Upper and lower bounds to atomic and molecular properties. III. Lithium oscillator strengths for various ${ }^{2} S-{ }^{2} P$ transitions*

James S. Sims, Stanley A. Hagstrom, and John R. Rumble, Jr. ${ }^{\dagger}$
Department of Chemistry, Indiana University, Bloomington, Indiana 47401
(Received 18 August 1975)

Abstract

Wave functions, which include interelectron coordinates explicitiy, are calculated for the four lowest ${ }^{2} S$ and four lowest ${ }^{2} P$ states of Li . These wave functions are used to calculate oscillator strengths, including upper and lower bounds, for the 16 lines arising from allowed transitions among these four ${ }^{2} S$ and four ${ }^{2} P$ states. The results of this study are oscillator strengths for the $1 s^{2} n s^{2} S \rightarrow 1 s^{2} m p{ }^{2} P \mathrm{Li}_{1}$ transitions for which n, $m=2,3,4,5$ with rigorous upper and lower bounds which in the best case $\left(1 s^{2} 2 s^{2} S \rightarrow 1 s^{2} 2 p^{2} P\right)$ are 3.5%.

I. INTRODUCTION

Spectroscopic data for atoms and ions fall into a category of fundamental scientific material for which justification of measurement or calculation is scarcely necessary. The measurement of the wavelengths of spectral lines and the subsequent deduction of energy levels is usually not too difficult. ${ }^{1,2}$ The study of the strengths (intensities) of spectral lines is, however, a much more formidable problem. ${ }^{3}$ On the experimental side, absolute oscillator strengths, or f values, are typically determined with uncertainties of ($10-20$)\% or more. ${ }^{4}$ On the theoretical side, Pekeris and co-workers appear to have established some helium f values to 1% or better, ${ }^{5}$ and other transitions in the twoelectron isoelectronic sequence have been determined to perhaps 5%. 6,7 But results reliable to better than $(10-20) \%$ have not been generally accessible in larger systems. ${ }^{8,9}$ In addition, the question of the reliability of theoretical predictions has become increasingly acute, ${ }^{10}$ and there is a need for procedures which lead to upper and lower bounds for the properties of interest, so that rigorous error limits are attached to the error estimates.
In view of the above, we have calculated f values for various ${ }^{2} S \rightarrow{ }^{2} P$ transitions (by the dipole-length formulation) of LiI. The calculations utilize some of the best wave functions (on an energy criterion) currently available. ${ }^{11-13}$ In addition, the procedure of Weinhold ${ }^{14,15}$ has been used to calculate upper and lower bounds to the computed f values. The results of this study are oscillator strengths for the $1 s^{2} n s^{2} S \rightarrow 1 s^{2} m p^{2} P$ LiI transitions for which n, m $=2,3,4,5$ with rigorous upper and lower bounds which in the best case ($1 s^{2} 2 s^{2} S \rightarrow 1 s^{2} 2 p^{2} P$) are 3.5%.

II. THEORY

A. Wave Functions

Weiss ${ }^{16}$ has shown that for the resonance transition of lithium, Hartree-Fock wave functions are
unreliable and wave functions, including correlation effects, of considerable accuracy must be employed, not only for the ground state, but also for excited states. The procedure adapted here for incorporating correlations into the wave function is the method of Sims and Hagstrom, ${ }^{13}$ in which a variational trial function is written as a linear combination of known many-electron functions,

$$
\begin{equation*}
\Psi=\sum_{k} C_{k} \Phi_{k} \tag{1}
\end{equation*}
$$

and the configurations Φ_{k} are themselves antisymmetrized projected products of orbitals and interelectronic coordinates. By minimizing the energy with respect to the coefficients C_{k}, one is led to the usual matrix eigenvalue equation for the energy and the coefficients C_{k}. The eigenvalues are always upper bounds to the energy of the corresponding excited (or ground) state. ${ }^{17}$ The eigenvalue equation is solved by Jacobi's method ${ }^{18}$ after the overlap matrix has been triangulated and the Hamiltonian matrix transformed by the method of Michels, Van Dine, and Elliott. ${ }^{19}$

In Eq. (1), the Φ_{k} are

$$
\begin{equation*}
\Phi_{k}=O\left(L^{2}\right) O_{\mathrm{as}}\left(\chi_{k} r_{i_{j}^{k}}^{v} \prod_{s=1}^{3} \phi_{k s}\left(\overrightarrow{\mathrm{r}}_{s}\right)\right), \tag{2}
\end{equation*}
$$

where $O\left(L^{2}\right)$ is an idempotent orbital-angular-momentum projection operator ${ }^{20}$ and $O_{\text {as }}$ is the projection operator that guarantees the antisymmetry of the wave function,

$$
\begin{equation*}
O_{\mathrm{as}}=(3!)^{-1} \sum_{P}(-1)^{p} P, \tag{3}
\end{equation*}
$$

where the summation runs over all the 3 ! permutations P, with p being the parity of the corresponding permutation P. For this work, the spin function was taken as

$$
\chi_{k}=\chi=(1 / \sqrt{2})\left(\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right) \alpha_{3}
$$

which has $S=S_{k}=\frac{1}{2}$. In Eq. (2), $\phi_{k s}\left(\vec{r}_{s}\right)$ refers to the
s th basis orbital in the k th configuration. The obbital basis consists of Slater-type orbitals (STO's) of the general form

$$
\begin{equation*}
\phi(\overrightarrow{\mathrm{r}})=\left\{(2 \zeta)^{n+1 / 2} /[(2 n)!]^{1 / 2}\right\} r^{n-1} e^{-\zeta r} Y_{l, m}, \tag{4}
\end{equation*}
$$

where the set $\left\{Y_{l, m}\right\}$ consists of normalized spherical harmonics in the Dirac phase convention. ${ }^{21}$ In Eq. (2), the restriction of only one $r_{i j}$ coordinate per term, first proposed by James and Coolidge, ${ }^{22}$ has been retained. The basis set consists of s and p STO's and powers of interelectronic coordinates: $r_{i j}^{v}(v=0,1,2)$. Previous calculations ${ }^{11}$ have shown that this is an excellent basis set for lithium.

B. Oscillator strengths

The basic theory of electric-dipole radiation in atomic systems is given by Condon and Shortley, ${ }^{21}$ and we follow their terminology closely. Assuming Russell-Saunders (LS) coupling and the nonrelativistic many-electron Hamiltonian (Hartree atomic units) ${ }^{23}$

$$
\begin{equation*}
\mathcal{H}=\sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{i}^{2}-\frac{Z}{r_{i}}\right)+\sum_{i<j} \frac{1}{r_{i j}} \tag{5}
\end{equation*}
$$

the energy states of an atom are characterized by the set of quantum numbers $\gamma L S M_{L} M_{S}$. Here γ denotes the electronic configuration, L the total angular momentum, S the total spin, and M_{L} and M_{S} are the projections of L and S, respectively, on the axis of quantization. ${ }^{24}$ For an electric-dipole transition connecting the terms (multiplets) $\gamma L S$ and $\gamma^{\prime} L^{\prime} S^{\prime}$, Condon and Shortley introduced the quantity $S\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right)$, called the absolute multiplet strength. It is defined in terms of the electric-dipole-moment operator

$$
\overrightarrow{\mathrm{P}}=\sum_{i=1}^{N} \overrightarrow{\mathrm{r}}_{i}
$$

$b y^{25}$

$$
\begin{align*}
& S\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right) \\
& \left.\quad=\sum_{M_{L}, M_{S}} \sum_{M_{L^{\prime}}, M_{S^{\prime}}}\left|\left\langle\gamma L S M_{L^{\prime}} M_{S}\right| \overrightarrow{\mathrm{P}}\right| \gamma^{\prime} L^{\prime} S^{\prime} M_{L^{\prime}} M_{S^{\prime}}\right\rangle\left.\right|^{2} \tag{6}
\end{align*}
$$

The f value or multiplet oscillator strength is related to S by

$$
\begin{equation*}
f\left(\gamma L S \rightarrow \gamma^{\prime} L^{\prime} S^{\prime}\right)=\frac{2}{3} \frac{E\left(\gamma^{\prime} L^{\prime} S^{\prime}\right)-E(\gamma L S)}{(2 L+1)(2 S+1)} S\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right) . \tag{7}
\end{equation*}
$$

The familiar electric-dipole selection rules $\Delta S=0$, $\Delta M_{S}=0, \Delta L= \pm 1$, and $\Delta M_{L}=0, \pm 1$, hold for the Hamiltonian we use. Moreover, given $\gamma L S$ and $\gamma^{\prime}, L^{\prime}(=L-1, L, L+1), S^{\prime}(=S)$, as a consequence of the Wigner-Eckart theorem, ${ }^{26}$ every nonvanishing matrix element of the operator $\overrightarrow{\mathrm{P}}$ can be expressed in terms of a single parameter $\beta\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right)$ multiplied by expressions involving only L, M_{L}, and M_{L}. The parameter is independent of the quantum numbers M_{L}, $M_{L^{\prime}}, M_{S}$, and $M_{S^{\prime}}$, the summation indices occurring in Eq. (6). Consequently, the expressions for the multiplet oscillator strength may be written as products of a parameter $\beta\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right)$ and a single algebraic function of L and S resulting from the summation. Finally, notice that only one nonvanishing matrix element need be evaluated to determine a $\beta\left(\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}\right)$, so that instead of computing all the matrix elements occurring in the summations occurring in Eq. (6), a single matrix element suffices to find the multiplet oscillator strength for given $\gamma L S, \gamma^{\prime} L^{\prime} S^{\prime}$.

For the $1 s^{2} 2 s^{2} S-1 s^{2} 2 p^{2} P$ transition, the ${ }^{2} S$ term consists of two states with $L=M_{L}=0, S=\frac{1}{2}, M_{S}$ $=\frac{1}{2},-\frac{1}{2}$. The ${ }^{2} P$ term consists of six states corre sponding to $S=\frac{1}{2}, M_{S}=\frac{1}{2},-\frac{1}{2}, L^{\prime}=1$, and $M_{L^{\prime}}$, $=-1,0,1$. We choose to express ($\gamma L S \rightarrow \gamma^{\prime} L^{\prime} S^{\prime}$) in terms of the matrix element corresponding to the ${ }^{2} S$ state with $M_{S}=\frac{1}{2}$ and the ${ }^{2} P$ state with $S^{\prime}=M_{S^{\prime}}$ $=\frac{1}{2}, L^{\prime}=1$, and $M_{L^{\prime}}=0$. Then Eq. (6) becomes (unnormalized wave functions), from Goldberg, ${ }^{27}$

$$
\begin{equation*}
S\left(\gamma^{2} S ; \gamma^{\prime 2} P\right)=3\left|\frac{\left.\int d x_{1} \ldots d x_{n} \psi_{r}^{*}{ }^{2} S, M_{S}=\frac{1}{2}\right) \overrightarrow{\mathrm{P}} \psi_{\gamma^{\prime}}\left({ }^{2} P, M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right)}{\left.\left.\left.\left.\left[\left.\left\langle\psi_{\gamma^{2}}{ }^{2} S, M_{S}=\frac{1}{2}\right) \right\rvert\, \psi_{\gamma^{\prime}}{ }^{2} S, M_{S}=\frac{1}{2}\right)\right\rangle\left\langle\psi_{\gamma^{\prime}}\left({ }^{2} P, M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right)\right| \psi_{\gamma^{\prime}}{ }^{(2} P, M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right)\right\rangle\right\rangle}\right|^{2}, \tag{8}
\end{equation*}
$$

and we need only construct $\psi_{r}\left({ }^{2} S, M_{S}=\frac{1}{2}\right)$ and $\psi_{r^{\prime}}\left({ }^{2} P, M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right)$ and evaluate Eq. (8) to compute S.
It is generally known ${ }^{28}$ that with $\psi_{\gamma} L S M_{L} M_{S}$ as exact eigenfunctions of H [Eq. (5)], the commutation relations of H with $\overrightarrow{\mathrm{P}}$ (dipole-length operator) lead to two additional relations for ($\gamma L S ; \gamma^{\prime} L^{\prime} S^{\prime}$), ${ }^{8}$ which arise from the use of the dipole-velocity and dipole-acceleration operators given by

$$
\begin{equation*}
\vec{\nabla}=\sum_{i=1}^{N} \vec{\nabla}_{i} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}=\sum_{i=1}^{N} \frac{Z e^{2} \overrightarrow{\mathrm{r}}_{i}}{\left|\overrightarrow{\mathrm{r}}_{i}\right|^{3}} \tag{10}
\end{equation*}
$$

respectively. These three formulas are equivalent when one uses exact eigenfunctions of H [Eq. (5)] or of an independent-electron central-field-model Hamiltonian. However, they disagree whenever the eigenfunctions of a central-field model are improved by including some correlation, even by only the Hartree-Fock (HF) procedure. ${ }^{29}$ It has
been generally argued ${ }^{8}$ that, since the acceleration operator contains terms behaving as $1 / r^{2}$, the di-pole-acceleration form is most sensitive to the accuracy of the wave function in the immediate neighborhood of the nucleus, so that oscillator strengths computed with variationally stable approximate wave functions (emphasizing more distant regions) are not reliably given in terms of this operator. Since the dipole-length and dipolevelocity forms should agree as the wave function approaches the exact eigenfunction, some authors have taken the closeness of agreement of S computed with dipole-length and dipole-velocity operators as a measure of the accuracy of their computation of S, but there is now abundant evidence that this procedure is not very reliable. ${ }^{30}$ In the present work, we compute upper and lower bounds to the operator and use these theoretical bounds as a measure of the accuracy of the f value; we compute values in terms of the dipole-length operator as given by Eq. (8). ${ }^{31}$

To evaluate Eq. (8), we define

$$
\begin{align*}
& x_{0}(i)=Z_{i}=r_{i} \cos \theta_{i}=a r_{i} Y_{1,0}(i), \\
& x_{+1}(i)=-2^{-1 / 2}\left(x_{i}+i y_{i}\right)=a r_{i} Y_{1,1}(i), \tag{11}\\
& x_{-1}(i)=2^{-1 / 2}\left(x_{i}-i y_{i}\right)=a r_{i} Y_{1,-1}(i),
\end{align*}
$$

where $a=\left(\frac{4}{3} \pi\right)^{1 / 2}$ and the $Y_{l, m}$ are the same as in Eq. (4). Let

$$
\begin{equation*}
X_{0}=\sum_{i=1}^{N} x_{0}(i), \quad X_{-1}=\sum_{i} x_{-1}(i), \quad X_{1}=\sum_{i} x_{1}(i) \tag{12}
\end{equation*}
$$

Then ${ }^{32}$

$$
\begin{equation*}
|\overrightarrow{\mathrm{P}}|^{2}=\left|X_{0}\right|^{2}+\left|X_{-1}\right|^{2}+\left|X_{1}\right|^{2} \tag{13}
\end{equation*}
$$

Since $x_{j}(i)= \pm[2,1, j]_{0}^{i}$ in terms of unnormalized STO's defined by

$$
\begin{equation*}
[n, l, m]_{\xi}^{i}=r_{i}^{n-1} e^{-\xi r_{i} Y_{l, m}(i)} \tag{14}
\end{equation*}
$$

we obtain, for S,

$$
\begin{align*}
S\left(\gamma^{2} S ; \gamma^{\prime 2} P\right) & \left.=\left(\frac{4}{3} \pi\right) 3 \sum_{j=-1}^{1} \left\lvert\, \int d x_{1} \ldots d x_{n} \psi_{r}^{*}\left({ }^{2} S, M_{S}=\frac{1}{2}\right) \sum_{i=1}^{N}[2,1, j]_{0}^{i} \psi_{\gamma^{\prime}}{ }^{2} P\right., M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right)\left.\right|^{2} \tag{15}\\
& =4 \pi\left(\left|\tilde{W}_{-1}\right|^{2}+\left|\tilde{W}_{0}\right|^{2}+\left|\tilde{W}_{+1}\right|^{2}\right)=4 \pi\left|\tilde{W}_{0}\right|^{2} \tag{16}
\end{align*}
$$

owing to symmetry. (j must equal 0 or the integral vanishes.) In writing Eq. (15), we have assumed that ψ_{γ} and $\psi_{\gamma^{\prime}}$ are normalized $\left(\left\langle\psi_{\gamma} \mid \psi_{\gamma}\right\rangle=1\right.$), and $\left|\tilde{W}_{j}\right|$ is defined by

$$
\begin{align*}
\left|\tilde{W}_{j}\right|=\mid \int & d x_{1} \ldots d x_{n} \psi_{\gamma}^{*}\left({ }^{2} S, M_{S}=\frac{1}{2}\right) \\
& \left.\times \sum_{i=1}^{N}[2,1, j]_{0}^{i} \psi_{\gamma^{\prime}}{ }^{2} P, M_{L^{\prime}}=0, M_{S^{\prime}}=\frac{1}{2}\right) \mid \tag{17}
\end{align*}
$$

To evaluate Eq. (16), we use the fact that the wave functions employed to evaluate Eq. (16) are given by Eq. (1) and are linear combinations of antisymmetrized projected products of orbitals and interelectronic coordinates. Thus

$$
\begin{equation*}
\left|\tilde{W}_{j}\right|=\sum_{K, L} c_{K} C_{L}\left|\tilde{W}_{j}\right|_{K L} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\tilde{W}_{j}\right|_{K L}=\left\langle\Phi_{K}\right| \sum_{i=1}^{N}[2,1, j]_{0}^{i}\left|\Phi_{L}\right\rangle . \tag{19}
\end{equation*}
$$

In Eq. (19), Φ_{L} is a linear combination of orbitals and interelectronic coordinates, so that Eq. (19) can be evaluated by expanding the product of $[2,1, j]_{0}^{i}$ and the appropriate STO of Φ_{L} in terms of STO's by the formulas given in a previous paper. ${ }^{33}$

Then the integrals required to evaluate Eq. (16) are similar in type to those required to calculate overlap matrix elements using these wave functions and can be evaluated as described later.

C. Upper and lower bounds to oscillator strengths

Weinhold ${ }^{14}$ has described a procedure for calculating rigorous upper and lower bounds to dipole strengths. If the exact transition moment is

$$
\begin{equation*}
W_{a b}=\left\langle\Psi_{a}\right| W_{l}\left|\Psi_{b}\right\rangle \tag{20}
\end{equation*}
$$

where Ψ_{a} and Ψ_{b} are the exact wave functions for states a and b, respectively, and W_{l} is some particular Cartesian component of the vector operator $\overrightarrow{\mathrm{P}}$, then Weinhold's formula in terms of the estimate

$$
\begin{equation*}
\tilde{W}_{a b}=\left\langle\psi_{a}\right| W_{l}\left|\psi_{b}\right\rangle \tag{21}
\end{equation*}
$$

where ψ_{a} and ψ_{b} are the approximate wave functions for states a and b, respectively, is

$$
\begin{align*}
W_{a b} & \leqq S_{a \pm} S_{b \pm} \tilde{W}_{a b} \pm \epsilon_{a+} S_{b \pm} \Delta_{a b} \\
& \pm \epsilon_{b+}\left[\left\langle\Psi_{a}\right| W_{l}^{2}\left|\Psi_{a}\right\rangle_{+}-\left(S_{a-} \tilde{W}_{a b}-\epsilon_{a+} \Delta_{a b}\right)^{2}\right]^{1 / 2} \tag{22}
\end{align*}
$$

Here $S_{a} \equiv\left\langle\psi_{a} \mid \Psi_{a}\right\rangle, S_{b} \equiv\left\langle\psi_{b} \mid \Psi_{b}\right\rangle$, i.e., the (positive) overlap integrals of the approximate wave functions ψ_{a}, ψ_{b} with the true wave functions Ψ_{a}, Ψ_{b}, and
$\epsilon_{a+}, \epsilon_{b+}$ are simply

$$
\epsilon_{a+} \equiv\left(1-S_{a-}^{2}\right)^{1 / 2}, \quad \epsilon_{b+} \equiv\left(1-S_{b-}^{2}\right)^{1 / 2},
$$

and $\Delta_{a b}$ is defined by

$$
\begin{equation*}
\Delta_{a b} \equiv\left(\left\langle\psi_{b}\right| W_{l}^{2}\left|\psi_{b}\right\rangle-\tilde{W}_{a b}^{2}\right)^{1 / 2} . \tag{23}
\end{equation*}
$$

In Weinhold's scheme, $\tilde{W}_{a b}$ and $\left\langle\psi_{b}\right| W_{l}^{2}\left|\psi_{b}\right\rangle$ are computed directly. Without loss of rigor, S_{a+}, S_{b+} may be taken to be 1 , and for Ψ_{a}, Ψ_{b}, the lowest states of their respective symmetries, we can use the "Eckart criterion" to determine $S_{a-}, S_{b-} ;$ e.g.,

$$
\begin{equation*}
S_{a-}^{2}=\left(E_{a}^{*}-\left\langle\psi_{a}\right| H\left|\psi_{a}\right\rangle\right) /\left(E_{a}^{*}-E_{a}\right), \tag{24}
\end{equation*}
$$

where E_{a} and E_{a}^{*} are the ground- and excited-state energy (with the same symmetry as the ground state) of the system with Hamiltonian H. The remaining unknown of relation (22) is the upper bound $\left\langle\Psi_{a}\right| W_{l}^{2}\left|\Psi_{a}\right\rangle_{+}$. Weinhold presents several
formulas for its treatment; we take

$$
\begin{equation*}
\left\langle\Psi_{a}\right| W_{l}^{2}\left|\Psi_{a}\right\rangle \approx\left\langle\psi_{a}\right| W_{l}^{2}\left|\psi_{a}\right\rangle, \tag{25}
\end{equation*}
$$

where ψ_{a} is our highly accurate " S " wave function. With $\left|\tilde{W}_{j}\right|$'s defined by Eq. (17), we have that

$$
\begin{equation*}
S\left(\gamma^{2} S ; \gamma^{\prime 2} P\right)=4 \pi\left|\tilde{W}_{0}\right|^{2}=3 \tilde{W}_{a b}^{2}, \tag{26}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|\tilde{W}_{0}\right|=(3 / 4 \pi)^{1 / 2} \tilde{W}_{a b} . \tag{27}
\end{equation*}
$$

Relation (22) holds for $\left|\tilde{W}_{0}\right|$ in place of $\tilde{W}_{a b}$ if we compute $\left\langle\Psi_{a}\right| W_{l}^{2}\left|\Psi_{a}\right\rangle$ by relation (25) and multiply by $3 / 4 \pi$ to account for the difference between $\left|\tilde{W}_{0}\right|$ and $\tilde{W}_{a b}$ given by Eq. (27). Also, the only remaining unknown in the calculation of upper and lower bounds to $\left|\tilde{W}_{0}\right|$ is $\left\langle\psi_{b}\right| W_{l}^{2}\left|\psi_{b}\right\rangle$.
With the aid of ${ }^{33}$

$$
\left.\begin{array}{rl}
{[2,1, j]_{0}^{i *}[2,1, j]_{0}^{i}} & =\sum_{P_{a}=0}^{1} r_{i}^{2}\left[\left(2 l_{1}+1\right) /(4 \pi)\right]^{1 / 2} C^{l_{1}}(1, j ; 1, j) Y_{l_{1}, 0} \\
& =\sum_{P_{a}=0}^{1}\left[\left(2 l_{1}+1\right) /(4 \pi)\right]^{1 / 2} C^{l_{1}}(1, j ; 1, j)\left[3, l_{1}, 0\right]_{0}^{i} \tag{28}
\end{array}\right\}\left(l_{1}=2-2 P_{a}\right),
$$

we obtain

$$
\begin{equation*}
\left\langle\psi_{0}\right|(3 / 4 \pi) X_{0} X_{0}\left|\psi_{b}\right\rangle=\sum_{i=1}^{3} \sum_{P_{a}=0}^{1}\left[\left(2 l_{1}+1\right) / 4 \pi\right]^{1 / 2} C^{l_{1}}(1,0 ; 1,0)\left\langle\psi_{b}\right|\left[3, l_{1}, 0\right]_{0}^{i}\left|\psi_{b}\right\rangle+\sum_{\substack{i, k \\ i \neq k}}\left\langle\psi_{b}\right|[2,1,0]_{0}^{i *}[2,1,0]_{0}^{k}\left|\psi_{b}\right\rangle . \tag{29}
\end{equation*}
$$

Here $C^{L}\left(l^{\prime}, m^{\prime} ; l, m\right)$ is the Condon-Shortley coefficient ${ }^{21}$ defined by

$$
C^{L}\left(l^{\prime}, m^{\prime} ; l, m\right)=[4 \pi /(2 L+1)]^{1 / 2} \int Y_{L}^{m^{\prime}-m}(\theta, \varphi) Y_{l^{\prime}}^{m^{\prime} *} *(\theta, \varphi) Y_{l}^{m}(\theta, \varphi) \sin \theta d \theta d \varphi
$$

The matrix elements in Eq. (29) are handled similarly to the way $\left|\tilde{W}_{j}\right|$ was treated earlier.

III. RESULTS

A. Oscillator strengths

The wave functions employed here for the ${ }^{2} S$ and ${ }^{2} P$ states are the 150 -term ${ }^{2} S$ wave functions reported previously ${ }^{11}$ and 120 -term ${ }^{2} P$ functions, similar to the ones reported previously. ${ }^{11}$ The results of the calculations we have done are presented in Table I, where we tabulate $\left|\bar{W}_{0}\right|$, the absolute multiplet strength S, the f values, term energies, the relative term energy $\Delta E=E\left({ }^{2} P\right)$ $-E\left({ }^{2} S\right)$, and various quantities related to the calculation of upper and lower bounds to f. In evaluating S_{a-} and $S_{b_{-}}$, rather than Eq. (24), Weinberger's formula ${ }^{34}$ was used,

$$
\begin{equation*}
S^{2} \geqslant \frac{E_{n+1}-J_{0}}{E_{n+1}-E_{0}} \prod_{v=1}^{n} \frac{E_{v}-J_{0}}{E_{v}-E_{0}} \frac{J_{v}-E_{0}}{J_{v}-J_{0}}, \tag{30}
\end{equation*}
$$

where $E_{0}, E_{1}, \ldots, E_{n+1}$ are the $n+2$ lowest eigenvalues of H and the J_{i} are the corresponding Ray-leigh-Ritz estimates $\left\langle\phi_{i}\right| H\left|\phi_{i}\right\rangle$. Here the ϕ_{i} are approximations to the exact eigenfunctions and it is assumed that

$$
\begin{equation*}
E_{0} \leqslant J_{0} \leqslant E_{1} \leqslant J_{1} \leqslant \ldots \leqslant E_{n} \leqslant J_{n} \leqslant E_{n+1} . \tag{31}
\end{equation*}
$$

Overlaps calculated with inequality (30) gave significant improvement over those obtained using the well-known Eckart criterion [Eq. (24)]; in addition, formula (30) is applicable to excited states for which Eckart's formula is no longer valid. To use either Eq. (24) or (30), one must know either the nonrelativistic energies E or their lower bounds. For the Li ground state, the value given by Larsson was used. ${ }^{35}$ To obtain the nonrelativistic energy estimate for the other states, we add the experimentally determined relative term energies to the ground-state estimate. The values we used for the estimated exact nonrelativistic en-

TABLE I. Numerical values (in a.u.) for various quantities related to the calculation of f values and upper and lower bounds to f values (see text).

States	$\left\|\tilde{W}_{0}\right\|$	S	f	$E\left({ }^{2} S\right.$)	$E\left({ }^{2} P\right)$	$\Delta E(\text { expt })^{\text {a, }}$
$2^{2} S \rightarrow 2{ }^{2} P$	1.14633	33.026	0.74759	-7.478023	-7.410 05	0.067909
$3^{2} S \rightarrow 2^{2} P$	0.84145	-17.795	-0.332 53	-7.35410	-7.410 05	0.05606
$4{ }^{2} S \rightarrow 2^{2} P$	0.22386	-1.2595	-0.038 47	-7.31840	-7.410 05	0.09163
$5{ }^{2} S \rightarrow 2{ }^{2} P$	0.12015	-0.36283	-0.01289	-7.30340	-7.41005	0.10661
$2{ }^{2} S \rightarrow 3{ }^{2} P$	0.06271	0.098842	0.00464	-7.478023	-7.33700	0.140909
$3^{2} S \rightarrow 3{ }^{2} P$	2.92415	+214.90	1.21348	-7.35410	-7.33700	0.01694
$4{ }^{2} S \rightarrow 3{ }^{2} P$	2.07441	-108.15	-0.67162	-7.31840	-7.33700	0.01863
$5{ }^{2} S \rightarrow 3^{2} P$	0.52532	-6.9357	-0.07770	-7.30340	-7.33700	0.03361
$2^{2} S \rightarrow 4{ }^{2} P$	0.055085	0.07626	0.004224	-7.478 023	-7.31174	0.16617
$3{ }^{2} S \rightarrow 4{ }^{2} P$	0.009548	0.00229	3.223×10^{-5}	-7.35410	-7.31174	0.04220
$4^{2} S \rightarrow 4^{2} P$	5.42703	+ 740.228	1.6359	-7.31840	-7.31174	0.00663
$5{ }^{2} S \rightarrow 4^{2} P$	3.80377	-363.637	-1.01212	-7.30340	-7.31174	-0.008 35
$2{ }^{2} S \rightarrow 5^{2} P$	0.04138	0.04303	0.00255	-7.478023	-7.30014	0.17776
$3{ }^{2} S \rightarrow 5^{2} P$	0.05248	0.06922	0.00124	-7.35410	-7.30014	0.05380
$4^{2} S \rightarrow 5^{2} P$	0.08169	-0.17805	0.00108	-7.31840	-7.30014	0.01823
$5{ }^{2} S \rightarrow 5^{2} P$	8.66476	-1886.91	2.04416	-7.30340	-7.30014	0.00325
States	$\left\langle\Psi_{b}\right\|(3 / 4 \pi) x_{0}^{2}$	${ }^{2}\left\|\Psi_{b}\right\rangle \quad S_{a-}$	$S_{b}-$	ϵ_{a+}	ϵ_{b+}	$\Delta_{a b}$
$2{ }^{2} S \rightarrow 2^{2} P$	4.0446	$6 \quad 0.999873$	0.999531	0.011237	0.021659	1.65244
$3{ }^{2} S \rightarrow 2^{2} P$	4.0446	- 0.999220	0.999531	0.027935	0.021659	1.82663
$4^{2} S \rightarrow 2^{2} P$	4.0446	- 0.997081	0.999531	0.054031	0.021659	1.99862
$5{ }^{2} S \rightarrow 2^{2} P$	4.0446	- 0.990153	0.999531	0.099230	0.021659	2.00753
$2{ }^{2} S \rightarrow 3{ }^{2} P$	24.2298	- 0.999873	0.998079	0.011237	0.043825	4.92198
$3{ }^{2} S \rightarrow 3^{2} P$	24.2298	- 0.999220	0.998079	0.027935	0.043825	3.95969
$4{ }^{2} S \rightarrow 3^{2} P$	24.2298	- 0.997081	0.998079	0.054031	0.043825	4.46393
$5{ }^{2} S \rightarrow 3^{2} P$	24.2298	- 0.990153	0.998079	0.099230	0.043825	4.89427
$2{ }^{2} S \rightarrow 4{ }^{2} P$	82.0183	0.999873	0.995397	0.011237	0.067841	9.05623
$3{ }^{2} S \rightarrow 4{ }^{2} P$	82.0183	0.999220	0.995397	0.027935	0.067841	9.05639
$4^{2} S \rightarrow 4^{2} P$	82.0183	0.997081	0.995397	0.054031	0.067841	7.25021
$5{ }^{2} S \rightarrow 4{ }^{2} P$	82.0183	0.990153	0.995397	0.099230	0.067841	8.21886
$2^{2} S \rightarrow 5^{2} P$	207.645	0.999873	0.987054	0.011237	0.11377	14.409832
$3{ }^{2} S \rightarrow 5^{2} P$	207.645	0.999220	0.987054	0.027935	0.11377	14.409796
$4^{2} S \rightarrow 5^{2} P$	207.645	0.997081	0.987054	0.054031	0.11377	14.409646
$5{ }^{2} S \rightarrow 5^{2} \boldsymbol{P}$	207.645	0.990153	0.987054	0.099230	0.11377	11.513768

TABLE I. (contimed)

States	$f<$	$f>$	f	\% Error
$2^{2} S \rightarrow 2{ }^{2} P$	0.7227	0.7720	0.7476	~3.5\%
$3^{2} S \rightarrow 2^{2} P$	-0.2927	-0.3741	-0.3325	$\sim 12 \%$
$4^{2} S \rightarrow 2{ }^{2} P$	-0.0102	-0.0845	-0.0385	$\sim 100 \%$
$5{ }^{2} S \rightarrow 2^{2} P$	-0.0057	-0.0911	-0.0129	>100\%
$2^{2} S \rightarrow 3{ }^{2} P$	0.00243	0.03444	0.00464	>100\%
$3^{2} S \rightarrow 3^{2} P$	1.11728	1.30702	1.21348	~7.5\%
$4^{2} S \rightarrow 3{ }^{2} P$	-0.519 06	-0.83687	-0.67162	$\sim 24 \%$
$5^{2} S \rightarrow 3^{2} P$	-0.040 95	-0.57318	-0.077 70	>100\%
$2^{2} S \rightarrow 4^{2} P$	0.003006	0.034248	0.004224	>100\%
$3^{2} S \rightarrow 4^{2} P$	0	0.024367	3.223×10^{-5}	>100\%
$4^{2} S \rightarrow 4^{2} P$	1.38656	1.88059	1.6359	15\%
$5{ }^{2} S \rightarrow 4{ }^{2} P$	-0.60348	-1.49267	-1.012 12	~50\%
$2^{2} S \rightarrow 5^{2} P$	0	0.06156	0.00255	>100\%
$3^{2} S \rightarrow 5^{2} P$	0	0.09332	0.00124	>100\%
$4^{2} S \rightarrow 5^{2} P$	0	0.11367	0.00108	>100\%
$5{ }^{2} S \rightarrow 5^{2} P$	1.21143	2.98898	2.04416	$\sim 50 \%$

${ }^{\text {a }}$ This is the ΔE value used in computing f values.
${ }^{\mathrm{b}} \Delta E=E\left({ }^{2} P\right)-E\left({ }^{2} S\right)$.
ergies are tabulated in Table II along with our computed results.
In Table III we present our direct calculation of the transition moment $\tilde{W}_{a b}$, together with the calculated f value and the calculated error bounds $f \pm$. For comparison we also list the results of previous workers. Note that for the $n^{2} S \rightarrow 2^{2} P$ results, our f values agree most closely with the length results of Ahlenius and Larsson ${ }^{36}$ (AL) for the $1 s^{2} 2 s$ $\rightarrow 1 s^{2} 2 p$ transition, and with the velocity results of AL for the other three transitions. If we assume our results to be essentially exact, these results then agree nicely with Crossley's ${ }^{3}$ general recommendations concerning the choice between length and velocity formulas for less than exact wave functions. Crossley ${ }^{3}$ suggested that for small transition energies, and, in particular, when there is no change in the principal quantum number of the active electron, the length formula is to be preferred, whereas for higher energies, the velocity results are to be preferred.
In examining the $2^{2} S \rightarrow 3^{2} P$ transition, we note that our results tend to confirm previous conjectures ${ }^{16}$ that the agreement between length and velocity Hartree-Fock calculations is both fortuitous and wrong, our value of 0.0046 a.u. agreeing more closely with the experimental value of ${ }^{37} 0.0055$ than
with the HF results.
Most of our computed f values agree to within (2-4)\% of the National Standards Reference Data Service recommended values, ${ }^{4}$ the notable exceptions being $2^{2} S \rightarrow 3^{2} P(\approx 18 \%), 2^{2} S \rightarrow 4^{2} P(\approx 12 \%)$, $3^{2} S \rightarrow 4^{2} P(\approx 70 \%), 2^{2} S \rightarrow 5^{2} P(\approx 24 \%)$, and $4^{2} S \rightarrow 5^{2} P$. These are all cases of small transition probabilities, which make them difficult to observe experi-

TABLE II. Exact (nonrelativistic) and computed energies for various $\mathrm{LiI}{ }^{2} S$ and ${ }^{2} P$ states (in a.u.).

	Computed	Exact
$2^{2} S$	-7.478023	-7.478069
$3^{2} S$	-7.35401	-7.35410
$4^{2} S$	-7.31840	-7.31853
$5^{2} S$	-7.30340	-7.30355
$2^{2} P$	-7.41005	-7.41016
$3^{2} P$	-7.33700	-7.33716
$4^{2} P$	-7.31174	-7.31190
$5^{2} P$	-7.30014	-7.30030
$6{ }^{2} P$	-7.29325	-7.29403

TABLE III. Calculated transition moments $\tilde{W}_{a b}$ and rigorous error bounds for oscillator strengths in various Li I ${ }^{2} S \rightarrow{ }^{2} P$ transitions. F values determined by previous workers are included for comparison.

Transition	$\tilde{W}_{a b}$	f -	$f+$	f -	Weiss ${ }^{\text {a }}$		$\mathrm{AL}^{\text {b }}$		NSRDS ${ }^{\text {d }}$
					$(l){ }^{\text {c }}$	$(v)^{\text {c }}$	(l)	(v)	
$2{ }^{2} S \rightarrow 2{ }^{2} P$	1.14633	0.7227	0.7720	0.7476	0.753	0.772	0.748	0.758	0.753
$3{ }^{2} S \rightarrow 2{ }^{2} P$	0.84145	-0.2927	-0.3741	-0.3325	-0.346	-0.342	-0.323	-0.336	-0.345
$4{ }^{2} S \rightarrow 2{ }^{2} P$	0.22386	-0.0102	-0.0845	-0.0385			-0.045	-0.039	-0.038
$5{ }^{2} S \rightarrow 2{ }^{2} P$	0.12015	-0.0057	-0.0911	-0.0129			-0.013	-0.013	-0.0126
$2{ }^{2} S \rightarrow 3{ }^{2} P$	0.06271			0.00464	$\begin{array}{r} 0.0027 \\ \text { (H. } \end{array}$	0.0026			0.0055
$3{ }^{2} S \rightarrow 3{ }^{2} P$	2.92415	1.11728	1.30702	1.21348	$\begin{aligned} & 1.226 \\ & \text { (H. } \end{aligned}$	1.256			1.23
$4{ }^{2} S \rightarrow 3{ }^{2} P$	2.07441	-0.51906	-0.83687	-0.67162					-0.669
$5{ }^{2} S \rightarrow 3{ }^{2} \boldsymbol{P}$	0.52532			-0.077 70					-0.0762
$2{ }^{2} S \rightarrow 4{ }^{2} P$	0.05509			0.00422					0.0048
$3{ }^{2} S \rightarrow 4{ }^{2} P$	0.00955			3.223×10^{-5}					1.93×10^{-4}
$4{ }^{2} S \rightarrow 4{ }^{2} P$	5.42703			1.6359					1.63
$5{ }^{2} S \rightarrow 4{ }^{2} P$	3.80377			-1.012 12					-1.005
$2{ }^{2} S \rightarrow 5{ }^{2} P$	0.04138			0.00255					0.0032
$3^{2} S \rightarrow 5^{2} P$	0.05248			0.00124					
$4{ }^{2} S \rightarrow 5^{2} P$	0.08169			0.00108					5.81×10^{-4}
$5{ }^{2} S \rightarrow 5{ }^{2} P$	8.66476			2.04416					2.05

${ }^{\text {a }}$ Reference 16.
${ }^{\mathrm{d}}$ Reference 4.
${ }^{b}$ Reference 36.
${ }^{e}$ Hartree Fock results.
${ }^{c} l=$ dipole length results. $v=$ dipole velocity.
mentally and, on the theoretical side, there presumably is a large cancellation within the integrand of the transition integral which apparently brings one well into the region of inaccuracy of Hartree-Fock and other less accurate wave function calculations than ours.

B. Error analysis

In most of the transitions that we have calculated f values and bounds for, the term in brackets in Eq. (22) is small enough so that, approximately,

$$
\begin{equation*}
W_{a b} \leqq S_{a \pm} S_{b \pm} \tilde{W}_{a b} \pm \epsilon_{a+} S_{b \pm} \Delta_{a b} \tag{32}
\end{equation*}
$$

S_{a+} and S_{b+} may be rigorously taken to be unity, and for all our calculations S_{a-} and $S_{b_{-}}$are close to unity so that

$$
\begin{equation*}
W_{a b} \approx \leftrightarrows \tilde{W}_{a b} \pm \epsilon_{a+} \Delta_{a b}, \tag{33}
\end{equation*}
$$

which provides a useful breakdown of the total error.

Consider, for example, the 150 -term $\mathrm{Li}^{2} S$ 120 -term Li ${ }^{2} P$ results for $2^{2} S \rightarrow 2^{2} P$. Here

$$
W_{a b} \leqslant \tilde{W}_{a b}+\epsilon_{a+} \Delta_{a b}
$$

and $\epsilon_{a+}=0.011237$, which was computed from S_{a-} $=0.999873$ obtained by using Weinberger's Eq. (30). For comparison, the simple Eckart formula, Eq. (24), gave $S_{a-}=-0.99981$ and $\epsilon_{a+}=0.019238$, so using Weinberger's formula, which is a novel feature of the present calculations since we have three very accurate ${ }^{2} S$ excited states in the present calculations, improves the ϵ_{a+} calculation by 24%. Then $\Delta_{a b}=1.65244$, so $\epsilon_{a+} \Delta_{a b}=0.0188$ and $W_{a b} \leqslant 1.146$ +0.019 , so that the transition moment bound is good in an absolute sense. However, the f-value upper and lower bounds are 3.5% even for these high-quality wave functions. For the other $2^{2} S$ $\rightarrow m^{2} P$ transitions, $\Delta_{a b}$ does not change much, but ϵ gets much worse due to the higher ${ }^{2} S$ roots not being obtained as accurately as the lowest ${ }^{2} S$ state, and there are fewer interleaving higher roots for Weinberger formula calculations. Also, the transitions become weaker so that the relative error becomes greater, even if the absolute size of the energy error is not much changed.

For the $n^{2} S \rightarrow 3^{2} P$ sequence, there is a strong $3^{2} S \rightarrow 3^{2} P$ transition, but the $3^{2} P$ state is much more diffuse than the $2^{2} P$ state, leading to a larger $\Delta_{a b}$ and bounds of 7.5% in this case. This trend continues for the strong transitions in the $n^{2} S$ $\rightarrow 4^{2} P$ and $n^{2} S \rightarrow 5^{2} P$ sequences, with the bounds for even the strong transitions getting progressively worse.

IV. DISCUSSION

Wave functions obtained by combined configuration-interaction-Hylleraas-method techniques for the four lowest ${ }^{2} S$ and four lowest ${ }^{2} P$ states of LiI have been employed in calculating oscillator strengths for the 16 lines arising from allowed transitions
among these four ${ }^{2} S$ and four ${ }^{2} P$ states. In view of the high quality of these wave functions (on an energy level criterion), the f values obtained are of presumably high quality. Upper and lower bounds ${ }^{38}$ are also computed for these f values, which in the best case ($1 s^{2} 2 s^{2} S \rightarrow 1 s^{2} 2 p^{2} P$) are 3.5%.

ACKNOWLEDGMENTS

One of the authors (J.R.R.) wishes to thank Professor P. O. Löwdin of Uppsala University for his hospitality, and the American Scandanavian Foundation for financial support during his stay at Uppsala. One of them (J.S.S.) wishes to thank Ms. Kathleen L. Williams for helpful criticisms.
*Research supported by a grant from the National Science Foundation.
\dagger Present address: Quantum Chemistry Group, Uppsala University, Uppsala, Sweden.
${ }^{1}$ B. Edlen, in Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1964), Vol. 27, p. 80.
${ }^{2}$ C. E. Moore, Natl. Bur. Stand. (U.S.) Circular No. 467 (U.S. GPO, Washington, D.C., 1949).
${ }^{3}$ R. J. S. Crossley, Adv. At. Mol. Phys. 5, 237 (1969).
${ }^{4}$ W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, Natl. Stand. Ref. Data Ser. 4 (U. S. GPO, Washington, D. C., 1966), Vol. I.
${ }^{5}$ B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964), and references therein; B. Schiff, C. L. Pekeris, and Y. Accad, Phys. Rev. A 4, 885 (1971).
${ }^{6}$ A. W. Weiss, J. Res. Natl. Bur. Stand. (U.S.) A 71, 163 (1967).
${ }^{7}$ L. C. Green, N. C. Johnson, and E. K. Kolchin, Astrophys. J. 144, 369 (1966).
${ }^{8} \mathrm{P}$. Westhaus and O. Sinanouglu, Phys. Rev. 185, 56 (1969).
${ }^{9}$ A. W. Weiss, Phys. Rev. 162, 71 (1967); 188, 119 (1969).
${ }^{10}$ F. Weinhold, Adv. Quantum Chem. 6, 226 (1972).
${ }^{11}$ J. S. Sims and S. A. Hagstrom, Phys. Rev. A 11, 418 (1975).
${ }^{12}$ The wave functions are given in Sec. II A; the method is that of Ref. 13.
${ }^{13}$ J. S. Sims and S. Hagstrom, Phys. Rev. A 4, 908 (1971).
${ }^{14}$ F. Weinhold, J. Chem. Phys. 54, 1874 (1971). This reference contains a more complete discussion of Weinhold's procedure for calculating upper and lower bounds to oscillator strengths.
${ }^{15}$ M. T. Anderson and F. Weinhold [Phys. Rev. A 9 , 118 (1974)] have applied the technique to transitions in the He isoelectronic sequence, with results giving bounds in the best case of 0.053%
${ }^{16}$ A. W. Weiss, Astrophys. J. 138, 1262 (1963).
${ }^{17}$ J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).
${ }^{18}$ Lawrence Berkeley Laboratory subroutine JacVat, written by E. Beals (unpublished).
${ }^{19}$ H. H. Michels, C. P. Van Dine, and P. Elliott, avail-
able as Program 97, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind. (unpublished).
${ }^{20}$ P. O. Lowdin, Rev. Mod. Phys. 36, 966 (1964).
${ }^{21}$ E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U.P., Cambridge, England, 1963).
${ }^{22}$ H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
${ }^{23}$ Here Z is the nuclear charge and $-\frac{1}{2} \nabla_{i}^{2}$ is the operator corresponding to the kinetic energy of electron i. Here and in the remainder of this work we use Hartree atomic units, in which the unit of energy is chosen as $m_{e} e^{4} / \hbar^{2}=1$ a.u. (of energy), with m_{e} being the mass of the electron.
${ }^{24}$ Actually the configuration designation is rigorous only for Russell-Saunders (LS) coupling in a central field. We retain the terminology here to conform to standard spectroscopic notation with the understanding that by $1 s^{2} 2 s^{2} S$ and $1 s^{2} 2 p^{2} P$ we mean the lowest terms of those respective symmetries. For a generalization of the multiplet strength form with interacting configurations see, e.g., R. N. Zare, [J. Chem. Phys. 47, 3561 (1967)].
${ }^{25}$ Note here that we are interested in computing the f value for a transition from one spectroscopic term to another. Spectroscopic terms consist of levels that differ in the total angular momentum J. Each level is $2 J+1$ degenerate in the absence of magnetic fields. The levels of different J belonging to the same term have different energies owing to spin-orbit interaction; neglecting spin-orbit interaction they are degenerate. Thus in the absence of magnetic fields and neglecting spin-orbit interactions [as use of the Hamiltonian Eq. (5) impliesl, states of the term are degenerate. To get the multiplet oscillator strength we sum over all the levels of each term and all the states of each level. This sum is $\sum_{J} \sum_{M_{J}}=\sum_{J}(2 J+1)=(2 L+1)(2 S+1)$. In LS coupling, neglecting spin-orbit interactions, we can equivalently take $\sum_{M_{L}} \sum_{M_{S}}$, as in Eq. (6). The energy difference $E\left(\gamma^{\prime} L^{\prime} S^{\prime}\right)-E(\gamma L S)$ is the average energy difference of states or the weighted energy difference of levels. Since the energy eigenvalues obtained by use of the Hamiltonian given by Eq. (5) depend only on
γ, L, S, a computed term separation $\Delta E=E\left(\gamma^{\prime} L^{\prime} S^{\prime}\right)$ $-E(\gamma L S)$ can be obtained by merely subtracting the two appropriate energy values obtained with the wave functions we use.
${ }^{26}$ B. W. Shore and D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1964); E. P. Wigner, Z. Phys. 43, 624 (1927); C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
${ }^{27}{ }_{\mathrm{L}}$. Goldberg, Astrophys. J. 82, 1 (1935).
${ }^{28}$ S. Chandrasekhar, Astrophys. J. 102, 223 (1945). ${ }^{29}$ R. A. Harris, J. Chem. Phys. $\underline{50}, 3947$ (1969). ${ }^{30}$ See Ref. 14 and references therein.
${ }^{31}$ The length formula was chosen over the velocity formula because of the relative ease of computing the matrix elements. For transitions without change in principal quantum number, Crossley (Ref. 3) argues
that this is the correct formula to choose.
${ }^{32} \mathrm{H}$. Nussbaumer, Mon. Not. R. Astron. Soc. 145, 141 (1969).
${ }^{33} \mathrm{~J}$. S. Sims and S. A. Hagstrom, J. Chem. Phys. 55, 4699 (1971).
${ }^{34} \mathrm{H}$. F. Weinberger, J. Res. Natl. Bur. Stand. (U. S.) B 64, 217 (1960); see also F. Weinhold, J. Math. Phys. 11, 2127 (1970).
${ }_{5}^{35}$ S. Larsson, Phys. Rev. A 6, 1786 (1972).
${ }^{36}$ T. Ahlenius and S. Larsson, Phys. Rev. A $\underline{8}, 1$ (1973).
${ }^{37}$ A. N. Filipov, Z. Phys. 69, 256 (1931).
${ }^{38}$ Previous papers in this series on upper and lower bounds to atomic and molecular properties are J. S. Sims and R. C. Whitten [Phys. Rev. A 8, 2220 (1973)], and J. S. Sims and J. R. Rumble, Jr., [Phys. Rev. A $\underline{8}$, 2231 (1973)].

