ ~ $p
+ + ~ ~ e

FIG. 1. Diagrams indicating the condensed represen-
tation of a series of perturbations (a) to a single excited
d state, and (b) to the excited state and vacancy generated
by absorption of a photon, indicated by r. The first
corrective term represents a simple d-g Coulomb in-
teraction, the second represents a 4-g recombination
which generates another g d excitation. Dots indicate
a aeries of diagrams representing multiple application
of these two basic interactions.

(c)

FIG. 2. (a) Elementary process of two-particle virtual
excitation. (b) Combination of process 2 (a) with the
series of perturbations shown in Fig. 1(a). (c) Alternative
combinations of photon absorption with the composite
process 2(b).
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f 21k
xg (x, pily'll x„x„)1,3 6„-

2
. (42)

The occurrence of the operator H~,~}, instead of
eigenvalues H,~ in the denominator of this expres-
sion is the analytical representation of the con-
densation of infinite terms from the expansions
of U, and UJ; the wave function P in Eq. (42) is,
as above, an eigenfunction of Eq. (11a). The
whole expression (42) can be indicated simply
as (g~l~l y) by setting

Q(+) = g xo(+)(~ p @ +{p) )
Xg

the wave function Q so defined is readily seen to
be the solution of Eq. (21b). In other words, this
procedure leads to a modification of the system
of Eqs. (21), in which the first equation —Eq.
(11a) which replaces Eq. (21a)—is decoupled from
the second. Reducing U~ and U, to the portions
discussed thus far reduces the matrix element
(40) to the form (16), except for the modification
of P and Q resulting from the partial decoupling
of their equations.

To restore the full coupling of Eqs. (21} in the
MBPT, one should take into account matrix ele-
ments (PlVlq) of Eqs. (41) that shift two excited
particles back into the 3P shell as represented in

Fig. 3(a). Existing MBPT calculations appear to
have carried out this step only to lowest order,
but this limitation may not have had appreciable
consequences, as described below. On the other
hand, the MBPT can easily take into account other
classes of matrix elements which are not included
in the HPA, such as the hole-hole interactions in-
dicated in the diagram of Fig. 3(b). This can be
done simply by adding such matrix elements to
the eigenvalue Ho in appropriate denominators of
the expansion Eq. (40}, or by adding to Eq. (2lb)
the term of the complete Eq. (19b}with a factor

(b)

FIG. 3. Additional processes: (a} Inverse of a two-
pazticle virtU{8.l excitation; (4} interRctlon of t%'0 vacRQcies

(x„x II &'ll&,.&.o}.
Only a small portion of the MBPT applications

have been directed to the evaluation of transition
matrix elements. One of these, by Kelly and

Simons, "had dealt with the photoionization of Ar;
it is thus comparable to the earlier successful
HPA work by Amusia et al. ,

' ' but differs from it
by including the contribution of 3s electron excita-
tions from the outset (rather than as an added
step) and by leaving Eq. (21a) in effect coupled to
its sister equation only to lowest order, as we
have just noted. The results agree with experi-
mental data even a little better than those of Ref.
2, suggesting that the differences in the calcula-
tion are of little quantitative relevance; we return
to this point in Sec. IV.

Other calculations of transition amplitudes by
the MBPT have centered on alkali atoms, "'" in-
cluding corrections for long-range core polariza-
tion, which are important in this case, and the
replacement of algebraic systems by integral equa-
tions similar to Eq. (21b) but extended to include
the entire group of terms within the second large
parentheses of Eq. (19b)." These applications
have taken particular advantage of the suitability
of perturbation treatments to display the separate
contributions of different mechanisms and to ex-
tend as required to deal with higher-order pro-
cesses. This flexibility has been utilized, e.g. ,
by Chang et al. to treat the double photoionization
of Ne,"and by Pindzola and Kelly to treat the two-
photon ionization of Ar." It is also being utilized
to an increasing extent to improve upon RPA
treatments, e.g., to adjust ionization thresh-
olds, ' ' ' to take into account core relaxations, '
and to include additional terms of the second-order
matrix. "

IV. DISCUSSION

The formulation and analysis of the Schrodinger
equation for transition matrices, which we have
developed in Sec. II in the wave-mechanical repre-
sentation, has proven capable of encompassing
several many-body treatments of atomic excita-
tion, of interrelating them, and of setting them in
the framework of the Condon-Shortley-Racah the-
ory of spectra. Several new elements of interpre-
tation, contributing to our understanding of transi-
tion mechanics, have emerged in the course of
this exercise. Thus we seem to have achieved the
main goals indicated in Sec. I, even though numer-
ous bl anches of our unifying treatment remain to
be explored.

Emphasis on coupled integro-differential wave
equations is common to our approach and to the
TDHF calculations of Dalgarno and co-workers, "
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in contrast to the second-quantization approach
and to the framework developed earlier by one of
us in Secs. 5 and 6 of Ref. 22. This emphasis ap-
pears to afford both conceptual and computational
advantages. Conceptually, the sign of E in the
wave equations (19b) and (21b) makes it manifest
that the wave functions Q, y, , and y, , which
represent the virtual excitations, are confined
to short radial distances. Moreover, all the
theories considered here are now seen to deal
with the correlation of a single pair of electrons,
even though diagrammatic analysis may suggest
that simultaneous excitation of several pairs is
included. (Inc identally, our treatment points up
how the single wave function Q actually represents
an average over the wave functions y, and q, of
two virtually excited electrons. ) Since the relevant
electron correlations embodied in the wave func-
tion Q are confined within a short range, one may
conveniently represent Q by one or by a few nat-
ural orbitals, and also carry out the calculation
by the R-matrix methods that have been developed
recently. "' M Irrespective of resort to the R ma-
trix, the computation of the wave-function pair
g(&) arid P(r) appears more economical than the
solution of the equivalent algebraic problem, which
presupposes extended integrations over wave func-
tions of continuum states.

A key conceptual element of our formulation is
the SchrMinger equation (23}which should deter-
mine the first-order (i.e. , single-particle) transi-
tion matrix but actually depends also on a second-
order matrix. More generally, integration of the
N-particle Eq. (1) over the coordinates of N n-
particles generates an equation for the nth-order
matrix which depends also on the (n+1)st-order
matrix. Thus we deal with a recursive hierarchy
of equations for the matrices of successively higher
orders. Only the solution of the full N-particle
equation could be accomplished rigorously. Short
of this solution, matrices of order n&N can be ob-
tained by some form of approximate truncation of
the hierarchy, a situation which is familiar from
statistical mechanics. The particular truncation
which is performed implicitly by the BPA and
TDHF procedures is also familiar from statistical
mechanics, in that it retains just that part of the
second-order matrix, Eq. (24), which consists of
a direct product of two first-order matrices. The
general properties of this hierarchy of equations
and of the errors to be incurred by possible trunca-
tion schemes warrant investigation.

The truncation implied by the BPA provides a
high degree of internal consistency. This is de-
monstrated not only by the cancellation of coupling
terms in deriving the normalization equation (25)
but especially by the preservation of the oscillator™

strength sum rule and of the relationships between
the so-called length and velocity dipole formulas. "
It is not immediately apparent to us whether and
how this consistency derives from the prescrip-
tion for truncation of the second-order matrix and
hence whether and how it could be preserved when
proceeding to higher-order approximations. Ob-
viously relevant to higher approximations is the
search for methods of evaluating the terms of Eqs.
(19) which cannot be simply annexed to the RPA
terms, that is, not only the last groups of terms,
which depend on superpositions of y, and y, other
than P, but also those that depend on the coeffi-
cients A„, with &+ j. , 8~, and C„. The latter terms
depend on characteristics of the parentage of the
state

~

3P4&', 4'i, 'S) that are not incorporated in the
coefficient A, of the wave function Q(&).

Broader interest attaches to extending our treat-
ment to the excitation of atoms with open shells,
more precisely, to transitions between states
neither of which has zero total (or at least orbital}
angular momentum. In this case the transition
matrices of each order resolve into components
with different multipolarities (dipole, quadrupole,
etc.). Independent hierarchies of Schrodinger equa-
tions govern the components of each multipolarity.
An initial survey of this problem is included in a
companion paper. "

Within the scope of the BPA a question arises
that does not seem to have been studied. Solutions
of Eqs. (21) have served mainly to calculate the
dipole transition matrix elements (16), and atten-
tion has centered on the difference of the results
thus obtained from those obtained from solution
of the simpler HF equation (11a) followed by cal-
culation of the matrix element (5). One may,
however, inquire further about the differences
between the wave functions P(&) obtained by these
alternative calculations, particularly about the
differences between their phase shifts which would
manifest themselves through the angular distribu-
tion of photoelectrons. The decoupling of Eq.
(2la) from Eq. (2lb} which is implied by MBPT
calculations (Sec. IIIC) would be justified if such
differences turn out to be negligible. The rea-
sonable agreement with experiment obtained by
calculations of angular distributions using RPA
dipole elements from Eq. (16) but phase shifts
from Eq. (11a) [Sec. 3.6 of Ref. 2] suggests that
the phase shifts depend but little on the electron
correlations included in the RPA. On the other
hand, 'I' phase shifts calculated for Ar by an &-
matrix procedure roughly equivalent to the solu-
tion of Eq. (11a) are lower than the experimental
values implied by the quantum defects of discrete
levels by -0.2 rad. '4

The analysis presented here involves anothex
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obvious approximation besides the truncation of
the hierarchy of equations for matrices of suc-
cessively higher orders, namely, the adoption
of a matrix form, Eq. (12}, with only two con-
figurations for the ground state and a single one
for the excited state. The inaccuracy of this ap-
proximation has emerged in our transformation
of Eq. (18) into the wave equation (19a) for f(r, )
when we could not simply eliminate the depen-
dence on r,' by factoring out the function

X»(r,'}. Equation (19a), obtained by projecting the

r,' dependence onto a second factor X»(r'), is in-
deed correct, but it is incomplete in the same
sense as Eq. (Ila), which contains only a part of
the information provided by Eq. (8). An analog
of Eq. (11b), which has no manifest solution,
would be obtained by projecting Eq. (18}onto a
function space orthogonal to X»(r,'}; the projec-
tion of the first term of Eq. (18) would vanish,
and the projection of the second term would have
no manifest solution. Here, as in the discussion
following Eqs. (11), we regard this inconsistency
merely as reflecting inadequacy of the representa-
tion of the transition matrix by Eq. (12). Pro-
jections of Eq. (18}onto functions orthogonal to

X»(r,') would presumably be solvable if we had

extended the representation (12) of the transition
matrix, just as Eq. (12}extends Eq. (2). It ap-

pears reasonable, indeed, that we meet not just
a simple hierarchy of equations but a branching
hierarchy, which expands on the one hand toward
matrices of successively higher orders and on the
other toward matrices that represent the transi-
tion with increasing accuracy, in terms of in-
creasing numbers of configurations. Here, as
above, a realistic procedure must involve a
suitable trunc ation.

A concluding remark should be made regarding
the basic assumption implied by the BPA trunca-
tion procedure. Vfe had anticipated that the terms
discarded by the BPA, i.e. , the terms of Eqs.
(19) that are not included in Eqs. (21), would be
smaller than the others by a factor reciprocal to
the number of electrons in the subshell being ex-
cited, i.e., by a factor -', in our Ar example. A
similar understanding of the BPA has often
emerged in informal discussions and agrees with
the circumstance that the RPA has been introduced
for extended media, where the number of equiva-
lent electrons available for excitation is indeed
very large. As noted at the end of Sec. II, our
expectation seemed to be borne out by the struc-
ture of the second-order matrix, Eq. (24), but
has not been actually verified by evaluation of the
terms discarded by the BPA.

APPENDIX A

The complete Eq. (17) is given by

g., (2, r, l
~""II, «,')+g,.(I, r, l~,':"I2, r,') +g,.(1, r, l~,',"'I o, r,')+g„(8,r, lw,',"'l 2, r,')

(AI)

21k
g„=x»(r,)[(e„-E-If(»'),) y(r,')+x„(r,')Q I

-', &„- 2, I l(Illv'(x». e;«,')ll2)1

( 21k
+ x (r, ) p l A, 2, I x..(r,')(Illv"(x...@;r,')ll2)- &. (1,2)e(r,')(2llv'(x„, x„;r,')ill) I

[g-, „,(l, r, l
w '

l I, r,') +g„, , ( I, r, ~
ao ' '

l L, r,' )] = 0,
nl, l

where l indicates the quantum number of excited orbitals and the primed summation includes all spin
orbitals nl of the Hartree-Fock ground state of Ar with the exception of the combinations (nl =8p, l =2).

Setting the expression g» to zero gives Eq. (18) and leads to Eq. (19a). The other expressions are as
follows:

p c, (1,2)(1ll v'(x„,x„;r, )ll 1)x„(r,)y(r,')

2&k
[(Ill v'(q„x„;r,)ll2)q(r, )y. (r,')+(Illv'(q „x.„r,)112)V(r,)y, (r,')]

—g ~.(2, 1)[(1ll v"(~. , q; r, )llI)x»(r, )q.(r,')+ (Ill v'(~. , ~; r, )lll)x.,(r, )v»(r,')3

—Q Cq (2, l)x p (r, )[y, (r,')(2IIV'(y, p„r,')ll2)+y&(r. ,')(2llv'(y, q. ; r,')ll 2)] (A2)
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22L
g„=-l x„(r,)x„(r,')(1llv'(e, x„;r,')llo)+ „,Q, "x»(r,)0(r,')(2llv'(x», x»„, r,')llo)

+ 15„, 5' x„(r,)[v, (r,')(2llv'(v. , y; r,')llo)+y. (r,')(2llv'(y„y; r,')llo)],

( 13L 13L
g„=-„—' I p 112 2 21 &„l(3llv'(x„, x„;r,)lll)x»(r, )p(r,')

23k
—Q &a [(3llv'(v. , x», r, )ll2)e(r, )q s (r,')+ (3llv'(q „x»,r, )ll 2)y(;)q. ( )j

k

11 I
+ g g 2 k 2 &si I[(3IIV"(q ~, O;r, )II1)x„(r,)y.(r,')+(3IIV'(q. , q;r, )ll 1)x»(r, )qr, (r,')j,

' (" isa
(A4)

( Lk2 Tk1
gr. ni =(- )' Q I 1 1 &

(lllv (x», x„, ;r, )II2)p(r, }—
&

(&IIV"(p, x &;r&)ill)x»(r, ) Ix„,(r,')
i 11/

-4[(~ II v'(x», (;r )II f)+(ill v (p, x», r, )ll~)jx.i(r, )x„,(r'),

2, , x»(r,')(1llv'(x. „e;r,')ll& )+, y(r,')(2llv (x„„x»;r,')Ip) I

+».s (r,'}[(ill v'(x», 0; r,')ll t ) + ( f II
v' (g, x», r, ) II 1 )] (A6)

Setting g» = 0 leads to Eq. (19b); setting the other
expressions equal to zero leads to other equations
that are inconsistent with Eqs. (19) with the same
implications as were noted in the case of Eq.
(1lb).

APPENDIX B

The system of equations derived from Eq. (29),

[E—(e„-e, )]x„,= g (nf I vI im)x. ,

the I ippman-Schwinger technique of scattering
theory, which yield complex solutions fitted to
"outgoing-wave" boundary conditions. Here we
outline the variant of that technique which was
used in Sec. 6.2 of Ref. 22 and yields real standing-
wave solutions that are more appropriate to spec-

troscopypy.

The singularity of X„; is displayed explicitly by
setting

X„,= (E—(e„-e,. ))A(E)+P K„,(E), .
1

+ P (nmlVl, j)Y...

—[E+(&„-&, )j Y,„=Q (imI V
I nj ) Y,„

+ g (zj lvl nm)x„„

(B1a)

(Blb)

(B2a)

where A(E) is a normalization coefficient, P in-
dicates principal-part summation (actually in-
tegration) over the pole of E —(e„—&,), and K„; (E)
is a new dependent variable. Equation (Blb} is
nonsingular; therefore, the companion of (B2a)
has the simpler form

is singular in the continuous spectrum where the
coefficient of &„„E—(&„—&;), has a point of zero.
Accordingly, its solution is singular at that point.
The equations are treated by Amusia et al."using

&+ ~n
(B2b)

Substitution of these expressions in Eqs. (B1)
yields the nonsingular system
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K„,(E) = g (sj~V(im)5(E —(e -c&))A(E)+P g (ql[V~im) K„&(E)
mj fhj m j

+ g (nm~V(ij)
gm

(B3a)

—I g„(E)= P (im[V[nj) Ly (E)+g (ij [ V[ nm)&(E —(6„—E~)) A(E)
mg

+ P g (&i I VI ~m) K,(E),
m Sl J

(B3b)

in which the terms with the coefficient A. (E) play
the role of inhomogeneity. The dependent variables
K„& and L«„can now be calculated numerically in
terms of the normalization coefficient A(E), re-
ducing the integrations over the continuous spec-
trum of & to discrete sums. The principal-part
singularities have been handled straightforwardly
in similar problems. " The aggregate of the vector
components K,.(E) and L, (E) for a. single value of
E is equivalent to a single column of the matrix ~

calculated in Hefs. 1 and 2. Equation (B3) are
equivalent to Eq. (21) of Ref. 2; the notation of
Ref. 2 combines the two Eqs. (B3) into a single
one and replaces & functions by an infinitesimal
imaginary term in the denominators. The & states
in our initial Eq. (29) are eigenstates of Jf".
practice, one should start from the simpler Eqs.
(30), where n refers to eigenstates of H~&,~'»,
whereby some terms of the equations of this
Appendix vanish.
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