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%ave functions, which include interelectron coordinates explicitly, are calculated for the four lowest 'S and
four lowest 'P states of I.ii. These wave functions are used to calculate oscillator strengths, including upper
and lower bounds, for the 16 lines arising from allowed transitions among these four 'S and four 'P states.
The results of this study are oscillator strengths for the 1s'ns 'S~1s'mp P Lii transitions for which n,
m = 2, 3, 4, 5 with rigorous upper and lower bounds which in the best case (1s'2s "S—l1s'2p 'P) are 3.5%.

I. INTRODUCTION

Spectroscopic data for atoms and ions fall into a
category of fundamental scientific material for
which justification of measurement or calculation
is scarcely necessary. The measurement of the
wavelengths of spectral lines and the subsequent
deduction of energy levels is usually not too diffi-
cult." The study of the strengths (intensities) of
spectral lines is, however, a much more formid-
able problem. ' Gn the experimental side, absolute
oscillator strengths, or f values, are typically de-
termined with uncertainties of (10-20)% or more. '
Gn the theoretical side, Pekeris and co-workers
appear to have established some helium f values
to 1% or better, ' and other transitions in the two-
electron isoelectronic sequence have been deter-
mined to perhaps 5%." But results reliable to
better than (10-20)% have not been generally ac-
cessible in larger systems. " In addition, the
question of the reliability of theoretical predictions
has become increasingly acute, "and there is a
need for procedures which lead to upper and lower
bounds for the proper ties of interest, so that rigor-
ous error limits are attached to the error esti-
mates,

In view of the above, we have calculated f values
for various 'S-'P transitions (by the dipole-length
formulation) of Lii. The calculations utilize some
of the best wave functions (on an energy criterion)
currently available. "~' In addition, the procedure
of reinhold'4 "has been used to calculate upper
and lower bounds to the computed f values. The re-
sults of this study are oscillator strengths for the
18'ns'S-1s'mp I' I iI transitions for which n, rn

=2, 3, 4, 5 with rigorous upper and lower bounds
which in the best case (Is'2s'S-1s'2p'P) are 3.5%.

II. THEORY
A. Wave Functions

Weiss" has shown that for the resonance transi-
tion of lithium, Hartree-Pock wave functions are

unreliable and wave functions, including correla-
tion effects, of considerable accuracy must be em-
ployed, not only for the ground state, but also for
excited states. The procedure adapted here for in-
corporating correlations into the wave function is
the method of Sims and Hagstrom, " in which a var-
iational trial function is written as a linear com-
bination of known many-electron functions,

@=QCPa,

and the configurations 4„are themselves antisym-
metrized projected products of orbitals and inter-
electronic coordinates. By minimizing the energy
with respect to the coefficients C„one is led to
the usual matrix eigenvalue equation for the energy
and the coefficients C,. The eigenvalues are al-
ways upper bounds to the energy of the correspond-
ing excited (or ground) state." The eigenvalue
equation is solved by Jacobi's method" after the
overlay matrix has been triangulated and the Ham-
iltonian matrix transformed by the method of
Michels, Van Dine, and Elliott. "

In Eg. (1), the C„are
I'

C„=O(L')0 ] x xq)~ @~,(r,)[, (2)

where O(L,') is an idempotent orbital-angular-mo-
mentum projection operator" and 0 is the pro-
jection operator that guarantees the antisymmetry
of the wave function,

where the summation runs over a11 the 3~ yermu-
tations I', with p being the parity of the corre-
sponding permutation P. For this work, the spin
function was taken as

which has S =S, =-,'. In Eg. (2), Q~,(r,) refers to the
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sth basis orbital in the 4th configuration. The ob-
bital basiS consists of Slater-type orbitals (STO's)
of the genera. l form

y(r) = ((2 g)"+i is/[(2/) I ]i isjy"-ie-«y' (4)

where the set (I', ) consists of normalized spheri-
cal harmonics in the Dirac phase convention. " In
Eq. (2), the restriction of only one r,&

coordinate
per term, first proposed by James and Coolidge, "
has been retained. The basis set consists of s and

p STO's and powers of interelectronic coordinates:
r",&(v=0, 1,2). Previous calculations" have shown
that this is an excellent basis set for lithium.

B. Oscil1ator strengths

The basic theory of electric-dipole radiation in
atomic systems is given by Condon and Shortley, "
and we follow their terminology closely. Assuming
Russell-Saunders (LS) coupling and the nonrelativ-
istic many-electron Hamiitonian (Hartree atomic
units)"

the energy states of an atom are characterized by
the set of quantum numbers yLSMiM~. Here y de-
notes the electronic configuration, L the total
angular momentum, S the total spin, and Mi and

M~ are the projections of L and S, respectively,
on the axis of quantization. " For an electric-di-
pole transition connecting the terms (multiplets)
yLS and y I S, Condon and Shortley introduced
the quantity S(yLS; y L S ), called the absolute
multiplet strength. It is defined in terms of the
electric-dipole-moment operator

by"

s(yL,s; y'L's')

I (yLsM, M, I

P" Iy'L's'M, M s ) I' ~

Mi, M~ M~s, M~s

(6)

The f value or multiplet oscillator strength is re-
lated to S by

f( IS- L S )
2E—(y'L'S')- E(YLS)s( Ls L S )
3 (2L+1)(2S+1)

(I)

The familia, r electric-dipole selection rules 4S = 0,
AM~=0, hL=+1, and 4M~=0, +1, hold for the
Hamiltonian we use. Moreover, given yLS and
y', L'(=L —1,L, I, +1),S'(=S), as'a consequence of
the signer-Eckart theorem, " every nonvanishing
matrix element of the operator 0 canbe expressed in
terms of a single parameter P(yI S;y L S ) multiplied
by expressions involving only I, M~, and M~, . The
parameter is independent of t;he quantum numbers M~,
Mi, , M~, and M~, , the summation 1ndlces occur-
ring in Eq. (6). Consequently, the expressions for
the multiplet oscillator strength may be written as
products of a parameter P(yLS;y L S ) and a single
algebraic function of L and S resulting from the
summation. Finally, notice that only one nonvan-
ishing matrix element need be evaluated to deter-
mine a P(yLS;y'L'S'), so that instead of computing
all the matrix elements occurring in the summa-
tions occurring in Eq. (6), a single matrix element
suffices to find the multiplet oscillator strength for
given yLS, y'L'S'.

For the 1s'2s'S-Is'2p'P transition, the 'S term
consists of two states with L=M~=O, S= —,', M~

The 'P term consists of six states corre-
sponding to S=-„M =-„-—„L=1, and M,1

=-1,0, 1. We choose to express (yLS-y L S ) in
terms of the matrix element corresponding to the
'S state with M~ =

& and the 'P state with S =M~.
= —,', L =1, and Mi, =0. Then Eq. (6) becomes
(unnormalized wave functions), from Goldberg, "

f«| ~ «.gl'( S&Ms -)~sky'( P&MLi 0&Msi 2)
[(0„('S,Ms = s) lg„('S, Ms = s))((, ('&, M ~ =O, M, . = s) lg„, ('P, M, =O, M, , =-,'))] (6)

and we need only construct g„('S,Ms =-,') and
(„.('P, Mi. =O, Ms. = s) and evaluate Eq, . (8) to com-
pute S.

It is generally known" that with („LSM~Ms as
exact eigenfunctions of H [Eq. (5)], the commuta-
tion relations of H with 0 (dipole-length operator)
lead to two additional relations for (yL,S;y L S ),'
which arise from the use of the dipole-velocity and
dipole-acceleration operators given by

N

respectively. These three formulas are equivalent
when one uses exact eigenfunctions of H [Eq. (5)]
or of an independent-electron central-field-model
Hamiltonian. However, they disagree whenever
the eigenfunctions of a central-fieM model a,re im-
proved by including some correlation, even by
only the Hartree-Fock (HF) procedure. s' lt has
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been generally argued' that, since the acceleration
operator contains terms behaving as I/r', the di-
pole-acceleration form is most sensitive to the ac-
curacy of the wave function in the immediate
neighborhood of the nucleus, so that oscillator
strengths computed with variationally stable ap-
proximate wave functions (emphasizing more dis-
tant regions) are not reliably given in terms of
this operator. Since the dipole-length and dipole-
velocity forms should agree as the wave function
approaches the exact eigenfunction, some authors
have taken the closeness of agreement of 8 com-
puted with dipole-length and dipole-velocity opera-
tors as a measure of the accuracy of their compu-
tation of 8, but there is now abundant evidence that
this procedure is not very reliable. " In the pres-
ent work, we compute upper and lower bounds to
the operator and use these theoretical bounds as a
measure of the accuracy of the f value; we com-
pute values in terms of the dipole-length operator
as given by Eq. (8}."

To evaluate Eil. (8), we define.

xo(i) = Z& =r& cos8& =ar& Y, 0(i),

x„(i)=-2 '~'(x, +iy, ) =ar, Y, ,(i),

x,(i) = 2 '~'(x, —iy, ) =ar, l', ,(i),
where a=(-,'v)'~' and the Y, are the same as in

Eq. (4). I et

x, = g x,(i), x, =gx, (i), x, = Px, (i) .

Then"

(12)

[n, l, m],'=r",-'e-«Y, .„(»),

we obtain, for 8,

(14)

x.l'+ Ix I'+ Ix (13)

Since x&(i) = +[2,1, j], in terms of unnormalized
STO's defined by

S(y'S;y''P) = (-'m)3g ' dx, . . .dx„g„*('S,M~ = 2) Q [2, 1, j]o(„('J',ilia =0,~~. = 2)

'2
(15}

=4 (Iw. I'+ Iw. l'+ Iw: I'}=4 Iw. l',

owing to symmetry. ( j must equal 0 or the inte-
gral vanishes. ) In writing Eg. (15), we have as-
sumed that P„adng„, are normalized ((g„l P„) =1),
and IW, I

is definedby

. .dx„g('S, m, =-,')

x+[2,1,j],'q„.(2S,~,, =O, ~,, =-,') .
(17)

To evaluate Eq. (16), we use the fact that. the
wave functions employed to evaluate Eil. (16) are
given by Eg. (1) and are linear combinations of
antisymmetrized projected products of orbitals
and interelectronic coordinates. Thus

C. Upper and lower bounds to oscillator strengths

Weinhold" has described a procedure for calcu-
lating rigorous upper and lower bounds to dipole
strengths. If the exact transition moment is

w, »
= ( O',

I w, I 4» ), (20)

where 4', and 4b are the exact wave functions for
states a and b, respectively, and W, is some par-
ticular Cartesian component of the vector operator
P, then Weinhold's formula in terms of the esti-
mate

Then the integrals reiluired to evaluate Eil. (16)
are similar in type to those required to calculate
overlap matrix elements using these wave functions
and can be evaluated as described later.

lw, .
l
=pc c, lw, .l„, (18) w, =(@,

I w, lg, ), (21)

(19)

In Eil. (19), C~ is a linear combination of orbitals
and interelectronic coordinates, so that Eq. (19)
a be val ated by e pa d' g the p od ct of

[2, 1,j],' and the appropriate STO of 4z in terms of
STQ's by the formulas given in a previous paper. "

where (, and P» are the approximate wave functions
for states a and 5, respectively, is

F'b $ Sb W b+& Sb

~a[(@,»IW', I4, ),- (S, w, e a,)']'~'.
(22)

Here S,=fr, l%', ), S —= Qr»l@'»), i.e., the (positive)
overlap integrals of the approximate wave functions

g „g» with the true wave functions 4„4'„and
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e„,e„are simply

—(1 S2 )1/2 ~
—(I S2gl

/2

formulas for its treatment; we take

&e. ! W', !e.}=&y. ! W',
! y. &, (25)

and &,b is defined by

A, ~
=—(&g~!W, ! P&) —W,~)

/ (23)

In Weinhold's scheme, W„and &g, !
W', !(,) are

computed directly. Without loss of rigor, S„,Sb,
may be taken to be 1, and for 4„4b, the lowest
states of their respective symmetries, we can use
the "Eckart criterion" to determine S, , S, ; e.g. ,

S, =(E,* &0 H lC. ))j(E.*-E.), (24)

where E, and E,* are the ground- and excited-state
energy (with the same symmetry as the ground
state} of the system with Hamiltonian H. The re-
maining unknown of relation (22) is the upper
bound &4, ! W',

!
4', ).. Weinhold presents several

where g, is our highly accurate "S"wave function.
With ! W/! 's defined by Eq. (17), we have that

S(& S &"P)=4.
! W, !

=3W (26)

so that

! W, !
=(3/4w)'/'W (27)

Relation (22) holds for ! W, ! in place of W,„ if we
compute &4', ! W', !4, ) by relation (25) and multiply
by 3/4m to account for the difference between ! W, !

and W,„given by Eq. (27). Also, the only remain-
ing unknown in the ca,lculation of upper and lower
bounds to ! W, ! is &g, !

W', !g, ).
With the aid of"

[2, 1, j]0*[2,1, j]0= g r, [(2li+. I)/(4vr)]'/ C'1(1, j;1,j )Y,
P =0

(li = 2 —2P.)
~ ~= g [(2l, + I)/(4m}]' /'C'& (I, j;1,j)[3,l„0]0 I!

=0

(28)

we obtain

&(0!(3/4w)X+, ! rJ), ) = Q Q [(2l, +I)/4w]' 'C'&(1, 0;1,0)&(, ! [3,1„0]o!y )+Q &P ! [2, 1,0]'*[2,1,0]"!(~).
i=1 P =0

(29}

Here C (l, m; l, m) is the Condon-Shortley coefficient" defined by

C (l, m; l, m) = [4p/(2L+ 1)]'/' t I'"'- m(g, y) I'~' *(g, y) y~(g, q) sin g d g d ~ .

The matrix elements in Eq. (29) are handled simi-
larly to the way W.

!
was treated earlier.

III. RESULTS

A. Oscillator streogths

The wave functions employed here for the 'S and
'P states are the 150-term 'S wave functions re-
ported previously" and 120-term 'P functions,
similar to the ones reported previously. " The re-
sults of the calculations we have done are pre-
sented in Table I, where we tabulate ! W, !, the
absolute multiplet strength S, the f values, term
energies, the relative term energy bE=E('P)
—E('S), and various quantities related to the cal-
culation of upper and lower bounds to f. In evalu-
ating S, and S, , rather than Eq. (24), Weinberg-
er's formula' was used,

(30)

where E„E] E y are the ran+2 lowest eigen-
values of H and the J,. are the corresponding Ray-
leigh-Ritz estimates &Q, !H!P,.). Here the Q, are
approximations to the exact eigenfunctions and it
is a,ssumed that

E (J (E &J ( &E &J

Overlaps calculated with inequality (30) gave
significant improvement over those obtained using
the well-known Eckart criterion [Eq. (24)]; in ad-
dition, formula (30) is applicable to excited states
for which Eckart's formula is no long r valid. To
use either Eq. (24) or (30), one must know either
the nonrelativistic energies E or their lower
bounds. For the Li ground state, the value given
by Larsson was used. " To obtain the nonrelativis-
tic energy estimate for the other states, we add
the experimentally determined relative term en-
ergies to the ground-state estimate. The values
we used for the estimated exact nonrelativistic en-
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TABLE I. Numerical values (in a.u. ) for various quantities related to the calculation of
f values and upper and lou er bounds to f values (see text).

States E(P) b,E(expt) '

22S~2 P 1.14633

3 'S —2 'P 0.84145

4 S 2 P 0.22386

5 2S 2 2P 0.12015

33.026

-17.795

—1.2595

-0.362 83

0.747 59

-0.332 53

-0.038 47

-0.012 89

-7.31840

—7.303 40

-7.410 05 0.091 63

—7.410 05 0.106 61

-7.478 023 -7.410 05 0.067 909

-7.354 10 -7.410 05 0.056 06

2'S-3'P 0.062 71

3 S 32P 2.92415

4 S 3 2P 2.07441

5'S-3'P 0.52532

0.098 842

+ 214.90

-108.15

-6.9357

0.004 64

1.213 48

0.67162

-0.077 70

-7.354 10

-7.31840

-7.303 40

—7.337 00 0.016 94

—7.337 00 0.018 63

-7.337 00 0.033 61

-7.478 023 -7.337 00 0,140909

2 S 4 P 0.055085

3 S 4 P 0.009 548

4 S~4 P 5.42703

5 S 4 P 3.80377

Q.Q7626

0.002 29

+ 740.228

-363.637

0.004 224

3.223 x 10 ' -7.35410

1.6359

-1.012 12

-7.31840

-7.303 40

—7.31174 0.042 20

—V. 31174 0.006 63

-7.31174 -0.008 35

-7.478 023 —7.31174 0.166 17

2 S 5 P 004138

3 S 5 P 005248

4 S 5 P 008169

0,043 03

0.069 22

—0.178 05

5 S 5 P 8.66476 —1886.91

0.002 55

0.001 24

0 ~ 001 08

2.044 16

-7.354 10

-7.31840

-7.303 40

—7.300 14 0.053 80

-7.300 14 0.018 23

-7.300 14 0.003 25

-7.478 023 —7.3QQ 14 0.177 76

States (O'„I (~/4x)~~pl@ r,) Sa-

2 S~2P
3 2S~2 2P

4 S 22P

5S 2P

4.0446

4.0446

4.0446

4.0446

0.999 873 0.999 531 0.011237 0.021 659

0.999 220 0.999 531 0.027 935 0.021659

0.997 081 0.999 531 0.054031 0.021 659

0 ~ 990 153 0.999 531 0.099 230 0.021 659

1.652 44

1.826 63

1.998 62

2.007 53

2S~3 2P

3S 3P
4S 3P
5S 3P

24.2298

24.2298

24.2298

24.2298

0.999 873 0.998 079 0.011237 0.043 825

0.999 220 0.998 079 0,027 935 0.043 825

4.921 98

3.959 69

0.997 081 0.998 079 0,054 Q31 0.043 825 4.463 93

0.990 153 0.998 079 0,099 230 0.043 825 4.894 27

2S 4P
32S 4 P
4 S~4P
5'S-O'P

82.0183

82.0183

82.0183

82.0183

0.999 873 0.995 397 0.011237 0.067 841

0.999 220 0,995 397 Q.027 935 0.067 841

0.997 081 0.995 397 0.054 031 0.067 841

0.990 153 0.995 397 0.099 230 0.067 841

9.056 23

9.056 39

7.250 21

8.218 86

2$5P
3S 5P
4S 5P
5S 5P

207.645

207.645

207.645

207.645

0.999 873 0.987 054 0.011237 0.11377

0.999 220 0.987 054 0.027 935 0.11377

0.997 081 0.987 054 0.054 031 0.11377

0.990 153 0.987 054 0.099230 0.11377

14.409 832

14.409 796

14.409 646

11.513768
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TABLE 1. (conti wed)

States % Error

2S 2P
3S 2P
42$

5 2$~2 2p

2$~3p
3$ 3P
4 $~3P

2$~ 3 2P

2 S 42P

2$ ~4 2P

$~4
2$~ 4 2p

2$ 5P
3$5P
4S 5P
5 2S 52P

0.7227

-0.2927

-0.0102

-0.0057

0.002 43

1.11728

-0.519 06

-0.040 95

0.003 006

1.386 56

-0.603 48

1.21143

0.7720

-0.3741

-0.0845

-0.0911

0.034 44

1.307 02

-0.836 87

-0.573 18

0.034248

0.024 367

1.880 59

-1.492 67

0.061 56

0.093 32

0.11367

2.988 98

0.7476

-0.3325

-0.0385

-0.0129

0.004 64

1.213 48

-0.671 62

-0.077 70

0.004 224

3.223x10 '

1.6359

-1.012 12

0.002 55

0.001 24

0.001 08

2.044 16

-12%

-100%

&100%

&100%

-7.5%

-24%

&100%

&100%

&100%

15%

Pv 5p%

&100%

&100%

&100%

~5p%

' This is the && value used in computing f values.
dE=E( p) E( $).

ergies are tabulated in Table II along with our com-
puted results.

In Table III we present our direct calculation of
the transition moment W„, together with the calcu-
lated f value and the calculated error bounds f+.
For comparison we also list the results of previ-
ous workers. Note that for the n'S-2'P results,
our f values agree most closely with the length re-
sults of Ahlenius and Larsson" (AL) for the ls'2s
-1s'2p transition, and with the velocity results of
AL for the other three transitions. If we assume
our results to be essentially exact, these results
then agree nicely with Crossley's' general recom-
mendations concerning the choice between length
and velocity formulas for less than exact wave
functions. Crossley' suggested that for small
transition energies, and, in particular, when there
is no change in the principal quantum number of
the active electron, the length formula is to be
preferred, whereas for higher energies, the ve-
locity results are to be preferred.

In examining the 2'S-3'P transition, we note
that our results tend to confirm previous conjec-
tures" that the agreement between length and ve-
locity Hartree-Fock calculations is both fortuitous
and wrong, our value of 0.0046 a.u. agreeing more
closely with the experimental value of~' 0.0055 than

TABLE II. Exact (nonrelativistic) and computed ener-
gies for various Lit $ and P states (in a.u. }.

2 S

3 S

4 S

22P

3 2P

5 P
62P

Computed

-7.478 023

—7.354 01

-7.31840

—7.303 40

-7.410 05

-7.337 00

-7.31174

-7.300 14

-7.293 25

Exact

-7.478 069

—7.354 10

-7.318 53

—7.303 55

-7.410 16

-7.337 16

-7.31190

-7.300 30

-7.294 03

with the HF results.
Most of our computed f values agree to within

(2-4)% of the National Standards Reference Data
Service recommended values, ' the notable ex-
ceptions being 2'S-3'P (=18%), 2'S-4'P (=12%),
3'S-4'P (=70%), 2'S-5'P (=24%), and 4'S-O'P.
These are all cases of small transition probabili-
ties, which make them difficult to observe experi-



248 SIMS, HA GS TROM] AND RUMBLE, JR.

TABI K III. Calculated transition moments S~b and rigorous error bounds for oscillator strengths in various
Li I S P transitions. E values determined by previous workers are included for comparison

Transition
Weiss'

(& ) (v)
A Lb

( I ) (v) NSRDS

2 S 2 P 1.14633 0.7227

3 S 2 P 0.84145 -0.2927

4 S 2 P 0.22386 -0.0102

5 S 2 P 0 12015 -0 0057

2 S 3 P 006271

0.7720

-0.3741

-0.0845

—0.0911

0.7476

—0.3325

-0.0385

-0.0129

0.004 64

0.753 0.748, 0.758 0.753

(H. F.)e —0.045 —0.039 —0.038

-0.013 -0.013 -0.0126

0.0027 0.0026
(H. F.)

0.0055

—o 346 -0.342 -0.323 -0.336 -0.345

4 S 3 P 2.07441 -0.51906 -0.836 87 -0.671 62

5 'S-3 'P 0.525 32

2 S~4 P 0 05509

3 S~4 P 0.00955

4 'S-4 'P 5.427 03

5 S 4 P 3.80377

2 S 5 P 004138

3 S 5 P 005248

4 S~5 P 0.08169

5 S~5 P 8.66476

-0.077 70

0.004 22

3.223 x10 &

1.6359

-1.012 12

0.002 55

0.001 24

0.001 08

2.044 16

3 S 3 P 2.924 15 1.11728 1.307 02 1.21348 1.226 1.256
(H. F.) 1.23

-0.669

-0.0762

0.0048

1.93 x 10 4

1.63

-1.005

0.0032

5.81 x 10 4

2.05

Reference 16.
Reference 36.' l = dipole length results. v = dipole velocity.

d aeference 4.
Hartree Fock results.

mentally and, on the theoretical side, there pre-
sumably is a large cancellation within the inte-
grand of the transition integral which apparently
brings one well into the region of inaccuracy of
Hartree-Fock and other less accurate wave func-
tion calculations than ours.

B. Error analysis

W,b-~ Wab+~a+ ab y (33)

which provides a useful breakdown of the total er-
ror.

Consider, for example, the 150-term Li 'S
120-term Li '~ results for 2'S-2'&. Here

In most of the transitions that we have calculated
f values and bounds for, the term in brackets in
Eq. (22) is small enough so that, approximately,

(32)

S„and Sb, may be rigorously taken to be unity,
and for all our calculations S, and S, are close to
unity so that

Web - Web+ &a+~.b

and &„=0.011237, which was computed from S,
=0.999813 obtained by using Weinberger's Eq. (30).
For comparison, the simple Eckart formula, Eq.
(24), gave S, =- 0.99981 and &„=0.019238, so us-
ing Weinberger's formula, which is a, novel feature
of the present calculations since we have three very
accurate 'S excited states in the present calcula-
tions, improves the e„calculation by 24/q. Then

A,b= 1.65244, so &„h,b= 0.0188 and W;b - 1.146
+0.019, so that the transition moment bound is
good in an absolute sense. However, the f-value
upper and lower bounds are 3.5% even for these
high-quality wave functions. For the other 2'S
-m 'P transitions, 4,b does not change much, but
& gets much worse due to the higher 'S roots not
being obtained as accurately as the lowest 'S state,
and there are fewer interleaving higher roots for
Weinberger formula calculations. Also, the tran-
sitions become weaker so that the relative error
becomes greater, even if the absolute size of the
energy error is not much changed.
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For the n'S-O'P sequence, there is a strong
O'S-3'P transition but the O'P state is much
more diffuse than the 2'P state, leading to a larger
a„and bounds of 7.5% in this case. This trend
continues for the strong transitions in the n'S
-4 P and n S 5 P sequences, with the bounds for
even the strong transitions getting progressively
worse.

among these four S and four 'P states. In view of
the high quality of these wave functions (on an en-
ergy level criterion), the f values obtained are of
presumably high quality. Upper and lower bounds"
are also computed for these f values, which in the
best case (ls'2s'S-1s'2P'P) are 3.5%.
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