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Calculations of positions of the first three S, P autoionization states of lithium are reported. The results
agree with experimental values (available in four of the six cases) to almost four-place accuracy. A comment
is included concerning the current status of quasiprojection optical-potential scattering calculations for non-

resonant e-He phase shifts.

Recently Pegg et al.! have made measurements
of some optically forbidden autoionization states
of alkali metals. These measurements comple-
ment measurements of Ederer, Lucatorto, and
Madden? of optically allowed autoionization states
of Li, so that together the measured energies pro-
vide a testing ground for calculational theories
of such states. To compare with the earlier ex-
periment? wehad done some calculations on Li, and
motivated by the recent experiment,' we report
here our results using the quasi-projection-oper-
ator technique.® At the same time we shall com-
ment on the present status of application of quasi-
projection optical potential to nonresonant scat-
tering of electrons from helium.

The quasi-projection-operator technique® was
introduced to avoid the twin problems of calculat-
ing autoionization states of (N +1)-electron—atom
systems when N>2. If viewed in their rigorous
form as scattering resonances of electrons from
N-electron targets, these difficulties have to do
with (i) the identity of the scattered electron with
the orbital electrons; (ii) the lack of an exact ana-
lytic solution for the (ground state) target wave
function. Both of these reasons imply that one
cannot construct a rigorous @ operator (whose
eigenvalues coming from QHQ@®, = §, &, define
a discrete set of energies &, very close to the
resonant energies E,) with all the properties de-
manded by the Feshbach theory,* specifically in-
cluding the property of idempotency: @%=Q.

The solution that we offered® was based on the
realization that idempotency was not essential to
the eigenvalue problem and that if one relaxed
that condition, then a Rayleigh-Ritz variational
problem defined by

(2QHQ®) | _

5{ m} 0 ()
could continue to give rise to a discrete spectrum
&\, but would allow explicit construction of quasi-
projection operators € (in which then approxima-
tions of the target state can naturally be inserted).
In the present calculation we use the explicit form
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(labelled @, in Ref. 3)

Y N+1
@=1-3% P, (2)
where
P; = ¢o(xi_l)> <¢o(x1_l) . (3)

¢, represents the ground state of the N-particle
target system with the x;' signifying the absence
of spin and space coordinates x; of the ith par-
ticle from among the N +1 particles of the com-
pound system. [Further details are given in Ref.
3. It is emphasized the eigenvalues of the GHQ
only correspond to resonances if they lie below
the first inelastic threshold of the target, which
in the present case is Li* (23S) at 64.4148 eV. |
Calculations here are based on closed-shell

approximation of the 'S ground of the (Li*) target
system:

@o= (& /me” 12, )

where ¢, is the spatial part of ¢,; the nonlinear
parameter which minimizes the target energy is
given by {=Z - &, Z being the charge on the tar-
get nucleus (Z=3 here).

The total wave function for the compound Li sys-
tem is of the configuration interaction form

’ NX
Q
®,5=12 ﬁ% Z Cin Rny 1(71)Rn212(7’2)Rn313(73)
{n}=1

XY(1 L; L; L)S(33S,, 3 %)} (5)

with Slater-type radial orbitals: R, (r)=e *m7y""1,
Changing Z to 3 from our original e-He calcula-
tion® both in the Hamiltonian H as well as in Eq. (4)
for ¢, we minimized QHQ, Eq. (1), as a function
of numbers of configurations N, and of the non-
linear parameters. Table I gives examples of
some results for the lowest three %S states. (Sim-
ilar convergence is also obtained for 2P states.)
Each eigenvalue was minimized separately with
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TABLE I. 2§ energies and widths of Li vs number of terms N, in Eq. (5).

N, & (Ry) Ty (eV) &, (Ry) I, (eV) &3 (Ry) T3 V)

8 —-10.7963 0.0552 -10.3676 0.0245 -10.2844 4%x1074
16 -10.7984 0.0496 -10.3776 0.0165 -10.2886 3x107°
28 —-10.8093 0.0381 —10.3848 0.0120 -10.2981 0.023
40 -10.8126 0.0423 -10.3970 0.0091 -10.3027 s

respect to a partial search of the nonlinear param-
eters. For each resulting wave function the width
was calculated from

T=2k[(BY’|H|Q®))|? (6)

where P¥’=¥' is a nonresonant scattering func-
tion derived from the exchange approximation us-
ing the same closed-shell ¢,.

One sees that as opposed to the positions, which
are converging well, the widths are more sensi-
tive, and only for the lower A states can one rea-
sonably claim to have a sufficiently stable result.
We believe this is related to the general question
of nonresonant scattering using the quasi-optical
potential (see below). As a result in Table II,
where we have collected our best results, we omit
widths for those states where there is an absence
of stability.

Referring to Table II, we see that the calcula-
tion is in agreement with experiment to about
three and a half significant figures. On the whole
these are the most satisfactory results of those so
far calculated; however because of the limitations
primarily of the target wave function, it is not
warranted to press such comparisons too far.

Insofar as we have confidence in our width re-

sults, it is interesting that there is agreement
with the one other calculated width for the 'P(1)
state.® It would clearly be desirable to have ex-
perimental widths, but from the theoretical point
of view the width integral has a more fundamental
significance. As noted in our original paper,® giv-
en a complete set (for a given N, and set of non-
linear parameters) of eigenfunctions &, and §,,
one can straightforwardly construct a quasi-opti-
cal potential from the optical potential®

1
E-QHQ

by replacing P and @ by P(=1-@) and @ and in-
serting the “complete set”

Vp= PHQ QHP (1)

N

> Q8)) (1@
A=1

on either side of (E - HQ)™*. In this way one gen-
erates the quasi-optical potential
Ny a _a a A
PHQ®,)(®,QHP
A=1 E - g)x

™

Vgp= (®)

Using this potential one has a well-defined scat-

TABLE II. Position of autoionization states of Li (in eV) compared to experiment and other
calculations (relative to the Li ground state at —14.956 050 Ry f).

State This cale. Other calcs. Experiment
25(1) 56.3677 56.43 56.31°
r'=0.04
25(2) 62.0220
I'=0.009
25(3) 63.3052
2p(1) 58.9383 58.96 ¢ 58.96 4 58.91° 58.91°
T'=0.007 r'=0.007
2p(2) 60.4960 60.60 ¢ 60.40° 60.396°
2p(3) 62.4879 62.46 ° 62.42° 62.419°

2 B. R. Junker, quoted in Ref. 1.
b Pegg et al., Ref. 1.
¢ A. Weiss, quoted in Refs. 1 and 2.

d Barden, Bottcher, and Schneider, Ref. 5.

€ Ederer, Lucatorto, and Madden, Ref. 3.
f's. Larsson, Phys. Rev. 169, 49 (1968).
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tering equation for the scattering wave function

¥y = Q{ULG) o)) + (1, ... , N+ 1)}
with asymptotic form

Jim ¥, = lim POy = U ()9
In particular the phase shift may be determined
from

Ui) = [y 0r ) /7,]Y 1o(R)x, 26
in the usual way:

Lir () = sin(kr - 3L 7)), (9)
where u, satisfies

< @ L(L+1)

S 7 A V) - k3>uL

+7{tbo| V,+ Vop | PT)=0.  (10)

Vg4 and V, are the static and exchange potentials
coming from the asymptotic part, G{U, ¢}, of ¥,
andUop is given in Eq. (8).

We have solved (10) for S-wave e-He scattering
based on the eigenvector sets deriving from our
earlier calculations.® As expected we find that the
phase shifts increase as we increase N, but the
phase shifts seem too large. For N, =12 we are
already 3% larger than the S phase shifts on
Sinfailam and Nesbet,® which is generally con-
ceded to be the best multiconfiguration calcu-
lation of e-He scattering (using, however, a
closed- shell-type target state wave function). Un-
like the present method that method relies on the
region of stability of results as basis size is in-
creased and parameters are varied. We have also
used the angle- independent correlation function,®
whose spatial part is given by

NX
)

(v 7y;73) = ™21 2 ,Ctmn(yb’?*‘ 7”1"7'972 .
1

Such a function allows a much more thorough
search of the nonlinear parameter space. There
too we were led to phase shifts which are larger
than those of Sinfailam and Nesbet,’butby a smaller
amount than the configuration interaction ones.
We cannot yet say whether we have convergence
as N, is increased (and that to our mind is the
central question), but we are finding that the per-
centage increases over Ref. 6 get larger as % is
decreased. We suspect that this is related to the
fact that our widths get more erratic the more re-
moved the resonant state is from the lowest one.
For the width integral is essentially the same as
those occurring in the numerator of Vop, Eq. (8).
And the further the energy E is removed from a
specific resonance (§,), the more important will
be the higher terms in (8) relative to the lowest
one. This explanation assumes that the major
factor affecting the “width” integrals in the nu-
merator of the optical potential is the resonance
functions &, rather than the scattering functions
Y. Indeed one may cogently argue that this is so
as follows: In the scattering region the non-
resonant continuum functions necessarily change
only slowly with E, since the range of E is small
where resonances occur below the first excited
threshold. Nevertheless the fact that the lower
widths are stable whereas the higher ones are not
indicates that it is the ®, for higher » that are
responsible. Since &, are independent of E, the
same inadequacy will also apply to them at small
E as well. For in that region the total wave ¢,

is nonresonant in character and therefore one may
reasonably attribute to it the same insensitivity as
the nonresonant continuum.

The program used in computing é,‘ from (5) is
that of Browne and Matsen’ as modified for QHQ
by J. N. Bardsley. We would like to thank Dr.
Bardsley for having made this program available
to us.
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